JP3247189U - Rubber boots - Google Patents

Rubber boots Download PDF

Info

Publication number
JP3247189U
JP3247189U JP2024001276U JP2024001276U JP3247189U JP 3247189 U JP3247189 U JP 3247189U JP 2024001276 U JP2024001276 U JP 2024001276U JP 2024001276 U JP2024001276 U JP 2024001276U JP 3247189 U JP3247189 U JP 3247189U
Authority
JP
Japan
Prior art keywords
rubber
midsole
reinforcing
insole
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024001276U
Other languages
Japanese (ja)
Inventor
昭二郎 鈴木
Original Assignee
鈴木産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木産業株式会社 filed Critical 鈴木産業株式会社
Priority to JP2024001276U priority Critical patent/JP3247189U/en
Application granted granted Critical
Publication of JP3247189U publication Critical patent/JP3247189U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

【課題】 安定歩行を可能にするゴム長靴を低コストかつ高い生産効率で提供可能にすること。【解決手段】 ゴム製外底10に中底20を装着して靴底110を形成し、この靴底110にゴム製胴体120を接合して構成されるゴム長靴100であって、前記中底20が、ゴム製中底21と、該ゴム製中底21の下部又は上部に積層される補強中底22とを有して構成されるもの。【選択図】 図2[Problem] To provide rubber boots that enable stable walking at low cost and with high production efficiency. [Solution] A rubber boot 100 is constructed by attaching a midsole 20 to a rubber outer sole 10 to form a sole 110, and then joining a rubber body 120 to the sole 110, and the midsole 20 is constructed by having a rubber midsole 21 and a reinforcing midsole 22 that is layered on the lower or upper part of the rubber midsole 21. [Selected Figure] Figure 2

Description

本考案はゴム長靴に関する。 This invention relates to rubber boots.

従来の長靴として、例えば特許文献1に記載の如く、ゴム製外底に高強度繊維からなる中底を装着して靴底を形成し、この靴底に胴体を接合して構成されるものがある。 As an example of a conventional boot, as described in Patent Document 1, there is one in which a sole is formed by attaching a midsole made of high-strength fiber to a rubber outer sole, and then joining the body to this sole.

従来の長靴では、防水性を確保する点から、ゴム製外底の上部にゴム製中底を設け、ゴム製胴体の下端部をゴム製外底及びゴム製中底に加硫接着したゴム製長靴も考えられている。 In order to ensure waterproofing, conventional boots have been designed with a rubber insole on top of a rubber outer sole, and the bottom end of the rubber body is vulcanized and bonded to the rubber outer sole and rubber insole.

実登録3163116号公報Registration No. 3163116

従来のゴム長靴は、しなやか故に履き心地の良い反面において、柔軟性がありすぎて歩行時に足が左右にぐらついてしまう場合がある。 Conventional rubber boots are flexible and comfortable to wear, but they can be too flexible and cause your feet to wobble from side to side when walking.

歩行時の足のぐらつきを防止するために、ゴム製外底の厚みを増加させたり、ゴム製中底の厚みを増加させることが考えられるものの、以下の問題点がある。 In order to prevent the foot from wobbling while walking, it is possible to increase the thickness of the rubber outsole or the rubber insole, but this has the following problems.

問題点1.外底、中底の厚みを増加させると、前後の屈曲性が確保できなくなり、歩行しづらいゴム長靴となってしまう。 Problem 1. Increasing the thickness of the outsole and midsole makes it difficult to ensure forward and backward flexibility, resulting in rubber boots that are difficult to walk in.

問題点2.外底、中底の厚みを増加させると、靴全体の重量が増加して非常に重たく、歩行しづらいゴム長靴となってしまう。 Problem 2. Increasing the thickness of the outsole and midsole increases the weight of the entire shoe, making the rubber boots very heavy and difficult to walk in.

問題点3.外底、中底の厚みを増加させると、足底位置が路面から高くなり、結果として歩行時に足が左右にぐらつき、安定した歩行が困難になる。 Problem 3. Increasing the thickness of the outsole and midsole raises the position of the sole of the foot from the ground surface, which results in the foot wobbling from side to side when walking, making it difficult to walk steadily.

問題点4.外底、中底の厚みを増加させると、ゴム素材コストが増加し非常に高価なゴム長靴となってしまう。 Problem 4. Increasing the thickness of the outsole and midsole increases the cost of the rubber material, making the rubber boots very expensive.

問題点5.外底、の厚みを増加させるためには、一般的に新規金型が必要となり、開発コストと長期の開発時間が必要となり、結果として高価なゴム長靴となってしまう。 Problem 5. In order to increase the thickness of the outsole, a new mold is generally required, which requires development costs and a long development time, resulting in expensive rubber boots.

問題点6.外底、中底の厚みを増加させると、加硫工程でゴム長靴全体を適正に均一に加硫させることが難しく、結果として加硫不足、加硫過多が発生し、ゴム品質(ゴムの強度、艶、質感等)に悪影響を与え、製品不良率が上がってしまう。 Problem 6. Increasing the thickness of the outsole and midsole makes it difficult to properly and uniformly vulcanize the entire rubber boot during the vulcanization process, resulting in insufficient or excessive vulcanization, which has a negative effect on rubber quality (strength, gloss, texture, etc.) and increases the product defect rate.

本考案の課題は、安定歩行を可能にするゴム長靴を低コストかつ高い生産効率で提供可能にすることにある。 The objective of this invention is to provide rubber boots that enable stable walking at low cost and with high production efficiency.

請求項1に係る考案は、ゴム製外底に中底を装着して靴底を形成し、この靴底にゴム製胴体を接合して構成されるゴム長靴であって、前記中底が、ゴム製中底と、該ゴム製中底の下部又は上部に積層される補強中底とを有して構成されるようにしたものである。 The invention according to claim 1 is a rubber boot constructed by attaching a midsole to a rubber outer sole to form a sole, and then joining a rubber body to the sole, and the midsole is constructed from a rubber midsole and a reinforcing midsole that is layered on the lower or upper part of the rubber midsole.

請求項2に係る考案は、請求項1に係る考案において更に、前記補強中底が、板状の基部に、網状の貼り合せ部を貼着してなるようにしたものである。 The device according to claim 2 is the device according to claim 1, further comprising a reinforcing insole formed by adhering a mesh-like bonding portion to a plate-like base.

請求項3に係る考案は、請求項2に係る考案において更に、前記網状の貼り合せ部が、たて糸と横糸を網状に編んだものであり、たて糸と横糸とが交差する多数の交差点を有し、それらの交差点が靴長手方向で相隣る間隔aを、それらの交差点が靴幅方向で相隣る間隔bより大としてなるようにしたものである。 The device according to claim 3 is the device according to claim 2, further comprising: the net-like bonded portion is made by weaving warp and weft threads in a net-like manner, and has many intersections where the warp and weft threads cross, and the distance a between adjacent intersections in the shoe length direction is greater than the distance b between adjacent intersections in the shoe width direction.

請求項4に係る考案は、請求項2又は3に係る考案において更に、前記補強中底の厚みが0.1mm以上、4.0mm以下であるようにしたものである。 The device according to claim 4 is the device according to claim 2 or 3, further characterized in that the thickness of the reinforcing insole is 0.1 mm or more and 4.0 mm or less.

請求項5に係る考案は、請求項1に係る考案において更に、前記補強中底が、ゴムや樹脂を染み込ませた紙又は不織布からなるようにしたものである。 The device according to claim 5 is the device according to claim 1, further comprising the reinforcing insole being made of paper or nonwoven fabric impregnated with rubber or resin.

請求項6に係る考案は、請求項5に係る考案において更に、前記補強中底の厚みが0.1mm以上、4.0mm以下であるようにしたものである。 The invention according to claim 6 is the invention according to claim 5, further comprising a thickness of the reinforcing insole of 0.1 mm or more and 4.0 mm or less.

請求項7に係る考案は、請求項1に係る考案において更に、前記補強中底が、厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1000g/m2以下の紙、又は厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1500g/m2以下の不織布からなるようにしたものである。 The device according to claim 7 is the device according to claim 1, further characterized in that the reinforcing insole is made of paper having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1000 g/ m2 , or a nonwoven fabric having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1500 g/ m2 .

(請求項1)
(a)靴底を形成する中底が、ゴム製中底と、該ゴム製中底の下部又は上部に積層される補強中底とを有して構成される。従って、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、靴長手方向の中底の耐折れ曲がり強度(曲げ剛性)を適度に確保して靴長手方向の前後のしなやかさを確保できる。同時に、靴幅方向の中底の耐折れ曲がり強度(曲げ剛性)を確保して靴幅方向の耐屈曲性を向上し、歩行時の足の左右のぐらつきも防止できる。
(Claim 1)
(a) The midsole forming the sole of the shoe is composed of a rubber midsole and a reinforcing midsole laminated to the upper or lower part of the rubber midsole. Therefore, the presence of the reinforcing midsole ensures an appropriate bending resistance (flexural rigidity) of the midsole in the shoe length direction and ensures flexibility in the front and rear directions of the shoe length direction without increasing the thickness of the rubber outsole or the rubber midsole. At the same time, the bending resistance (flexural rigidity) of the midsole in the shoe width direction is ensured, improving the bending resistance in the shoe width direction and preventing the foot from wobbling from side to side when walking.

また、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、結果として靴の重量の増加を招かず、歩行安定性を向上できる。 In addition, the presence of the reinforced midsole does not increase the thickness of the rubber outsole or the rubber midsole, resulting in no increase in the weight of the shoe and improved walking stability.

また、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、結果として路面に対する足底位置を高くすることがなく、歩行時の足の左右のぐらつきを防止し、歩行安定性を向上できる。 In addition, the presence of the reinforced midsole does not increase the thickness of the rubber outsole or the rubber midsole, and as a result, the position of the sole of the foot relative to the road surface is not raised, preventing the foot from wobbling from side to side when walking and improving walking stability.

また、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、ゴム素材の使用料を低減し、靴の製造コストを低くできる。 In addition, the presence of the reinforced midsole does not increase the thickness of the rubber outsole or rubber midsole, reducing the amount of rubber material used and lowering the manufacturing costs of the shoe.

また、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、それらのゴム製外底やゴム製中底のための新規金型が不要となり、開発時間や開発コストを低減し、靴の製造コストを低くできる。 In addition, the presence of the reinforced insole does not increase the thickness of the rubber outsole or rubber insole, eliminating the need for new molds for the rubber outsole and rubber insole, reducing development time and costs and lowering the manufacturing costs of the shoe.

また、補強中底の存在により、ゴム製外底やゴム製中底の厚みを増加させることがなく、ゴム製胴体とゴム製外底やゴム製中底との加硫工程を靴全体で容易に均一適正化でき、ゴム品質(ゴムの強度、艶、質感等)を向上し、製品の良品化率を向上できる。 In addition, the presence of the reinforced insole does not increase the thickness of the rubber outsole or rubber insole, and the vulcanization process between the rubber body and the rubber outsole and rubber insole can be easily and uniformly optimized throughout the entire shoe, improving rubber quality (rubber strength, gloss, texture, etc.) and increasing the rate of quality products.

(請求項2)
(b)上述(a)の補強中底が、板状の基部に、網状の貼り合せ部を貼着してなるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 2)
(b) By forming the reinforced insole of (a) above by adhering a mesh-like bonding portion to a plate-like base portion, the bending resistance strength of the insole in the longitudinal and widthwise directions of the shoe can be easily ensured.

(請求項3)
(c)上述(b)の補強中底において、網状の貼り合せ部が、たて糸と横糸を網状に編んだものであり、たて糸と横糸とが交差する多数の交差点を有し、それらの交差点が靴長手方向で相隣る間隔aを、それらの交差点が靴幅方向で相隣る間隔bより大としてなるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 3)
(c) In the reinforced insole of (b) above, the mesh-like bonded portion is made by weaving warp threads and weft threads in a mesh-like manner, and has many intersections where the warp threads and weft threads cross each other. The distance a between adjacent intersections in the shoe longitudinal direction is made larger than the distance b between adjacent intersections in the shoe width direction. This makes it easy to ensure the bending resistance of the insole in the shoe longitudinal direction and the shoe width direction.

(請求項4)
(d)上述(b)又は(c)の補強中底の厚みが0.1mm以上、4.0mm以下であるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 4)
(d) By making the thickness of the reinforcing insole of (b) or (c) above 0.1 mm or more and 4.0 mm or less, the bending resistance strength of the insole in the shoe longitudinal direction and the shoe width direction can be easily ensured.

(請求項5)
(e)上述(a)の補強中底が、ゴムや樹脂を染み込ませた紙からなるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。尚、補強中底は、不織布(天然繊維、化学繊維単体もしくは両方が交絡、融着、摩擦、接着、溶融によって繊維間が結合したもの)からなるものとすることもできる。この場合も、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 5)
(e) By making the reinforcing insole of (a) above from paper impregnated with rubber or resin, the insole can easily ensure its strength against bending in the shoe's length and width directions. The reinforcing insole can also be made from nonwoven fabric (natural fibers, chemical fibers, or both, with the fibers bonded together by entanglement, fusion, friction, adhesion, or melting). In this case, the insole can also easily ensure its strength against bending in the shoe's length and width directions.

(請求項6)
(f)上述(e)の補強中底の厚みが0.1mm以上、4.0mm以下であるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 6)
(f) By making the thickness of the reinforcing midsole of the above-mentioned (e) 0.1 mm or more and 4.0 mm or less, the bending resistance strength of the midsole in the shoe length direction and the shoe width direction can be easily ensured.

(請求項7)
(g)上述(a)の補強中底が、厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1000g/m2以下の紙からなるものとすることにより、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。尚、補強中底は、不織布(天然繊維、化学繊維単体もしくは両方が交絡、融着、摩擦、接着、溶融によって繊維間が結合したもの)からなる場合、厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1500g/m2以下の不織布からなるものとすることもできる。この場合も、中底の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。
(Claim 7)
(g) The reinforcing insole of (a) above is made of paper having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1000 g/ m2 , so that the insole can easily ensure its bending strength in the shoe length direction and the shoe width direction. When the reinforcing insole is made of nonwoven fabric (natural fibers, chemical fibers, or both of which are bonded to each other by entanglement, fusion, friction, adhesion, or melting), it can also be made of nonwoven fabric having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1500 g/ m2 . In this case, the insole can easily ensure its bending strength in the shoe length direction and the shoe width direction.

図1はゴム長靴の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a rubber boot. 図2はゴム長靴の要部を示す断面図である。FIG. 2 is a cross-sectional view showing a main part of a rubber boot. 図3はゴム長靴の他の例における要部を示す断面図である。FIG. 3 is a cross-sectional view showing a main part of another example of a rubber boot. 図4はゴム製外底の金型を用いた生産工程を示す模式図である。FIG. 4 is a schematic diagram showing the production process using a mold for a rubber outsole. 図5はゴム製外底の圧延機を用いた生産工程を示す模式図である。FIG. 5 is a schematic diagram showing a production process using a rubber outsole rolling machine. 図6は外底と中底を示す模式図である。FIG. 6 is a schematic diagram showing an outsole and an insole. 図7は補強中底を示す模式図である。FIG. 7 is a schematic diagram showing a reinforced insole. 図8は図7の補強中底の断面を示し、(A)はA-A線に沿う断面図、(B)はB-B線に沿う断面図、(C)はC-C線に沿う断面図、(D)はD-D線に沿う断面図である。FIG. 8 shows cross sections of the reinforced insole of FIG. 7, where (A) is a cross section taken along line A-A, (B) is a cross section taken along line B-B, (C) is a cross section taken along line C-C, and (D) is a cross section taken along line D-D. 図9はゴム長靴の使用状態を示す模式図である。FIG. 9 is a schematic diagram showing rubber boots in use. 図10は中底の耐折れ曲がり強度試験状況を示す模式図である。FIG. 10 is a schematic diagram showing a bending resistance test of the insole. 図11はゴム長靴の耐折れ曲がり強度試験状況を示す模式図である。FIG. 11 is a schematic diagram showing a bending strength test of rubber boots. 図12はゴム長靴を用いた歩行状況を示す模式図である。FIG. 12 is a schematic diagram showing a walking situation in rubber boots. 図13はゴム長靴を用いた歩行蹴り出し期における中底の反発力を示す模式図である。FIG. 13 is a schematic diagram showing the repulsive force of the midsole during the push-off phase of walking using rubber boots. 図14はゴム長靴の性能評価結果を示す図表である。FIG. 14 is a chart showing the performance evaluation results of rubber boots.

ゴム長靴100は、図1、図2、図3に示す如く、ゴム製外底10に中底20を装着して靴底110を形成し、この靴底110にゴム製胴体120を接合して構成される。中底20の靴内側面には使用者の足の裏が接する裏布30が設けられる。 As shown in Figures 1, 2, and 3, the rubber boot 100 is constructed by attaching a midsole 20 to a rubber outer sole 10 to form a sole 110, and then joining a rubber body 120 to the sole 110. The inner surface of the midsole 20 is provided with a lining 30 that comes into contact with the sole of the user's foot.

中底20は、図2に示す如く、ゴム製中底21と、該ゴム製中底21の下部に積層される補強中底22とを有して構成される。このとき、ゴム製外底10と補強中底22とは接着剤L1により接着され、補強中底22とゴム製中底21とは接着剤L2により接着され、ゴム製胴体120の巻き込み部121はゴム外底10の上面及びゴム製中底21の外周部に加硫接着部K1、K2により接着され、ゴム製胴体120の巻き込み部121は補強中底22の下面に接着剤L3により接着される。また、ゴム製中底21は裏布30の下面に接着剤L4により接着され、裏布30の外面にはゴム製胴体120が接着剤L5により接着される。ゴム製外底10の立上り部11とゴム製胴体120との接合部にはゴム側面補強テープ130が加硫接着剤K3により接着される。 2, the insole 20 is composed of a rubber insole 21 and a reinforcing insole 22 laminated on the lower part of the rubber insole 21. At this time, the rubber outsole 10 and the reinforcing insole 22 are bonded with adhesive L1, the reinforcing insole 22 and the rubber insole 21 are bonded with adhesive L2, the rolled-in part 121 of the rubber body 120 is bonded to the upper surface of the rubber outsole 10 and the outer periphery of the rubber insole 21 with vulcanized adhesive parts K1 and K2, and the rolled-in part 121 of the rubber body 120 is bonded to the lower surface of the reinforcing insole 22 with adhesive L3. In addition, the rubber insole 21 is bonded to the lower surface of the lining 30 with adhesive L4, and the rubber body 120 is bonded to the outer surface of the lining 30 with adhesive L5. A rubber side reinforcing tape 130 is bonded to the joint between the rising portion 11 of the rubber outsole 10 and the rubber body 120 with a vulcanizing adhesive K3.

中底20は、図3に示す如く、ゴム製中底21と、ゴム製中底21の上部に積層される補強中底22とを有して構成されても良い。このとき、ゴム製外底10とゴム製中底21とは加硫接着部R1により接着され、ゴム製胴体120の巻き込み部121はゴム製外底10の上面及びゴム製中底21の下面に加硫接着部R2、R3により接着される。また、補強中底22はゴム製外底21の上面及び裏布30の下面に接着剤S1、S2により接着され、裏布30の外面にはゴム製胴体120が接着剤S3により接着される。ゴム製外底10の立上り部11とゴム製胴体120との接合部にはゴム側面補強テープ130が加硫接着部R4により接着される。 As shown in FIG. 3, the insole 20 may be configured to have a rubber insole 21 and a reinforcing insole 22 laminated on the upper part of the rubber insole 21. At this time, the rubber outsole 10 and the rubber insole 21 are bonded by a vulcanized adhesive R1, and the rolled-up part 121 of the rubber body 120 is bonded to the upper surface of the rubber outsole 10 and the lower surface of the rubber insole 21 by vulcanized adhesive parts R2 and R3. The reinforcing insole 22 is bonded to the upper surface of the rubber outsole 21 and the lower surface of the lining 30 by adhesives S1 and S2, and the rubber body 120 is bonded to the outer surface of the lining 30 by adhesive S3. A rubber side reinforcing tape 130 is bonded to the joint between the rising part 11 of the rubber outsole 10 and the rubber body 120 by a vulcanized adhesive part R4.

ここで、図2、図3に示した中底20のいずれにあっても、補強中底22の耐折れ曲がり強度(曲げ剛性)はゴム製中底21の耐折れ曲がり強度(曲げ剛性)より大きい。 In either of the insoles 20 shown in Figures 2 and 3, the bending resistance (flexural rigidity) of the reinforced insole 22 is greater than the bending resistance (flexural rigidity) of the rubber insole 21.

また、図3に示した中底20(補強中底22が中底20の上面側にある)の方が図2に示した中底20よりも、後述する歩行蹴り出し期(図12)における当該中底20(ゴム長靴100)の靴長手方向に沿う断面での上に凹状をなす曲率が大きく(曲率半径は小さく)なり、後述する曲げ戻り力F1(図13)が大きくなる結果、歩行蹴り出し期において生ずる歩行推進力をより増加させるものになる。 Furthermore, the insole 20 shown in FIG. 3 (where the reinforcing insole 22 is on the upper side of the insole 20) has a larger concave curvature (smaller radius of curvature) in the cross section along the longitudinal direction of the insole 20 (rubber boot 100) during the push-off phase (FIG. 12) described below than the insole 20 shown in FIG. 2, and as a result, the bending back force F1 (FIG. 13) described below is larger, which further increases the walking propulsive force generated during the push-off phase.

尚、ゴム製外底10(図4(A))は、常用の未加硫ゴム塊(約140g乃至250g程度)を靴底金型200の意匠側に充填した後(図4(B))、金型200の蓋201を閉めて熱と圧力で一定時間加硫し(図4(C))、加硫済靴底を金型200から取り出し、周囲のゴム不要部分(バリ)を鋏で切り落として製造される(図4(D))。 The rubber outsole 10 (Fig. 4(A)) is produced by filling the design side of the sole mold 200 with a regular unvulcanized rubber block (approximately 140g to 250g) (Fig. 4(B)), closing the lid 201 of the mold 200, and vulcanizing the rubber with heat and pressure for a certain period of time (Fig. 4(C)), removing the vulcanized sole from the mold 200, and cutting off the unnecessary rubber around it (burrs) with scissors (Fig. 4(D)).

或いは、ゴム外底10(図5(A))は、常用の未加硫ゴムを圧延機300でシート状に圧延し(圧延ロールの片側に靴底意匠模様あり)(図5(B))、圧延後のシートを抜き型400で裁断して製造される(図5(C))。 Alternatively, the rubber outsole 10 (Fig. 5(A)) is produced by rolling commonly used unvulcanized rubber into a sheet using a rolling machine 300 (one side of the rolling roll has the shoe sole design pattern) (Fig. 5(B)), and then cutting the rolled sheet using a die 400 (Fig. 5(C)).

図6は、ゴム製外底10と中底20からなる靴底110を示す。このとき、中底20はゴム製中底21の下部(上部でも可)に補強中底22を積層するものであり、ゴム製外底10が路面上の異物を踏んだとき、ゴム製中底21のみで補強中底22を有していないものに比して、石ころ等の異物の存在が足の裏に伝わりにくくなる。これにより、より安定した快適な歩行を実現し、靴底110(ゴム製外底10及び中底20)の耐久性も向上できる。 Figure 6 shows a sole 110 consisting of a rubber outsole 10 and a midsole 20. In this case, the midsole 20 is formed by laminating a reinforcing midsole 22 on the lower part (or upper part) of a rubber midsole 21, so that when the rubber outsole 10 steps on a foreign object on the road surface, the presence of the foreign object such as a stone is less likely to be transmitted to the sole of the foot compared to a shoe that only has a rubber midsole 21 and does not have a reinforcing midsole 22. This allows for more stable and comfortable walking and also improves the durability of the sole 110 (rubber outsole 10 and midsole 20).

従って、ゴム製外底10に中底20(ゴム製中底21及び補強中底22)からなる靴底110を有してなるゴム長靴100によれば、以下の作用効果を奏する。 Therefore, the rubber boots 100, which have a sole 110 consisting of a rubber outer sole 10 and a midsole 20 (rubber midsole 21 and reinforcing midsole 22), have the following effects:

靴底110を形成する中底20が、ゴム製中底21と、該ゴム製中底21の下部又は上部に積層される補強中底22とを有して構成される。従って、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、靴長手方向の中底20の耐折れ曲がり強度を適度に確保して靴長手方向の前後のしなやかさを確保できる。同時に、靴幅方向の中底20の耐折れ曲がり強度を確保して靴幅方向の耐折れ曲がり強度(曲げ剛性)を向上し、歩行時の足の左右のぐらつきも防止できる。 The midsole 20 forming the sole 110 is composed of a rubber midsole 21 and a reinforcing midsole 22 laminated to the upper or lower part of the rubber midsole 21. Therefore, the presence of the reinforcing midsole 22 ensures an appropriate bending resistance of the midsole 20 in the shoe length direction and ensures flexibility in the front and rear of the shoe length direction without increasing the thickness of the rubber outsole 10 or the rubber midsole 21. At the same time, the bending resistance of the midsole 20 in the shoe width direction is ensured, improving the bending resistance (bending rigidity) in the shoe width direction and preventing the foot from wobbling from side to side when walking.

また、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、結果として靴の重量の増加を招かず、歩行安定性を向上できる。 In addition, the presence of the reinforcing midsole 22 does not increase the thickness of the rubber outsole 10 or the rubber midsole 21, resulting in no increase in the weight of the shoe and improved walking stability.

また、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、結果として路面に対する足底位置を高くすることがなく、歩行時の足の左右のぐらつきを防止し、歩行安定性を向上できる。 In addition, the presence of the reinforcing midsole 22 does not increase the thickness of the rubber outsole 10 or the rubber midsole 21, and as a result, the position of the sole of the foot relative to the road surface is not raised, preventing the foot from wobbling from side to side when walking and improving walking stability.

また、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、ゴム素材の使用料を低減し、靴の製造コストを低くできる。 In addition, the presence of the reinforcing midsole 22 does not increase the thickness of the rubber outsole 10 or the rubber midsole 21, reducing the amount of rubber material used and lowering the manufacturing costs of the shoe.

また、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、それらのゴム製外底10やゴム製中底21のための新規金型が不要となり、開発時間や開発コストを低減し、靴の製造コストを低くできる。 In addition, the presence of the reinforcing midsole 22 does not increase the thickness of the rubber outsole 10 or the rubber insole 21, making new molds for the rubber outsole 10 and the rubber insole 21 unnecessary, reducing development time and costs, and lowering the manufacturing costs of the shoe.

また、補強中底22の存在により、ゴム製外底10やゴム製中底21の厚みを増加させることがなく、ゴム製胴体120とゴム製外底10やゴム製中底21との加硫工程を靴全体で容易に均一適正化でき、ゴム品質(ゴムの強度、艶、質感等)を向上し、製品の良品化率を向上できる。 In addition, the presence of the reinforcing midsole 22 does not increase the thickness of the rubber outsole 10 or the rubber insole 21, and the vulcanization process between the rubber body 120 and the rubber outsole 10 or the rubber insole 21 can be easily and uniformly optimized throughout the shoe, improving the rubber quality (rubber strength, gloss, texture, etc.) and increasing the rate of quality products.

ここで、ゴム長靴100(靴底110)において、図7、図8に示す如く、中底20を構成する補強中底22が、板状の基部22Fに、網状の貼り合せ部22Gを接着剤を介して貼着してなるものとすることができる。図7(A)は補強中底22の上面側(又は下面側)の基部22F、図7(B)は補強中底22の下面側(又は上面側)の基部22Fを示している。 Here, in the rubber boot 100 (sole 110), as shown in Figs. 7 and 8, the reinforcing midsole 22 constituting the midsole 20 can be formed by adhering a mesh-like bonding portion 22G to a plate-like base portion 22F via adhesive. Fig. 7(A) shows the base portion 22F on the upper surface side (or lower surface side) of the reinforcing midsole 22, and Fig. 7(B) shows the base portion 22F on the lower surface side (or upper surface side) of the reinforcing midsole 22.

基部22Fとしては、シート状の薄板紙、不織布(天然繊維、化学繊維単体もしくは両方が交絡、融着、摩擦、接着、溶融によって繊維間が結合したもの)、薄ゴム板、薄プラスチック板、薄金属板等を採用できる。 The base 22F can be made of sheet-like thin cardboard, nonwoven fabric (natural fibers, chemical fibers, or both, bonded together by entangling, fusion, friction, adhesion, or melting), thin rubber plate, thin plastic plate, thin metal plate, etc.

貼り合せ部22Gとしては、たて糸Yと横糸Xを網状に編んだものであり、それらは綿糸、毛糸等の天然繊維糸、ガラス繊維糸、ポリエステル等のプラスチック糸、金属糸等の化学繊維を採用できる。貼り合せ部22Gを構成する糸の太さは、例えば、0.025mm以上から1.0mm以下の太さで、好適には0.10mm以上から0.5mm以下又は20番手乃至80番手、好適には40番手乃至60番手とすることができる。 The laminated portion 22G is made by weaving warp threads Y and weft threads X into a net shape, and can be made of natural fiber threads such as cotton threads and wool, glass fiber threads, plastic threads such as polyester, or chemical fibers such as metal threads. The thickness of the threads constituting the laminated portion 22G can be, for example, 0.025 mm to 1.0 mm, preferably 0.10 mm to 0.5 mm or 20 to 80 count, and preferably 40 to 60 count.

また、たて糸Yと横糸Xを網状に編んだ貼り合せ部22Gにあっては、図7、図8に示す如く、たて糸Yと横糸Xとが交差する多数の交差点P(図7)を有し、それらの交差点Pが靴長手方向yで相隣る間隔aを、それらの交差点Pが靴幅方向xで相隣る間隔bより大とすることが好ましい。b=1に対してa=2~5とすることが好ましい。これにより、ゴム長靴100の靴底20(補強中底22)における靴長手方向と靴幅方向の耐折れ曲がり強度を、靴幅方向でより大きくでき、結果としてゴム長靴100の靴底110を靴長手方向でよりしなやかに、靴幅方向でより折れ曲がりしにくくすることができる。 Furthermore, in the bonded portion 22G in which the warp threads Y and the weft threads X are woven in a net shape, as shown in Figs. 7 and 8, there are many intersections P (Fig. 7) where the warp threads Y and the weft threads X intersect, and it is preferable that the interval a between adjacent intersections P in the shoe longitudinal direction y is greater than the interval b between adjacent intersections P in the shoe width direction x. It is preferable that a = 2 to 5 for b = 1. This makes it possible to increase the bending resistance strength in the shoe longitudinal direction and shoe width direction of the sole 20 (reinforced midsole 22) of the rubber boot 100 in the shoe width direction, and as a result, the sole 110 of the rubber boot 100 can be made more flexible in the shoe longitudinal direction and more resistant to bending in the shoe width direction.

従って、上述の基部22Fに貼り合せ部22Gを貼着してなる補強中底22を有して構成されるゴム長靴100によれば、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。 Therefore, the rubber boot 100, which has a reinforcing midsole 22 formed by adhering the bonding portion 22G to the base portion 22F described above, can easily ensure the bending resistance strength of the midsole 20 in the shoe length direction and the shoe width direction.

このとき、補強中底22において、網状の貼り合せ部22Gが、たて糸Yと横糸Xを網状に編んだものであり、たて糸Yと横糸Xとが交差する多数の交差点Pを有し、それらの交差点Pが靴長手方向で相隣る間隔aを、それらの交差点Pが靴幅方向で相隣る間隔bより大としてなるものとすることにより、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。 In this case, in the reinforced midsole 22, the mesh-like bonded portion 22G is made by weaving the warp threads Y and the weft threads X in a mesh-like manner, and has many intersections P where the warp threads Y and the weft threads X intersect. The distance a between adjacent intersections P in the shoe longitudinal direction is made larger than the distance b between adjacent intersections P in the shoe width direction, so that the bending resistance strength of the midsole 20 in the shoe longitudinal direction and the shoe width direction can be easily ensured.

また、補強中底22の厚みが0.1mm以上、4.0mm以下であるものとすることにより、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。補強中底22の厚みが0.1mm未満では、靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。補強中底22の厚みが4.0mm超えでは、靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。 In addition, by making the thickness of the reinforcing midsole 22 0.1 mm or more and 4.0 mm or less, the bending resistance strength of the midsole 20 in the shoe longitudinal direction and the shoe width direction can be easily ensured. If the thickness of the reinforcing midsole 22 is less than 0.1 mm, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the thickness of the reinforcing midsole 22 exceeds 4.0 mm, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction decreases.

次に、本考案の靴底110(中底20)を構成する補強中底22の他の例について説明する。 Next, we will explain other examples of the reinforcing midsole 22 that constitutes the sole 110 (midsole 20) of the present invention.

(変形例1)
ゴムや樹脂を染み込ませた紙や不織布(天然繊維、化学繊維単体もしくは両方が交絡、融着、摩擦、接着、溶融によって繊維間が結合したもの)からなる補強中底22A。紙としてはシート状の薄板紙、不織布としてはシート状のものを採用できる。
(Variation 1)
A reinforced insole 22A made of paper or nonwoven fabric (natural fibers, chemical fibers, or both, bonded by entanglement, fusion, friction, adhesion, or melting) impregnated with rubber or resin. Thin paper sheet can be used as the paper, and sheet-shaped nonwoven fabric can be used.

補強中底22Aを有して構成されるゴム長靴100によれば、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。 The rubber boot 100, which is configured with a reinforcing midsole 22A, can easily ensure the bending resistance of the midsole 20 in the shoe length direction and shoe width direction.

このとき、補強中底22Aの厚みが0.1mm以上、4.0mm以下とすることにより、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。補強中底22Aの厚みが0.1mm未満では、靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。補強中底22Aの厚みが4.0mm超えでは、靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。 In this case, by making the thickness of the reinforcing midsole 22A 0.1 mm or more and 4.0 mm or less, the bending resistance strength of the midsole 20 in the shoe longitudinal direction and the shoe width direction can be easily ensured. If the thickness of the reinforcing midsole 22A is less than 0.1 mm, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the thickness of the reinforcing midsole 22A exceeds 4.0 mm, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction decreases.

(変形例2)
厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1000g/m2以下の紙からなる補強中底22B。紙としては、シート状の薄板紙を採用できる。
(Variation 2)
The reinforcing insole 22B is made of paper having a thickness of 0.2 mm or more and 4.0 mm or less and a basis weight of 50 g/m 2 or more and 1000 g/m 2 or less. As the paper, a sheet-like thin paperboard can be used.

補強中底22Bを有して構成されるゴム長靴100によれば、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。補強中底22Bの厚みが0.2mm未満では、靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。補強中底22Bの厚みが4.0mm超えでは、靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。また、坪量が50g/m2以上1000/m2以下の範囲より小さい場合には靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。坪量が50g/m2以上1000/m2以下の範囲を超える場合には靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。 According to the rubber boot 100 having the reinforcing midsole 22B, the bending resistance strength of the midsole 20 in the shoe longitudinal direction and the shoe width direction can be easily ensured. If the thickness of the reinforcing midsole 22B is less than 0.2 mm, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the thickness of the reinforcing midsole 22B exceeds 4.0 mm, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction is reduced. Furthermore, if the basis weight is less than the range of 50 g/ m2 or more and 1000/ m2 or less, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the basis weight exceeds the range of 50 g/ m2 or more and 1000/ m2 or less, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction is reduced.

(変形例3)
厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1500g/m2以下の不織布からなる補強中底22C。不織布としては、シート状の天然繊維、化学繊維単体もしくは両方が交絡、融着、摩擦、接着、溶融によって繊維間が結合したものを採用できる。
(Variation 3)
The reinforcing insole 22C is made of a nonwoven fabric having a thickness of 0.2 mm or more and 4.0 mm or less and a basis weight of 50 g/ m2 or more and 1500 g/ m2 or less. The nonwoven fabric may be a sheet-like natural fiber, a sheet-like chemical fiber, or both, in which the fibers are bonded together by entanglement, fusion, friction, adhesion, or melting.

補強中底22Cを有して構成されるゴム長靴100によれば、中底20の靴長手方向と靴幅方向の耐折れ曲がり強度を容易に確保できる。補強中底22Cの厚みが0.2mm未満では、靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。補強中底22Cの厚みが4.0mm超えでは、靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。また、坪量が50g/m2以上1500/m2以下の範囲より小さい場合には靴底110(中底20)の靴幅方向での耐折れ曲がり強度が不足する。坪量が50g/m2以上1500/m2以下の範囲を超える場合には靴底110(中底20)の靴長手方向でのしなやかさ(屈曲性)が低下する。 According to the rubber boot 100 having the reinforcing midsole 22C, the bending resistance strength of the midsole 20 in the shoe longitudinal direction and the shoe width direction can be easily ensured. If the thickness of the reinforcing midsole 22C is less than 0.2 mm, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the thickness of the reinforcing midsole 22C exceeds 4.0 mm, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction is reduced. In addition, if the basis weight is less than the range of 50 g/ m2 or more and 1500/ m2 or less, the bending resistance strength of the sole 110 (midsole 20) in the shoe width direction is insufficient. If the basis weight exceeds the range of 50 g/ m2 or more and 1500/ m2 or less, the flexibility (flexibility) of the sole 110 (midsole 20) in the shoe longitudinal direction is reduced.

以下、補強中底22を有して構成されるゴム長靴100の折れ曲がり特性、歩行性能等について調査した結果について説明する(図9乃至図14)。ゴム長靴100が補強中底22に代わる補強中底22A、22B、22Cを有して構成された場合にも同様の結果を得た。 The following describes the results of an investigation into the bending characteristics, walking performance, etc., of rubber boots 100 configured with a reinforcing midsole 22 (Figures 9 to 14). Similar results were obtained when rubber boots 100 were configured with reinforcing midsoles 22A, 22B, and 22C instead of the reinforcing midsole 22.

(1)ゴム長靴100の靴長手方向における屈曲性は良く(図9(A))、靴幅方向における耐折れ曲がり強度は大きい(図9(B))。補強中底22を有しないゴム長靴の場合には、靴幅方向における耐折れ曲がり強度が小さい(図9(C))。 (1) The rubber boot 100 has good flexibility in the longitudinal direction of the boot (Fig. 9(A)) and high resistance to bending in the width direction of the boot (Fig. 9(B)). In the case of a rubber boot that does not have a reinforcing midsole 22, the resistance to bending in the width direction of the boot is low (Fig. 9(C)).

尚、補強中底22を有する中底20に靴幅方向圧縮力Fc1を加えたとき、図10(A)に示す如く、圧縮力Fc1が約2.5kgであっても、中底20の幅方向長さは約85.0mm、たわみ量は約10.0mmであった。これに対し、補強中底22を有しない中底20にあっては、図10(B)に示す如く、圧縮力Fc2が約1.0kgであっても、中底20の幅方向長さは約7.0mm、たわみ量は約45.0mmであった。補強中底22を用いた中底20の耐折れ曲がり強度が大きくなることが確認できた。 When a compressive force Fc1 in the shoe width direction was applied to the midsole 20 having the reinforcing midsole 22, as shown in FIG. 10(A), even when the compressive force Fc1 was about 2.5 kg, the width direction length of the midsole 20 was about 85.0 mm and the amount of deflection was about 10.0 mm. In contrast, as shown in FIG. 10(B), in the midsole 20 without the reinforcing midsole 22, even when the compressive force Fc2 was about 1.0 kg, the width direction length of the midsole 20 was about 7.0 mm and the amount of deflection was about 45.0 mm. It was confirmed that the bending resistance strength of the midsole 20 using the reinforcing midsole 22 is increased.

また、補強中底22を有する中底20を採用したゴム長靴100に靴幅方向圧縮力Fp1を加えたとき、図11(A)に示す如く、圧縮力Fp1が約60kgであっても、ゴム長靴100の幅方向長さは約100.0mm、たわみ量は約0.0mmであった。これに対し、補強中底22を有しないゴム長靴100にあっては、図11(B)に示す如く、圧縮力Fp2が約60kgであっても、ゴム長靴100の幅方向長さは約30.0mm、たわみ量は約35.0mmであった。補強中底22を用いた中底20を有するゴム長靴100において耐折れ曲がり強度が大きくなることを確認できた。 When a compressive force Fp1 in the shoe width direction was applied to a rubber boot 100 that adopted a midsole 20 with a reinforcing midsole 22, as shown in FIG. 11(A), even if the compressive force Fp1 was about 60 kg, the width direction length of the rubber boot 100 was about 100.0 mm and the amount of deflection was about 0.0 mm. In contrast, as shown in FIG. 11(B), even if the compressive force Fp2 was about 60 kg, the width direction length of the rubber boot 100 was about 30.0 mm and the amount of deflection was about 35.0 mm in the rubber boot 100 that did not have a reinforcing midsole 22. It was confirmed that the bending resistance strength was increased in a rubber boot 100 that had a midsole 20 using a reinforcing midsole 22.

(2)ゴム長靴100における歩行蹴り出し期の歩行推進力は大きい(図12、図13)。即ち、図12に示した歩行接地時、歩行立脚時に続く歩行蹴り出し期において、靴長手方向における補強中底22のばねのような曲げ戻り力F1(元に戻ろうとする反発力)が、補強中底22を採用しない場合の曲げ戻り力F2より大きく、この曲げ戻り力F1が歩行推進力を増加させる結果、より快適な歩行を実現できる(図13)。 (2) The walking propulsive force in the rubber boot 100 during the push-off phase is large (Figs. 12 and 13). That is, during the push-off phase following the foot contact and stance shown in Fig. 12, the spring-like return force F1 (repulsive force trying to return to the original shape) of the reinforced midsole 22 in the longitudinal direction of the shoe is larger than the return force F2 when the reinforced midsole 22 is not used, and this return force F1 increases the walking propulsive force, resulting in more comfortable walking (Fig. 13).

図14は従来長靴1(図4に示した金型を用いて厚肉化したゴム製外底を有するゴム長靴)、従来長靴2(図5に示した圧延機を用いて厚肉化したゴム製外底を有するゴム長靴)、本考案長靴(前述の補強中底22を有する中底20を用いたゴム長靴100)のそれぞれについて、項目1乃至8の性能試験を実施した評価結果を示したものである。 Figure 14 shows the evaluation results of performance tests carried out for items 1 to 8 for conventional boots 1 (rubber boots with a rubber outer sole thickened using the mold shown in Figure 4), conventional boots 2 (rubber boots with a rubber outer sole thickened using the rolling machine shown in Figure 5), and boots of the present invention (rubber boots 100 using midsole 20 with the aforementioned reinforcing midsole 22).

図14において◎は優、○は良、×は不良、××は非常に不良の各評価結果を表わす。各評価の理由1乃至24は以下の通りである。 In Figure 14, ◎ indicates excellent, ○ indicates good, × indicates poor, and XX indicates very poor evaluation results. Reasons 1 to 24 for each evaluation are as follows.

理由1.物理的材料増量により耐久性は向上。
理由2.物理的材料増量により耐久性は向上。
理由3.「補強中底」装着により耐久性は向上。
理由4.「新規金型開設」には、最低各サイズ分の新設が必要なため、金型開発コストが高い。
理由5.材料使用量が増加するので、材料コスト増。
理由6.「一般的中底」に対し、低コストで対応できる。
理由7.「新規金型開設」には、デザイン、製作期間を含め概ね、最低90日以上の準備時間が必要。
理由8.材料使用量が増加するため、その後の加硫工程で、より長い時間をかけて加硫成型することが必要。
理由9.「補強中底」を貼り付ける作業が1工程増えるが、作業内容は軽微なものである。
理由10.材料使用量が増加するため、靴全体の重量が増加してしまう。概ね靴は軽量志向が高く、疲れにくく、履き易いものを求める傾向があるので、重量増加は靴製品にとっては大きなデメリットである。
理由11.材料使用量が増加するため、靴全体の重量が増加してしまう。概ね靴は軽量志向が高く、疲れにくく、履き易いものを求める傾向があるので、重量増加は靴製品にとっては大きなデメリットである。
理由12.「補強中底」の重量は、例えば約25g/足で軽量である。
理由13.靴の厚みが増加すると、靴底屈曲性が悪くなり、歩行時には悪影響であり、大きなデメリットである。
理由14.靴の厚みが増加すると、靴底屈曲性が悪くなり、歩行時には悪影響であり、大きなデメリットである。
理由15.「補強中底」の厚みは、例えば最低約1.0mm~2.0mm程度で屈曲性が良い。
理由16.靴底の厚みが増加すると、足底の位置が路面から遠くなり不安定になる。
理由17.靴底の厚みが増加すると、足底の位置が路面から遠くなり不安定になる。
理由18.靴底の厚みは例えば約2mm程度しか変わらず、安定性が損なわれることはない。
理由19.靴底の厚みが増加したため、加硫成型にかかる時間が増加した影響で、生産効果は低下。
理由20.靴底の厚みが増加したため、加硫成型にかかる時間が増加した影響で、生産効果は低下。
理由21.「補強中底」を貼り付ける作業が1工程増えるが、作業内容は軽微であり生産効率に与える影響は小さい。
理由22.靴底厚みが増加するためデザインに与える影響は大きい。
理由23.靴底厚みが増加するためデザインに与える影響は大きい。
理由24.靴底厚みは例えば約0.2mm程度の変化であり、デザインに与える影響は小さい。
Reason 1. Durability is improved due to the increased amount of physical material.
Reason 2. Durability is improved due to the increased amount of physical material.
Reason 3. The reinforced insole improves durability.
Reason 4. "Establishing a new mold" requires the establishment of at least one new mold for each size, so the mold development costs are high.
Reason 5. The amount of material used increases, resulting in higher material costs.
Reason 6. It can be made at a lower cost than "general insoles."
Reason 7. "Establishing a new mold" generally requires at least 90 days of preparation time, including design and production.
Reason 8. Because the amount of material used increases, the subsequent vulcanization process requires a longer time for vulcanization molding.
Reason 9. Although the work of attaching the "reinforced insole" increases by one step, the work involved is minor.
Reason 10: The weight of the shoe increases due to the increased amount of material used. Generally, people tend to want shoes that are lightweight, don't tire the feet, and are easy to wear, so the increase in weight is a major disadvantage for shoe products.
Reason 11: The weight of the entire shoe increases due to the increased amount of material used. Generally, people tend to want shoes that are lightweight, don't tire the feet, and are easy to wear, so the increase in weight is a major disadvantage for footwear products.
Reason 12. The weight of the "reinforced insole" is light, for example, about 25g per foot.
Reason 13. When the thickness of the shoe increases, the flexibility of the sole decreases, which has a negative effect on walking and is a major disadvantage.
Reason 14. When the thickness of the shoe increases, the flexibility of the sole decreases, which has a negative effect on walking and is a major disadvantage.
Reason 15. The thickness of the "reinforced insole" is, for example, at least about 1.0mm to 2.0mm, which provides good flexibility.
Reason 16: When the thickness of the sole increases, the position of the sole of the foot becomes farther from the ground surface, making the foot unstable.
Reason 17. When the thickness of the sole increases, the position of the sole of the foot becomes farther from the ground surface, making the foot unstable.
Reason 18. The thickness of the sole of the shoe will only change by about 2 mm, for example, and stability will not be compromised.
Reason 19. The thickness of the sole has increased, which has increased the time required for vulcanization molding, resulting in a decrease in production efficiency.
Reason 20. The thickness of the sole has increased, which has increased the time required for vulcanization molding, resulting in a decrease in production efficiency.
Reason 21. Although the work of attaching the "reinforced insole" will be added by one process, the work content is minor and the impact on production efficiency is small.
Reason 22. The thickness of the sole increases, which has a big impact on the design.
Reason 23. The thickness of the sole increases, which has a big impact on the design.
Reason 24. The change in sole thickness is, for example, about 0.2 mm, and the impact on the design is small.

以上、本考案の実施例を図面により詳述したが、本考案の具体的な構成はこの実施例に限られるものではなく、本考案の要旨を逸脱しない範囲の設計の変更等があっても本考案に含まれる。 Although an embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and design changes that do not deviate from the gist of the present invention are also included in the present invention.

本考案によれば、安定歩行を可能にするゴム長靴を低コストかつ高い生産効率で提供できる。 This invention makes it possible to provide rubber boots that enable stable walking at low cost and with high production efficiency.

10 ゴム製外底
20 中底
21 ゴム製中底
22、22A、22B、22C 補強中底
22F 基部
22G 貼り合せ部
100 ゴム長靴
110 靴底
120 ゴム製胴体
10 Rubber outer sole 20 Insole 21 Rubber insole 22, 22A, 22B, 22C Reinforced insole 22F Base 22G Bonded part 100 Rubber boot 110 Sole 120 Rubber body

Claims (7)

ゴム製外底に中底を装着して靴底を形成し、この靴底にゴム製胴体を接合して構成されるゴム長靴であって、
前記中底が、ゴム製中底と、該ゴム製中底の下部又は上部に積層される補強中底とを有して構成されるゴム長靴。
A rubber boot is constructed by attaching a midsole to a rubber outer sole to form a sole, and joining a rubber body to the sole,
The rubber boot has a midsole including a rubber midsole and a reinforcing midsole laminated on a lower or upper part of the rubber midsole.
前記補強中底が、板状の基部に、網状の貼り合せ部を貼着してなる請求項1に記載のゴム長靴。 The rubber boot according to claim 1, wherein the reinforcing insole is made by adhering a mesh-like bonding portion to a plate-like base. 前記網状の貼り合せ部が、たて糸と横糸を網状に編んだものであり、たて糸と横糸とが交差する多数の交差点を有し、それらの交差点が靴長手方向で相隣る間隔aを、それらの交差点が靴幅方向で相隣る間隔bより大としてなる請求項2に記載のゴム長靴。 The rubber boot according to claim 2, wherein the mesh-like bonded portion is made by weaving warp and weft threads in a mesh-like manner, has many intersections where the warp and weft threads cross, and the distance a between adjacent intersections in the longitudinal direction of the shoe is greater than the distance b between adjacent intersections in the width direction of the shoe. 前記補強中底の厚みが0.1mm以上、4.0mm以下である請求項2又は3に記載のゴム長靴。 A rubber boot according to claim 2 or 3, wherein the thickness of the reinforcing insole is 0.1 mm or more and 4.0 mm or less. 前記補強中底が、ゴムや樹脂を染み込ませた紙又は不織布からなる請求項1に記載のゴム長靴。 The rubber boots according to claim 1, wherein the reinforcing insole is made of paper or nonwoven fabric impregnated with rubber or resin. 前記補強中底の厚みが0.1mm以上、4.0mm以下である請求項5に記載のゴム長靴。 The rubber boot according to claim 5, wherein the thickness of the reinforcing insole is 0.1 mm or more and 4.0 mm or less. 前記補強中底が、厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1000g/m2以下の紙、又は厚み0.2mm以上、4.0mm以下で、坪量が50g/m2以上1500g/m2以下の不織布からなる請求項1に記載のゴム長靴。 2. The rubber boot according to claim 1, wherein the reinforcing insole is made of paper having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1000 g/ m2 , or made of nonwoven fabric having a thickness of 0.2 mm to 4.0 mm and a basis weight of 50 g/ m2 to 1500 g/ m2 .
JP2024001276U 2024-04-23 2024-04-23 Rubber boots Active JP3247189U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024001276U JP3247189U (en) 2024-04-23 2024-04-23 Rubber boots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024001276U JP3247189U (en) 2024-04-23 2024-04-23 Rubber boots

Publications (1)

Publication Number Publication Date
JP3247189U true JP3247189U (en) 2024-06-21

Family

ID=91483054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024001276U Active JP3247189U (en) 2024-04-23 2024-04-23 Rubber boots

Country Status (1)

Country Link
JP (1) JP3247189U (en)

Similar Documents

Publication Publication Date Title
KR102174494B1 (en) Sole structure for article of footwear
US10383393B2 (en) Method of manufacturing a fluid-filled chamber with a reinforcing element
CN113425036B (en) Flexible fluid-filled chamber with tension member
CN106963031B (en) Sole structure for an article of footwear
US6516541B2 (en) Flexible shoe sole and methods of construction for a shoe utilizing the sole
EP2205116B1 (en) Article of footwear with tubular sole assembly and method of manufacture
KR101889494B1 (en) Sole structures and articles of footwear having lightweight midsole members with protective elements
CN109922683B (en) Flexible fluid-filled chamber with tension member
US20080201983A1 (en) Article Of Footwear Having A Fluid-Filled Bladder With A Reinforcing Structure
GB2256784A (en) Sole and sports shoe
US20030226280A1 (en) Textile-soled footwear
US5189814A (en) Reinforced rubber footwear product
KR102141587B1 (en) An outsole structure and a method for manufacturing the same
WO1999043229A1 (en) Thermoformable fabric shoe sole and upper
EP3402359A1 (en) Sole structure for an article of footwear, comprising an outer sole component with a co-molded flex modifier component, and method of making said sole structure
JP3247189U (en) Rubber boots
US20230320454A1 (en) Footwear sole including removable components
KR0140023B1 (en) Sole of sporting boot
JPH08299001A (en) Shoes upper part structure,band-form composite formed article in order to make applicable material especially to shoes upper part structure
CN113925256A (en) Shoe with net sole structure
JP3229095U (en) footwear
JPH0223130Y2 (en)
KR101779109B1 (en) Midsole for Shoes Containing Air Chamber in Outsole and Shoes Containing the Same
US20230380540A1 (en) Reinforced Composite Sheet Material for Enhanced Performance of Athletic Shoes
JPH0624482B2 (en) Foam midsole for shoe sole

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3247189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150