JP3246760B2 - Optical splitting film and optical splitting method using the same - Google Patents

Optical splitting film and optical splitting method using the same

Info

Publication number
JP3246760B2
JP3246760B2 JP04336392A JP4336392A JP3246760B2 JP 3246760 B2 JP3246760 B2 JP 3246760B2 JP 04336392 A JP04336392 A JP 04336392A JP 4336392 A JP4336392 A JP 4336392A JP 3246760 B2 JP3246760 B2 JP 3246760B2
Authority
JP
Japan
Prior art keywords
membrane
film
optical
optically active
optical splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04336392A
Other languages
Japanese (ja)
Other versions
JPH05237351A (en
Inventor
佳男 岡本
栄次 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP04336392A priority Critical patent/JP3246760B2/en
Publication of JPH05237351A publication Critical patent/JPH05237351A/en
Application granted granted Critical
Publication of JP3246760B2 publication Critical patent/JP3246760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光学異性体の分割用膜と
その膜を用いた光学分割方法に関するものである。特に
現在医薬として抗不整脈、抗狭心症、降圧薬や、緑内障
の治療に適用されているβ−ブロッカー類の光学分割に
も効率的な分割を可能にする新規な膜、及びその膜を用
いた光学分割方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film for separating optical isomers and an optical resolution method using the film. In particular, a novel membrane that enables efficient resolution of the optical resolution of β-blockers, which are currently used as anti-arrhythmia, anti-angina pectoris, antihypertensive drugs, and glaucoma treatments, and uses the membrane. The optical splitting method used.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】医農
薬、香料、調味料、液晶などの分野で研究開発の進展に
伴い益々光学活性体の重要性が高まっている。特に生命
現象において光学活性体が特異な働きをし、生理活性上
光学活性体の一方(D体又はL体あるいは+体又は−
体)を得ることが非常に有用な場合が多いことが知られ
ている。厚生省は1985年版医薬品製造指針において「当
該薬物がラセミ体である場合にはそれぞれの異性体につ
いて吸収、分布、代謝、排泄動態を検討しておく事が望
ましい」と記載している。
2. Description of the Related Art With the progress of research and development in the fields of medicines and agrochemicals, flavors, seasonings, liquid crystals and the like, the importance of optically active substances is increasing more and more. In particular, the optically active substance plays a unique role in biological phenomena, and one of the optically active substances (D-form or L-form or + -form or-
It is known that obtaining body) is often very useful. The Ministry of Health and Welfare states in the 1985 edition of the Pharmaceutical Manufacturing Guidelines that "if the drug is racemic, it is desirable to consider the absorption, distribution, metabolism, and excretion kinetics of each isomer."

【0003】光学活性体をラセミ体から得る工業的手法
としては、現在、ジアステレオマー法、優先晶出法、酵
素法、クロマトグラフィー法などがある。ジアステレオ
マー法はラセミ体に光学活性な酸又は塩基(分割剤)を
作用させ、生成したジアステレオマー塩の溶解度の差を
利用して分別結晶を行い、再結晶を行うことにより精製
したのち化学的処理により分解することによって光学活
性体を得る方法である。この方法においては分割剤がラ
セミ体と容易に塩又は誘導体を形成するものでなければ
ならないことによる分割剤選択の困難さが付随する。更
に溶解度差が小さいかあるいは無い場合には光学分割が
不可能である。又、高純度の光学活性体を得るのも困難
である等の問題点を有している。
As an industrial method for obtaining an optically active substance from a racemate, there are presently a diastereomer method, a preferential crystallization method, an enzymatic method, a chromatography method and the like. In the diastereomer method, an optically active acid or base (resolving agent) is allowed to act on a racemate, fractional crystallization is performed using the difference in solubility of the generated diastereomeric salt, and purification is performed by recrystallization. This is a method of obtaining an optically active substance by decomposing it by a chemical treatment. This method involves the difficulty of selecting a resolving agent because the resolving agent must readily form a salt or derivative with the racemate. Further, when the difference in solubility is small or absent, optical resolution is impossible. In addition, there is a problem that it is difficult to obtain a high-purity optically active substance.

【0004】優先晶出法はラセミ体の過飽和溶液に一方
の対掌体の純粋な結晶を種として加え、これと同種の対
掌体の結晶のみを選択的に成長させ析出させる方法であ
る。非常に優れた方法であるにも拘らず、次のような課
題があるために広範囲に活用されているとはいい難いの
が実状である。即ち、あるラセミ体を優先晶出法で分割
しようとするには、先ずラセミ体と両活性体の溶解度を
測定し、ラセミ体>活性体であること、又融点は活性体
の方がラセミ体より高いこと、更にラセミ体の飽和溶液
には活性体が溶解しないこと、などを事前に確認してお
く必要がある(山中宏, 田代泰久, 季刊化学総説, No.
6, 1989年, 4〜5ページ)。
The preferential crystallization method is a method in which a pure crystal of one enantiomer is added as a seed to a racemic supersaturated solution, and only the enantiomer crystal of the same type is selectively grown and precipitated. Although it is a very good method, it is difficult to say that it is widely used because of the following problems. That is, in order to resolve a racemic body by the preferential crystallization method, first, the solubility of the racemic body and both active forms is measured, and it is determined that racemic form> active form. It is necessary to confirm in advance that the activity is higher and that the active substance does not dissolve in the saturated solution of the racemic form (Hiro Yamanaka, Yasuhisa Tashiro, Review of Quarterly Chemistry, No.
6, 1989, pp. 4-5).

【0005】酵素を用いる光学分割法は「発酵法」と
「酵素法」に分別できるが、酵素はL−アミノ酸がペプ
チド結合してできた一種の不斉分子であるため多くの場
合反応は不斉反応として進行する。即ち、酵素自身が触
媒として高度な選択性をもつため、光学活性体の生産の
場において利用され、光学活性体を大量に得る方法とし
て適しており、例えば、ヒダントイナーゼ反応と化学的
脱カルバミル化反応を組み合わせた酵素法によるD−ア
ミノ酸の工業的生産技術が確立している〔S.TAKAHASHI,
“Biotechnology of Aminoacid Production", H.YAMADA
et al(eds), Kodansha Ltd. (1986) p269〕。また米国
特許第4,800,162 号ではポリアクリロニトリル系中空糸
膜内に酵素を固定化し、光学活性体を得る方法が記載さ
れている。しかし、酵素法における問題点は光学分割を
したいラセミ化合物に適合する酵素を見つけるのが非常
に困難なことである。
[0005] The optical resolution method using an enzyme can be classified into a "fermentation method" and an "enzymatic method". However, the enzyme is a kind of asymmetric molecule formed by peptide bond of L-amino acid, and in many cases, the reaction is not possible. Proceeds as a simultaneous reaction. That is, since the enzyme itself has a high selectivity as a catalyst, it is used in the production of optically active substances and is suitable as a method for obtaining a large amount of optically active substances, for example, a hydantoinase reaction and a chemical decarbamylation reaction. An industrial production technology for D-amino acids by an enzymatic method combining S.TAKAHASHI,
“Biotechnology of Aminoacid Production”, H.YAMADA
et al (eds), Kodansha Ltd. (1986) p269]. U.S. Pat. No. 4,800,162 describes a method for obtaining an optically active substance by immobilizing an enzyme in a polyacrylonitrile-based hollow fiber membrane. However, a problem with the enzymatic method is that it is very difficult to find an enzyme that matches the racemate to be resolved.

【0006】クロマトグラフィー法はキラルな化合物を
充填剤として用い固定相とし、移動相中の光学異性体と
の相互作用による移動相の分布の差を利用して分離する
方法である。最近のHPLC(高速液体クロマトグラフィ
ー)用充填剤の開発はめざましいものがあり、光学分割
用カラムが多数上市されるとともにかなり大量の分取も
行われる状況に至っているが、工業的規模で経済的に行
われる域には今一歩といったところである。
The chromatographic method is a method in which a chiral compound is used as a filler to form a stationary phase, and separation is performed by utilizing a difference in distribution of a mobile phase due to interaction with an optical isomer in the mobile phase. The development of packing materials for HPLC (high-performance liquid chromatography) has been remarkable in recent years, and many optical separation columns have been launched on the market and a large amount of fractionation has been performed. It is a step now in the area where it takes place.

【0007】一方、膜分離法は海水淡水化をめざす逆浸
透膜の技術開発が約30年前に飛躍的な進展を遂げたのを
契機にして精密濾過膜や限外濾過膜もほぼ並行して技術
開発が進められ、いわゆる人工膜が実用技術として定着
し、医薬、電子工業、自動車等あらゆる産業分野で活用
されている。これらの膜は基本的には分子サイズと膜の
孔径との相対的な差を利用した分子篩の原理に基づいて
分離が行われており、光学異性体のように分子量も同
じ、化学的、物理的特性も異ならないものの分離には全
く不向きであるのは周知のことである。
On the other hand, in the membrane separation method, the microfiltration membrane and the ultrafiltration membrane are almost in parallel with the development of the technology of reverse osmosis membrane for seawater desalination about 30 years ago. Technology development has been promoted, so-called artificial membranes have become established as practical technologies, and are used in various industrial fields such as medicine, electronics industry, and automobiles. These membranes are basically separated based on the principle of molecular sieve utilizing the relative difference between the molecular size and the pore size of the membrane, and have the same molecular weight as chemical isomers like optical isomers. It is well-known that the characteristics are not different but are completely unsuitable for separation.

【0008】膜分離法の特徴は大量の処理に適している
ことと分離コストが安い事である。従って光学分割に適
した膜の開発とその膜を旨く使いこなす技術の開発が大
きく要望されることになっている。特に被分割ラセミ体
を化学修飾なしに直接膜法で光学活性体に分割できれば
その技術の工業的価値は素晴らしいといえる。即ち、こ
のような膜を用いて光学活性体を分離する方法は、上述
のようなジアステレオマー法、優先晶出法、酵素法、ク
ロマトグラフィー法等がそれぞれもつ固有の欠点を克服
する新規な技術であり、大量の光学活性体が経済的に得
られることが期待できる。
The features of the membrane separation method are that they are suitable for large-scale processing and that the separation cost is low. Therefore, there is a great demand for the development of a film suitable for optical division and the development of a technique for successfully using the film. In particular, if the racemate to be resolved can be resolved into the optically active substance by a direct membrane method without chemical modification, the industrial value of the technique is excellent. That is, the method of separating an optically active substance using such a membrane is a novel method that overcomes the inherent disadvantages of the above-described diastereomer method, preferential crystallization method, enzymatic method, chromatography method, and the like. It is a technology and it can be expected that a large amount of optically active substances can be obtained economically.

【0009】膜を用いた光学活性体の分離については、
すでに、膜材料に光学活性な物質を導入して得られる膜
を用いる分離法(特願平2−229743号)や、α−ヘリッ
クス構造を持つポリアミノ酸を構成成分とするポリマー
からなる膜を用いる分離法(特願平2−334352号)の如
き技術や、クラウン化合物をポリプロピレン製精密濾過
膜に保持させた液膜による分離法(特公昭63−57083
号)等が知られている。しかし、これらはいずれもアミ
ノ酸を対象とした膜であって複雑な化学式を示す医薬等
の分離に適用されるものではない。従って、本発明の課
題は、医薬等を効率的に光学分割できる膜、及びその膜
を用いた分離法を提供することにある。
Regarding the separation of an optically active substance using a membrane,
Already, a separation method using a membrane obtained by introducing an optically active substance into a membrane material (Japanese Patent Application No. 2-229743), or a membrane made of a polymer containing a polyamino acid having an α-helical structure as a constituent component A technique such as a separation method (Japanese Patent Application No. 2-334352) and a separation method using a liquid membrane in which a crown compound is retained on a polypropylene microfiltration membrane (Japanese Patent Publication No. 63-57083)
No.) etc. are known. However, these are all membranes for amino acids, and are not applied to separation of drugs or the like having a complicated chemical formula. Therefore, an object of the present invention is to provide a membrane capable of efficiently optically resolving a drug or the like, and a separation method using the membrane.

【0010】[0010]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究の結果、すでに光学異性体の分析や分
取において液体クロマトグラフィーのカラム充填剤に多
用されている多糖誘導体等の光学分割能を有する物質に
着目し、これを基材膜の内部及び両面に固着することに
よって、良好な分割能を有する光学分割膜が得られるこ
とを見出し本発明を完成した。即ち、本発明は、基材膜
の内部及び両面に、多糖誘導体等の光学分割能を有する
物質を固着させてなる光学分割膜、及びこの光学分割膜
の片面にラセミ体原液を接触させた後、他面を洗浄液で
洗浄することにより光学活性体を得ることを特徴とする
光学分割方法を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, polysaccharide derivatives and the like which are already frequently used as column packings for liquid chromatography in the analysis and fractionation of optical isomers have been obtained. Attention was paid to a substance having an optical resolving power, and it was found that an optical splitting film having a good resolving power could be obtained by fixing the substance on the inside and both sides of the substrate film, and completed the present invention. That is, the present invention provides an optical splitting film obtained by fixing a substance having an optical splitting ability such as a polysaccharide derivative to the inside and both sides of a substrate film, and a method of bringing a racemic stock solution into contact with one side of the optical splitting film. Another object of the present invention is to provide an optical splitting method characterized in that an optically active substance is obtained by washing the other surface with a washing liquid.

【0011】本発明において、光学分割能を有する物質
を基材膜の内部及び両面に固着させる方法としては、光
学分割能を有する物質を有機溶媒に溶解(ドープとい
う)したのちこれを膜の片面あるいは両面にコーティン
グする方法や、溶解ドープ中に膜を浸漬する方法等があ
るが、本発明の場合はどちらの方法をとってもその効果
は変わらない。
In the present invention, as a method of fixing a substance having an optical resolution to the inside and both surfaces of a base material film, a substance having an optical resolution is dissolved in an organic solvent (referred to as dope), and then the solution is coated on one side of the film. Alternatively, there are a method of coating on both surfaces, a method of dipping a film in a solution dope, and the like. In the case of the present invention, the effect is not changed by either method.

【0012】本発明に用いられる光学分割能を有する物
は、セルロース又はアミロースのエステル誘導体、カ
ルバメート誘導体あるいはエーテル誘導体である。
The substance having optical resolving power used in the present invention is an ester derivative of cellulose or amylose,
It is a rubamate derivative or an ether derivative.

【0013】又、本発明に用いられる基材膜は限外濾過
膜、精密濾過膜、微多孔膜が使用され得る。その素材と
しては酢酸セルロース、硝酸セルロース、再生セルロー
ス、テフロン、ポリプロピレン、ポリエチレン、ポリサ
ルホン、ポリエーテルサルホン、ポリスチレン、ポリア
ミド、ポリイミド、ポリアクリロニトリル等で、被分割
化合物を溶解する溶媒に溶解しない素材で作られたもの
ならいずれの素材で作られた膜も適用可能である。
The substrate membrane used in the present invention may be an ultrafiltration membrane, a microfiltration membrane, or a microporous membrane. The material is cellulose acetate, cellulose nitrate, regenerated cellulose, Teflon, polypropylene, polyethylene, polysulfone, polyethersulfone, polystyrene, polyamide, polyimide, polyacrylonitrile, etc. A film made of any material can be applied.

【0014】膜に多糖誘導体を固着させる為に多糖誘導
体を有機溶媒に溶解させてドープをつくるが、それに使
用される溶媒としては、ジメチルホルムアミド(DMF) 、
ジメチルスルホキシド(DMSO)、テトラヒドロフラン(TH
F) 、ピリジン、ジメチルアセトアミド、酸化メシチ
ル、アセトン、塩化メチレン、クロロホルム、フェノー
ル、2−ピロリゾン、ヘキサメチルホスホアミド、テト
ラメチル尿素等が挙げられる。これらの溶媒は用いる多
糖誘導体の種類によって溶解性が異なるので、溶解性の
良好な溶媒を適宜選択して使用することになる。
In order to fix the polysaccharide derivative on the membrane, the polysaccharide derivative is dissolved in an organic solvent to form a dope. The solvent used for the dope is dimethylformamide (DMF),
Dimethyl sulfoxide (DMSO), tetrahydrofuran (TH
F), pyridine, dimethylacetamide, mesityl oxide, acetone, methylene chloride, chloroform, phenol, 2-pyrrolizone, hexamethylphosphamide, tetramethylurea and the like. Since these solvents have different solubility depending on the kind of the polysaccharide derivative to be used, a solvent having good solubility is appropriately selected and used.

【0015】本発明による光学分割方法は、上記のよう
にして得られた光学分割膜の片側に被分割化合物のラセ
ミ体原液を接液させ、膜の反対側は空間としておき、膜
内部に選択的に吸着された光学活性体を間欠的に洗浄液
によって洗浄することによって、洗浄液中に光学活性体
を回収する方法である。
In the optical resolution method according to the present invention, a racemic undiluted solution of the compound to be resolved is brought into contact with one side of the optical resolution film obtained as described above, the other side of the film is left as a space, and the inside of the film is selected. This is a method of intermittently washing the optically active substance adsorbed intermittently with a washing liquid to recover the optically active substance in the washing liquid.

【0016】本発明の方法により光学分割されるラセミ
体原液としては、例えばノルマルヘキサン90%と2−プ
ロパノール10%の混合溶液に溶解させた、エチル−4−
(2,2 −パラシクロファニル)アクリレート、オクスプ
レノロール、アルプレノロール、ピンドロール、アテノ
ール、トランス−スチルベンオキシド、トレガー塩基等
が挙げられる。本発明に用いられる洗浄液としては、例
えば、ノルマルヘキサン−2−プロパノール混合溶媒、
ノルマルヘキサン−エタノール混合溶媒、エタノール水
等が挙げられる。
The racemic stock solution optically resolved by the method of the present invention is, for example, ethyl-4- dissolved in a mixed solution of 90% normal hexane and 10% 2-propanol.
(2,2-paracyclophanyl) acrylate, oxprenolol, alprenolol, pindolol, athenol, trans-stilbene oxide, tregger base and the like. As the cleaning liquid used in the present invention, for example, normal hexane-2-propanol mixed solvent,
Examples include a normal hexane-ethanol mixed solvent, ethanol water, and the like.

【0017】本発明は以下に記述する前実験において知
見が得られ、発明のヒントになったものである。前実験 セルローストリス(3,5−ジメチルフェニルカルバメー
ト)300mg をTHF 10mlに溶解しドープを作った。このド
ープ中に直径30mmのテフロン製精密濾過膜を1時間浸漬
したのち引き上げ、窒素気流中で1時間乾燥させて多糖
誘導体固着膜を得た。得られた膜の光学活性体の選択吸
着性を以下の方法で調べた。光学活性体の選択吸着性は
シクロファンで総称される下記式で表されるエチル−4
−(2,2−パラシクロファニル)アクリレートのラセミ体
を試薬特級ノルマルヘキサン90%と2−プロパノール10
%の混合溶液に0.88mg/mlの濃度で溶解し、先に得られ
た膜を室温で4時間浸漬させたのち引き上げ、ノルマル
ヘキサン80%、2−プロパノール20%の混合溶媒により
膜中に吸着されたエチル−4−(2,2−パラシクロファニ
ル)アクリレートの光学活性体を抽出し、液体クロマト
グラフィー法で測定した。
[0017] The present invention has been found in the preliminary experiments described below and has been a hint of the invention. In the previous experiment, 300 mg of cellulose tris (3,5-dimethylphenylcarbamate) was dissolved in 10 ml of THF to prepare a dope. A 30 mm diameter Teflon microfiltration membrane was immersed in the dope for 1 hour, pulled up, and dried in a nitrogen stream for 1 hour to obtain a polysaccharide derivative-fixed membrane. The selective adsorption of the optically active substance of the obtained film was examined by the following method. The selective adsorptivity of the optically active substance is ethyl-4 represented by the following formula collectively referred to as cyclophane.
A racemic form of-(2,2-paracyclophanyl) acrylate was prepared by adding 90% of normal grade normal hexane and 2-propanol 10
%, Dissolved in a mixed solution at a concentration of 0.88 mg / ml, immersed in the film obtained at room temperature for 4 hours, lifted up, and adsorbed on the film with a mixed solvent of normal hexane 80% and 2-propanol 20%. The obtained optically active substance of ethyl-4- (2,2-paracyclophanyl) acrylate was extracted and measured by liquid chromatography.

【0018】[0018]

【化1】 Embedded image

【0019】分析に用いたカラムはダイセル化学製キラ
ルセルODで流速 1.0ml/min 、溶離液組成ノルマルヘキ
サン90%、2−プロパノール10%、検出器UV(λ=254n
m)の条件で測定した。その結果、+体が光学純度72%ee
を示したほか、溶離液をノルマルヘキサン95%、2−プ
ロパノール5%に代えた条件では+体が光学純度68%ee
であることが判った。
The column used for the analysis was a chiral cell OD manufactured by Daicel Chemical Co., Ltd. at a flow rate of 1.0 ml / min, eluent composition: normal hexane 90%, 2-propanol 10%, detector UV (λ = 254 n
m). As a result, the + body has an optical purity of 72% ee
In addition, when the eluent was replaced with 95% normal hexane and 5% 2-propanol, the + form was found to have an optical purity of 68% ee.
It turned out to be.

【0020】[0020]

【実施例】上記の前実験の知見は多糖誘導体を固着した
膜により十分に選択的に光学活性体を得ることが可能で
ある事を示しており、以下の実施例1〜3によってより
詳細に新規に発明された光学分割膜及びその膜を用いた
光学分割方法を説明する。実施例1及び2における膜は
基材膜を2枚合わせた膜を用いて行われたが、本発明は
膜の貼り合わせは2枚に限定されるものではなく2枚以
上の複数枚による分割効果向上が当然期待されるもので
ある。実施例3に示される如く1枚膜によって行われる
事も勿論可能である。本発明はこれらの実施例のみによ
って限定されるものではない。
EXAMPLES The findings of the preceding experiments show that it is possible to obtain optically active substances sufficiently and selectively with a film to which a polysaccharide derivative is fixed, and the following Examples 1 to 3 show more details. A newly invented optical splitting film and an optical splitting method using the film will be described. Although the films in Examples 1 and 2 were formed using a film obtained by combining two base films, the present invention is not limited to the case where the films are bonded to two films, and the film is divided into two or more films. Improvements in effects are expected. As shown in the third embodiment, it is of course possible to perform the process with a single film. The present invention is not limited only by these examples.

【0021】実施例1 多糖誘導体としてセルローストリス(3,5−ジメチルフェ
ニルカルバメート)を用い、この 200mgを試薬特級溶媒
ジメチルアセトアミド15cc中に溶解してドープとした。
このドープの中に住友電工(株)製,フルオロポア(登
録商標, TYPE FP-045, ポアサイズ0.45μm, 直径25m
m)2枚を約1時間室温で浸漬した。浸漬ドープ中から
引き上げた膜は室温窒素気流中で1時間乾燥したのち、
約1/10気圧に減圧されたデシケーター中で34時間乾燥
した。更に膜中の不純物を除く目的で試薬特級ノルマル
ヘキサン90%、試薬特級2−プロパノール10%の混合溶
媒中に室温で12時間浸漬してから約1/10気圧に減圧さ
れたデシケーター中で4時間乾燥した。2枚の膜は上で
用いたドープを接着剤として貼り合わせ1枚の膜とし、
光学分割能を評価するために、図1の如きガラス製評価
装置の中央に液密的に装着した。原液室4、透過室5の
両方に試薬特級ノルマルヘキサン90%、試薬特級2−プ
ロパノール10%の混合溶液を満たし、膜3及びガラス製
セル1の内部をよく洗浄した。試薬特級ノルマルヘキサ
ン溶媒にエチル−4−(2,2−パラシクロファニル)アク
リレートのラセミ体を0.96mg/mlの濃度に溶解した液10
mlと試薬特級2−プロパノール1mlを、原液室4に入れ
た。原液はマグネティックスターラー6によって攪拌さ
れた状態を保った。
Example 1 Cellulose tris (3,5-dimethylphenylcarbamate) was used as a polysaccharide derivative, and 200 mg of this was dissolved in 15 cc of a special grade solvent of dimethylacetamide to form a dope.
In this dope, Fluororepore (registered trademark, TYPE FP-045, manufactured by Sumitomo Electric Industries, Ltd., pore size 0.45 μm, diameter 25 m)
m) Two pieces were immersed at room temperature for about 1 hour. After the film pulled out of the immersion dope is dried in a nitrogen stream at room temperature for 1 hour,
It was dried for 34 hours in a desiccator reduced to about 1/10 atm. Further, for the purpose of removing impurities in the film, the film was immersed in a mixed solvent of 90% special grade normal hexane and 10% special grade reagent 2-propanol at room temperature for 12 hours, and then placed in a desiccator reduced to about 1/10 atm for 4 hours. Dried. The two films are bonded together using the dope used above as an adhesive to form one film,
In order to evaluate the optical resolution, it was mounted in a liquid-tight manner at the center of a glass evaluation device as shown in FIG. Both the stock solution chamber 4 and the permeation chamber 5 were filled with a mixed solution of 90% reagent-grade normal hexane and 10% reagent-grade 2-propanol, and the membrane 3 and the inside of the glass cell 1 were thoroughly washed. A solution prepared by dissolving racemic ethyl-4- (2,2-paracyclophanyl) acrylate at a concentration of 0.96 mg / ml in a reagent grade normal hexane solvent.
ml and 1 ml of reagent grade 2-propanol were placed in the stock solution chamber 4. The stock solution was kept stirred by the magnetic stirrer 6.

【0022】数時間後、透過室5に洗浄溶媒として試薬
特級ノルマルヘキサン及び試薬特級2−プロパノールを
8:2に混合した液を 0.2ml入れて、この洗浄液を用い
て透過室側の膜面を約10秒間丹念に洗ったのち回収し
た。回収洗浄液中の光学活性体の測定はHPLC法で次の条
件によって行われた。 カラム名;ダイセル化学工業製 キラルセルOD 溶離液;試薬特級ノルマルヘキサン80%、試薬特級2−
プロパノール20% 流速;1.0 ml/min 温度;室温 検出器;UV(λ=254nm) その結果は、エチル−4−(2,2−パラシクロファニル)
アクリレートの+体の光学純度は24%eeであり、その回
収量は0.03mgであった。更に数時間後、前回と同じ方法
で透過室側に 0.2mlの洗浄溶媒を入れて洗浄したとこ
ろ、光学純度24%eeの+体を0.03mg得ることが出来た。
After several hours, 0.2 ml of a mixture of a reagent grade normal hexane and a reagent grade 2-propanol 8: 2 in a ratio of 8: 2 is added to the permeation chamber 5 as a washing solvent, and the membrane surface on the permeation chamber side is used with this washing solution. After carefully washing for about 10 seconds, they were collected. The measurement of the optically active substance in the recovered washing solution was performed by the HPLC method under the following conditions. Column name: Daicel Chemical Industries Chiral Cell OD Eluent: Reagent grade normal hexane 80%, Reagent grade 2-
20% propanol flow rate; 1.0 ml / min temperature; room temperature detector; UV (λ = 254 nm) The result is ethyl-4- (2,2-paracyclophanyl)
The optical purity of the + form of acrylate was 24% ee, and the recovered amount was 0.03 mg. After several hours, 0.2 ml of a washing solvent was added to the permeation chamber side and washed in the same manner as in the previous method.

【0023】比較例1 実施例1で使用した膜を用い、図1の装置の原液室4側
に実施例と全く同組成のエチル−4−(2,2−パラシク
ロファニル)アクリレートのラセミ体をノルマルヘキサ
ン−2−プロパノール(90:10)に溶解した液を入れ
た。一方、透過室5側には同時に実施例で洗浄に用い
たのと同組成の洗浄液を8ml入れて透過室側の膜面が常
時洗浄液に接液している状態で数時間室温に放置した。
透過室側の液を実施例1と同条件でHPLC法で測定したと
ころ、光学純度はほぼ0%eeであり、光学活性体は回収
されなかった。
Comparative Example 1 Using the membrane used in Example 1, a racemic mixture of ethyl-4- (2,2-paracyclophanyl) acrylate having exactly the same composition as in Example 1 was placed on the stock solution chamber 4 side of the apparatus shown in FIG. A solution prepared by dissolving the compound in normal hexane-2-propanol (90:10) was added. On the other hand, 8 ml of a cleaning liquid having the same composition as that used for cleaning in Example 1 was simultaneously placed in the permeation chamber 5 side, and left at room temperature for several hours while the membrane surface on the permeation chamber side was constantly in contact with the cleaning liquid. .
When the liquid in the permeation chamber was measured by HPLC under the same conditions as in Example 1, the optical purity was almost 0% ee, and no optically active substance was recovered.

【0024】実施例2 多糖誘導体としてセルローストリス(3,5−ジメチルフェ
ニルカルバメート)を用い、その1gを試薬特級のTHF
9gに溶解してドープとした。このドープ中に実施例1
で用いたテフロン製基材膜を2枚重ねて1時間浸漬し
た。この膜を引き上げ窒素気流中で1時間室温で乾燥さ
せた後、約1/10気圧に減圧されたデシケータ中で4時
間乾燥させた。乾燥された膜は試薬特級ノルマルヘキサ
ン90%と試薬特級2−プロパノール10%の混合溶液に12
時間浸漬させたのち、1/10気圧に減圧されたデシケー
ター中で4時間乾燥した。
Example 2 Cellulose tris (3,5-dimethylphenylcarbamate) was used as a polysaccharide derivative, and 1 g of the polysaccharide derivative was used as a reagent-grade THF.
The dope was dissolved in 9 g. Example 1 in this dope
The two Teflon-based substrate films used in the above were superimposed and immersed for 1 hour. The film was taken out, dried in a nitrogen stream for 1 hour at room temperature, and then dried in a desiccator reduced to about 1/10 atm for 4 hours. The dried membrane is placed in a mixed solution of 90% reagent grade normal hexane and 10% reagent grade 2-propanol.
After immersion for an hour, it was dried for 4 hours in a desiccator reduced to 1/10 atm.

【0025】上で用いたドープを接着剤として二枚の膜
を貼り合わせ、図1に示した装置に装着した。この際の
膜(有効膜面積3.14cm2)中に固着されたセルローストリ
ス(3,5−ジメチルフェニルカルバメート)の量は50mgで
あった。装置は30℃の恒温槽に置き原液室4、透過室5
の両方に試薬特級ノルマルヘキサン90%、試薬特級2−
プロパノール10%の混合溶液を満たし、膜及び装置系内
をよく洗浄した。β−ブロッカーとして医薬に用いられ
る下記式で表されるオクスプレノロールのラセミ体を試
薬特級ノルマルヘキサン90%と試薬特級2−プロパノー
ル10%混合溶液に1mg/mlの濃度に溶解し評価装置の原
液室にその8mlを入れてマグネティックスターラー6で
攪拌しながら数時間保持した。
Using the dope used above as an adhesive, the two films were bonded together and mounted on the apparatus shown in FIG. At this time, the amount of cellulose tris (3,5-dimethylphenylcarbamate) fixed in the membrane (effective membrane area: 3.14 cm 2 ) was 50 mg. The equipment is placed in a thermostat at 30 ° C, and the stock solution chamber 4 and permeation chamber 5
90% reagent grade normal hexane, reagent grade 2-
The membrane and the inside of the apparatus were thoroughly washed with a mixed solution of 10% propanol. A racemic oxprenolol represented by the following formula, which is used as a β-blocker in medicine, is dissolved at a concentration of 1 mg / ml in a mixed solution of 90% reagent-grade normal hexane and 10% reagent-grade 2-propanol to give a concentration of 1 mg / ml. 8 ml of the solution was put in a stock solution chamber, and kept for several hours while stirring with a magnetic stirrer 6.

【0026】[0026]

【化2】 Embedded image

【0027】透過室に試薬特級ノルマルヘキサン80%と
試薬特級2−プロパノール20%の混合溶液0.2ml を入
れ、この洗浄液でもって透過室側の膜面を30℃で10秒間
よく洗浄することを10秒間隔で5回繰り返した。洗浄液
の光学活性体は次の操作条件によるHPLC法によって測定
した。 カラム名;ダイセル化学工業(株)製 キラルセルOD 溶離液;試薬特級ノルマルヘキサン80%、試薬特級2−
プロパノール20%、ジエチルアミン 0.1% 流速;1.0 ml/min 温度;室温 検出器;UV(λ=254nm) 測定結果はオクスプレノロールの一体が光学純度で12.2
%eeで30μg 得られた。更に数時間間隔で全く同じ方法
で洗浄を行った場合には光学純度25.6%ee、20.6%ee、
24.8%ee、23.6%eeでオクスプレノロールの一体が47.5
μg 、55μg、37.5μg 、35μg 得られた。若干の洗浄
液組成の変更や洗浄間隔を12時間位あけるなどの条件変
更を行った際にもほぼ同様な結果が得られた。合計63回
の洗浄操作を行った結果、最終合計としての光学分割結
果は、表1のようになった。
0.2 ml of a mixed solution of 80% of reagent grade normal hexane and 20% of reagent grade 2-propanol is put into the permeation chamber, and the membrane surface on the permeation chamber side is thoroughly washed with this washing solution at 30 ° C. for 10 seconds. Repeated 5 times at second intervals. The optically active form of the washing solution was measured by the HPLC method under the following operating conditions. Column name: Chiral Cell OD, manufactured by Daicel Chemical Industries, Ltd. Eluent: 80% special grade normal hexane, 2 grade special reagent
20% propanol, 0.1% diethylamine Flow rate; 1.0 ml / min Temperature; room temperature Detector; UV (λ = 254 nm) The measurement result shows that oxprenolol is an optical purity of 12.2
30 μg was obtained in% ee. Further, when the cleaning is performed in the same manner at intervals of several hours, the optical purity is 25.6% ee, 20.6% ee,
27.5% ee, 23.6% ee with 47.5% of oxprenolol
μg, 55 μg, 37.5 μg and 35 μg were obtained. Approximately similar results were obtained when the conditions were slightly changed, such as a slight change in the cleaning solution composition and a 12-hour interval between cleanings. As a result of performing the washing operation 63 times in total, the results of optical division as the final total are as shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例3 多糖誘導体としてセルローストリス(3,5−ジメチルフェ
ニルカルバメート)を用い、この100mg を試薬特級アセ
トン2g中に溶解してドープとした。このドープ中に直
径25mmの東洋濾紙(株)製 PO−200 限外濾過膜(素
材;芳香族ポリアミド、公称分画分子量20,000)1枚を
3時間室温で浸漬した。この膜を空気中で1時間乾燥
後、1/10気圧に減圧されたデシケーター中で6時間乾
燥した。膜中のセルローストリス(3,5−ジメチルフェニ
ルカルバメート)の量は6mgであった。
Example 3 Cellulose tris (3,5-dimethylphenylcarbamate) was used as a polysaccharide derivative, and 100 mg of the polysaccharide derivative was dissolved in 2 g of a reagent grade acetone to form a dope. One PO-200 ultrafiltration membrane (material: aromatic polyamide, nominal molecular weight cut-off 20,000) manufactured by Toyo Roshi Kaisha Ltd. having a diameter of 25 mm was immersed in this dope for 3 hours at room temperature. This film was dried in air for 1 hour, and then dried in a desiccator reduced to 1/10 atm for 6 hours. The amount of cellulose tris (3,5-dimethylphenylcarbamate) in the membrane was 6 mg.

【0030】このようにして得られた膜を図1に示した
評価装置にセット(有効膜面積1.77cm2)し、恒温槽内で
30℃に保持されたまま原液室4、透過室5の両室に試薬
特級ノルマルヘキサン90%、試薬特級2−プロパノール
10%の混合溶媒を各10ml充填した。そのまま12時間放置
し、膜及び評価装置全体をよく洗浄した。光学分割能評
価のために洗浄後の装置の原液室4にオクスプレノロー
ル(β−ブロッカー)10mgを試薬特級ノルマルヘキサン
90%と試薬特級2−プロパノール10%混合溶媒10mlに溶
解させて入れた。温度は30℃に保持した。透過室5側に
試薬特級ノルマルヘキサン80%と試薬特級2−プロパノ
ール20%の混合溶媒0.5ml を入れ、膜3の透過側を1分
間洗浄してその洗浄液を回収した。全く同じ洗浄操作を
一定時間毎に繰り返し33回行い、表2の結果が得られ
た。
The membrane thus obtained was set in the evaluation apparatus shown in FIG. 1 (effective membrane area: 1.77 cm 2 ) and placed in a thermostat.
While keeping the temperature at 30 ° C., 90% of reagent grade normal hexane and reagent grade 2-propanol were placed in both the undiluted solution chamber 4 and the permeation chamber 5.
Each 10 ml of a 10% mixed solvent was filled. The membrane and the entire evaluation apparatus were thoroughly washed for 12 hours. In order to evaluate the optical resolution, 10 mg of oxprenolol (β-blocker) was placed in the stock solution chamber 4 of the apparatus after washing, and the reagent was graded normal hexane.
It was dissolved in 10 ml of a mixed solvent of 90% and a special grade of reagent 2-propanol 10% and put. The temperature was kept at 30 ° C. 0.5 ml of a mixed solvent of 80% reagent grade normal hexane and 20% reagent grade 2-propanol was placed in the permeation chamber 5 side, and the permeate side of the membrane 3 was washed for 1 minute to recover the washing solution. Exactly the same washing operation was repeated 33 times at regular intervals, and the results in Table 2 were obtained.

【0031】[0031]

【表2】 [Table 2]

【0032】光学純度の測定はHPLC法によって次の条件
で行った。 カラム名;ダイセル化学工業(株)製 キラルセルOD 溶離液;試薬特級ノルマルヘキサン:試薬特級2−プロ
パノール:試薬特級ジエチルアミン(80:20:0.1) 流速;1.0 ml/min 温度;室温 検出器;UV(λ=254nm)
The optical purity was measured by the HPLC method under the following conditions. Column name; Chiral cell OD eluent manufactured by Daicel Chemical Industries, Ltd. Eluent of reagent grade normal hexane: reagent grade 2-propanol: reagent grade diethylamine (80: 20: 0.1) Flow rate: 1.0 ml / min Temperature: room temperature Detector: UV ( λ = 254nm)

【0033】[0033]

【発明の効果】本発明のような膜分離法による光学活性
体の分割は操作が容易であり、大容量処理に適している
事から経済的な工業技術である。本発明は多糖誘導体等
の光学分割能を有する物質を基材膜に固着させる方法に
よってつくられた膜を用いてラセミ体から直接光学活性
体が分割される技術であり、更に新規な洗浄法によって
光学活性体が簡単に得られるユニークな新技術である。
複雑な化学構造式を持つβブロッカー等の医農薬につい
ても、本発明による膜分離法で直接分割によって光学活
性体が得られる技術は画期的な事で産業上のメリットは
大きい。
The separation of the optically active substance by the membrane separation method as in the present invention is an economical industrial technique because it is easy to operate and suitable for large-volume processing. The present invention relates to a technique in which an optically active substance is directly separated from a racemate using a film formed by a method in which a substance having optical resolution ability such as a polysaccharide derivative is fixed to a substrate film. This is a unique new technology that can easily obtain optically active substances.
Even for medicines and agricultural chemicals such as β-blockers having a complicated chemical structural formula, the technology of obtaining an optically active substance by direct separation by the membrane separation method according to the present invention is epoch-making and has great industrial merit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例の実験に用いた光学分割能評
価装置の断面図である。
FIG. 1 is a cross-sectional view of an optical resolving power evaluation device used in experiments of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 ガラス製セル 2 擦合わせ共栓 3 膜 4 原液室 5 透過室 6 マグネティックスターラー DESCRIPTION OF SYMBOLS 1 Glass cell 2 Laminated stopper 3 Membrane 4 Stock solution room 5 Permeation room 6 Magnetic stirrer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材膜の内部及び両面に、光学分割能を
有するセルロース又はアミロースのエステル誘導体、カ
ルバメート誘導体あるいはエーテル誘導体を固着させて
なる光学分割膜。
An optical resolution is provided inside and on both sides of a substrate film.
Cellulose or amylose ester derivatives,
An optical resolution film formed by fixing a rubamate derivative or an ether derivative .
【請求項2】 請求項記載の光学分割膜の片面にラセ
ミ体原液を接触させた後、他面を洗浄液で洗浄すること
により光学活性体を得ることを特徴とする光学分割方
法。
2. An optical splitting method, wherein an optically active substance is obtained by bringing a racemic stock solution into contact with one surface of the optical splitting film according to claim 1 , and then washing the other surface with a washing liquid.
JP04336392A 1992-02-28 1992-02-28 Optical splitting film and optical splitting method using the same Expired - Fee Related JP3246760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04336392A JP3246760B2 (en) 1992-02-28 1992-02-28 Optical splitting film and optical splitting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04336392A JP3246760B2 (en) 1992-02-28 1992-02-28 Optical splitting film and optical splitting method using the same

Publications (2)

Publication Number Publication Date
JPH05237351A JPH05237351A (en) 1993-09-17
JP3246760B2 true JP3246760B2 (en) 2002-01-15

Family

ID=12661776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04336392A Expired - Fee Related JP3246760B2 (en) 1992-02-28 1992-02-28 Optical splitting film and optical splitting method using the same

Country Status (1)

Country Link
JP (1) JP3246760B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69632116T2 (en) 1995-05-12 2004-08-19 Seiko Epson Corp. DEVICE FOR DIAGNOSTICING THE STATE OF THE LIVING ORGANISM AND CONTROL UNIT

Also Published As

Publication number Publication date
JPH05237351A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
Ke et al. Novel chiral composite membrane prepared via the interfacial polymerization of diethylamino-beta-cyclodextrin for the enantioseparation of chiral drugs
Xie et al. Membranes and membrane processes for chiral resolution
Higuchi et al. Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes
Matsuoka et al. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes
Hadik et al. D, L-lactic acid and D, L-alanine enantioseparation by membrane process
JP5619867B2 (en) Method for producing enantioselective composite membrane
Chen et al. Membrane-based technologies in the pharmaceutical industry and continuous production of polymer-coated crystals/particles
Higuchi et al. Optical resolution of amino acid by ultrafiltration using recognition sites of DNA
Ciriani et al. Semi-continuous and continuous processes for enantiomeric separation
JP3246760B2 (en) Optical splitting film and optical splitting method using the same
Yu et al. Advances in membrane-based chiral separation
JP2009091535A (en) Optically active polymer
Hadik et al. Lactic acid enantioseparation by means of porous ceramic disc and hollow fiber organic membrane
Sui et al. Strategies for chiral separation: from racemate to enantiomer
WO2013160926A1 (en) Direct crystallization of enantiomers by heterogeneous stereoselective nucleaton on a membrane
JP3221757B2 (en) Method for producing optically active substance using adsorbent having asymmetric discrimination ability
CN1091411A (en) The method of enantiomer separation from racemic mixture
JP2898723B2 (en) Optical splitting separation membrane
GB2233248A (en) Enantiomer enrichment by membrane processes
JP2506633B2 (en) Method for optical resolution of cyclic carbonyl compounds
JP2000342943A (en) Optical splitting nylon film and production thereof
JP3920149B2 (en) Optical resolution agent, optical resolution column, optical resolution method, and optically active compound production method
JPH10507192A (en) Method for separating enantiomers from a racemic mixture
JPH04284828A (en) Membrane separation method
KR100949758B1 (en) Chiral stationary phase based on antibiotics cefaclor and chiral column

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees