JP3245366B2 - Load condition monitoring device - Google Patents
Load condition monitoring deviceInfo
- Publication number
- JP3245366B2 JP3245366B2 JP24909396A JP24909396A JP3245366B2 JP 3245366 B2 JP3245366 B2 JP 3245366B2 JP 24909396 A JP24909396 A JP 24909396A JP 24909396 A JP24909396 A JP 24909396A JP 3245366 B2 JP3245366 B2 JP 3245366B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- monitoring
- load state
- detection
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Voltage And Current In General (AREA)
Description
【0001】[0001]
【発明が属する技術分野】本発明は、金属素地上に金属
被膜層を形成するメッキ用電源装置に接続され、前記電
源装置が出力する最適電解条件の電圧又は電流を検出
し、その平均検出値を絶対値とし、この絶対値の上限お
よび下限の設定値と現在の検出値を比較し、設定値を外
れた場合に警報を出力する負荷状態監視装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply for plating which forms a metal coating layer on a metal substrate, detects a voltage or a current under the optimum electrolysis conditions output from the power supply, and averages the detected values. The absolute value of the absolute value, the set value of the upper limit and the lower limit of the absolute value are compared with the present detection value, and a warning is output when the set value is out of the set value.
【0002】[0002]
【従来の技術】負荷状態監視装置は、負荷状態の変化を
電圧又は電流値の変動として検出し、初期の負荷状態を
所定の範囲内に維持するように監視する装置のことであ
る。この装置の用途は多様であるが、ここでは電解メッ
キ用電源装置に用いる負荷状態監視装置について説明す
る。2. Description of the Related Art A load condition monitoring device is a device that detects a change in a load condition as a change in a voltage or current value and monitors an initial load condition so as to be maintained within a predetermined range. Although there are various uses of this apparatus, a load state monitoring apparatus used for a power supply apparatus for electrolytic plating will be described here.
【0003】近来、電気メッキ、電解脱脂、電解剥離等
に用いる電解条件で制御される電源装置は、生産の合理
化、原価の低減、品位の均一安定性及び作業の効率化等
の要求に伴い、電源装置が具備する波形、電力効果、電
圧変動率などの本来の機能の他に、電圧、電流の無段階
調整機能、電圧・電流の調整装置の小型化・遠隔操作性
及び装置の自動化等の条件を備えた電源装置が強く要求
される傾向にある。In recent years, power supply devices controlled by electrolytic conditions used for electroplating, electrolytic degreasing, electrolytic stripping, and the like have been required in accordance with demands for rationalization of production, reduction of cost, uniform stability of quality, and efficiency of work. In addition to the original functions of the power supply such as the waveform, power effect, and voltage fluctuation rate, the stepless voltage and current adjustment function, miniaturization of the voltage and current adjustment device, remote operability, automation of the device, etc. There is a tendency that a power supply device with conditions is strongly demanded.
【0004】そして、電気めっきにおいては、ファラデ
ーの法則が示す通り、電極で反応する物質量と電気量と
は比例する。従って、電気メッキにおいては、電流×時
間を原則として制御することになるが、製品の品質要求
に合致する最適の条件で電気メッキができるよう条件設
定を行い、これを維持する必要がある。しかし、1).
メッキ液の流れ、メツキ液の量の不足、メッキ液無し、
2).メッキ液濃度の変化、3).電線の接触不良(抵
抗大)、4).メッキ治具内の異物による短絡、5).
断線等の負荷状態の変化により、初期状態のメッキ品質
を維持できないという問題があった。[0004] In electroplating, as Faraday's law indicates, the amount of a substance reacting at an electrode is proportional to the amount of electricity. Therefore, in electroplating, current × time is controlled in principle. However, it is necessary to set and maintain conditions so that electroplating can be performed under optimal conditions that meet product quality requirements. However, 1).
Plating solution flow, shortage of plating solution, no plating solution,
2). Changes in plating solution concentration, 3). Poor wire contact (high resistance), 4). Short circuit due to foreign matter in plating jig; 5).
There is a problem that the plating quality in the initial state cannot be maintained due to a change in the load state such as disconnection.
【0005】この問題を解決するために、出力電流計又
は電圧計を装備した電源装置において、出力電流計又は
出力電圧計に上限指示針及び下限指示針を設け、この上
限指示針及び下限指示針を電圧又は電流の上限値及び下
限値の位置に設定する設定手段と、出力電流計又は出力
電圧計の指示針が前記上限指示針値及び下限指示針をは
ずれた場合に作動するスイッチ回路を備えた警報出力手
段とを具備し、電圧又は電流の変化、即ち負荷状態の変
化を監視する負荷状態監視装置(通称:メータ・リレ
ー)が一般的である(実開昭和61−65522号公報
参照)。In order to solve this problem, in a power supply device equipped with an output ammeter or a voltmeter, the output ammeter or the output voltmeter is provided with an upper limit indicator and a lower limit indicator, and the upper limit indicator and the lower limit indicator are provided. Setting means for setting the position of the upper or lower limit value of the voltage or current, and a switch circuit that operates when the pointer of the output ammeter or the output voltmeter deviates from the upper or lower pointer. A load condition monitoring device (commonly known as a meter relay) for monitoring a change in voltage or current, that is, a change in load condition, is generally provided (see Japanese Utility Model Application Laid-Open No. 61-65522). .
【0006】[0006]
【発明が解決しようとする課題】しかしながら、この種
の負荷状態監視装置では、製品素地の表面にめっき被膜
層を形成する場合、メッキ面積やメッキ厚の変更がよく
行われる為、その都度、メツキ終了後にはその電圧又は
電流の上限値及び下限値の数値を別の記録台帳などに書
き写しを行い記録していた。また、過去に行った製品の
金属被膜層を再度形成する際には、膨大な電圧又は電流
の上限値及び下限値を書き写した台帳から捜すか、もし
くは作業者の経験値から手作業で設定用ツマミの操作を
行い上限値及び下限値の設定を行っていた。そのため電
圧又は電流の上限値及び下限値の設定作業に時間を要
し、作業効率が悪く生産性を低下させると共に、設定ミ
スや設定変更忘れが発生し、負荷状態監視装置が正しく
機能することができず、そのためメツキ膜厚の均一性や
品質の再現性及び安定性に欠けるという問題があった。However, in this type of load condition monitoring device, when a plating film layer is formed on the surface of a product substrate, the plating area and the plating thickness are often changed. After completion, the upper and lower limit values of the voltage or current were transcribed and recorded on another recording ledger or the like. Also, when re-forming the metal coating layer of a product performed in the past, search for the enormous upper and lower limits of voltage or current from the transcribed ledger or manually set it from the experience value of the operator. By operating the knob, the upper and lower limits were set. As a result, it takes time to set the upper and lower limits of the voltage or current, which lowers the work efficiency and lowers the productivity. Therefore, there is a problem that the uniformity of the plating film thickness, the reproducibility of the quality and the stability are lacking.
【0007】本発明は上記の実情に鑑みてなされたもの
で、対象物の負荷状態を電圧又は電流の上限監視値及び
下限監視値の領域を設定する作業の効率を向上させると
共に、電圧又は電流の上限値及び下限値の設定ミスや変
更忘れの発生をなくし、金属皮膜層の品質の再現性及び
安定性を向上させることのできる負荷状態監視装置を提
供することを目的とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and improves the efficiency of setting the load condition of an object to a range of an upper-limit monitoring value and a lower-limit monitoring value of a voltage or a current. It is an object of the present invention to provide a load state monitoring device capable of preventing the setting errors and forgetting to change the upper limit value and the lower limit value, and improving the reproducibility and stability of the quality of the metal film layer.
【0008】[0008]
【課題を解決しようとする手段】上記の目的に沿う請求
項1記載の負荷状態監視装置は、製品の素地上に良好な
金属皮膜層を生成する電気メッキ用の電源装置に用いら
れており、負荷状態を監視する監視条件設定値入力手段
と、前記電源装置が設定した最適な負荷状態の出力値を
検出する計測アンプと計測アンプで検出された検出値
(アナログ値)をデジタル値に変換するA/D変換器と
を備え、前記デジタル値をマイクロコンピュータの中央
処理部(CPU)に供給する検出処理手段と、前記電源
装置の最適な負荷状態の電圧又は電流の検出値で上限監
視値及び下限監視値を設定する上限及び下限監視値設定
手段と、前記電源装置の電圧又は電流値の現在の検出値
と前記上限監視値及び下限監視値とを比較し、前記上限
監視値及び下限監視値の領域内か、領域外かを判断する
負荷状態監視手段とから成り、前記上限及び下限監視値
設定手段には、所要数(n回)の最適な負荷状態の検出
値Xの検出処理を行い、その和の平均値XS( =X1+
X2+・・+Xn/n)を算出し、その平均値XS と予め
設定された監視幅係数の上限及び下限パーセンテージY
1、Y2とから上限監視値XH(=XS+XS×Y1%)及び
下限監視値XL(=XS−XS×Y2%)を演算する上限及
び下限監視値設定プログラムを備え、さらに、前記負荷
状態監視手段には、電圧又は電流の現在の検出値Mと設
定された前記上限監視値XH及び下限監視値XLとを比較
する負荷状態監視プログラムを備え、前記電源装置から
出力される現在の電圧又は電流の検出値Mが上限監視値
XH及び下限監視値HLを外れた場合(XH<M、M<X
L)に警報を出力と共に、負荷状態を表示する警報・表
示出力手段を備えた構成により達成される。これによっ
て、電圧又は電流の上限監視値及び下限監視値が自動的
に設定されるので、電圧又は電流の上限及び下限監視値
の設定作業が容易になり、設定作業の効率化を図ること
ができると共に、上限監視値及び下限監視値の設定ミス
や設定変更漏れの発生をなくすことができ、対象物の負
荷状態の再現性及び安定性を著しく向上させることがで
きる。A load condition monitoring device according to the first aspect of the present invention is used in a power supply device for electroplating for producing a good metal film layer on a substrate of a product. A monitoring condition setting value input unit for monitoring a load condition, a measuring amplifier for detecting an output value of the optimum load condition set by the power supply device, and a detection value (analog value) detected by the measuring amplifier converted to a digital value. An A / D converter, a detection processing means for supplying the digital value to a central processing unit (CPU) of a microcomputer, and an upper limit monitoring value and a detection value of a voltage or a current in an optimum load state of the power supply device. Upper and lower monitoring value setting means for setting a lower monitoring value, comparing a current detection value of a voltage or current value of the power supply device with the upper monitoring value and the lower monitoring value, and monitoring the upper monitoring value and the lower monitoring value. And an upper limit and lower limit monitoring value setting means for performing detection processing of a required number (n times) of optimum load state detection values X. , The average value of the sum XS (= X1 +
X2 +... + Xn / n), the average value Xs and the upper and lower limit percentages Y of the preset monitoring width coefficient.
An upper limit and lower limit monitor value setting program for calculating an upper limit monitor value XH (= XS + XS × Y1%) and a lower limit monitor value XL (= XS−XS × Y2%) from 1 and Y2; Has a load state monitoring program for comparing the current detected value M of voltage or current with the set upper limit monitoring value XH and lower limit monitoring value XL, and the current voltage or current of the current output from the power supply device is provided. When the detection value M deviates from the upper monitoring value XH and the lower monitoring value HL (XH <M, M <X
This is achieved by a configuration including an alarm / display output unit that outputs a warning in L) and displays a load state. As a result, the upper-limit monitoring value and the lower-limit monitoring value of the voltage or the current are automatically set, so that the setting operation of the upper-limit and the lower-limit monitoring values of the voltage or the current becomes easy, and the setting operation can be made more efficient. At the same time, it is possible to prevent the setting error of the upper limit monitoring value and the lower limit monitoring value and omission of the setting change, and to remarkably improve the reproducibility and stability of the load state of the object.
【0009】請求項2記載の負荷状態監視装置は、請求
項1記載の負荷状態監視装置にあって、前記電圧又は電
流の上限監視値及び下限監視値の設定に用いる設定係数
は、±1%〜99%の上限及び下限パーセンテージの範
囲で選択を行う構成により達成される。これによって、
上限監視値及び下限監視値の要求精度に対応する設定が
可能となる。According to a second aspect of the present invention, there is provided the load state monitoring apparatus according to the first aspect, wherein the set coefficient used for setting the upper limit monitor value and the lower limit monitor value of the voltage or the current is ± 1%. Achieved by an arrangement that selects between upper and lower percentages of ~ 99%. by this,
The setting corresponding to the required accuracy of the upper limit monitoring value and the lower limit monitoring value can be performed.
【0010】請求項3記載の負荷状態監視装置は、請求
項1記載の負荷状態監視装置にあって、前記負荷状態の
警報及び表示は、検出値Mが上限監視値XH及び下限監
視値XLを外れた継続時間又は所定時間内のグリッチ数
及びその波形を検出して行う構成により達成される。こ
れによって、負荷状態の監視が安定すると共に、波形に
より対象の負荷状態を表示することができる。According to a third aspect of the present invention, there is provided a load state monitoring apparatus according to the first aspect, wherein the warning and the display of the load state are such that the detection value M is an upper limit monitoring value XH and a lower limit monitoring value XL. This is achieved by a configuration in which the number of glitches and the waveform of the glitches within a predetermined time or a deviated duration are detected and performed. As a result, the monitoring of the load state is stabilized, and the target load state can be displayed by a waveform.
【0011】請求項4記載の負荷状態監視装置は、請求
項1記載の負荷状態監視装置にあって、前記負荷状態監
視監視手段の測定値Mは、n回の測定値のサンプリング
を行い、その和の平均値MS(=MS1+MS2+・・・+
MSn /n)を用いた構成により達成される。これによ
って、外乱による測定値の誤差が少なくり、比較対象物
の精度が向上する。According to a fourth aspect of the present invention, there is provided the load state monitoring apparatus according to the first aspect, wherein the measurement value M of the load state monitoring and monitoring means performs n samplings of the measurement value. Average value of the sum MS (= MS1 + MS2 + ... +
(MSn / n). Thereby, the error of the measured value due to the disturbance is reduced, and the accuracy of the comparison object is improved.
【0012】請求項5記載の負荷状態監視装置は、請求
項1記載の負荷状態監視装置にあって、前記検出処理手
段の検出値Xは、検出値Xの検出処理を所定の回数行
い、その和の平均値XSの算出を所要回数(n回)行
い、この平均検出値XS和の平均検出値XSS(=XS1+
XS2+・・・+XSn/n)を用いた構成により達成され
る。これによって、外乱による誤差が除かれ、更に正確
な平均検出値XSSの上限監視値及び下限監視値を設定す
ることができる。According to a fifth aspect of the present invention, there is provided the load state monitoring device according to the first aspect, wherein the detection value X of the detection processing means performs a detection process of the detection value X a predetermined number of times. The average value XS of the sum is calculated a required number of times (n times), and the average detected value XSS of the average detected value XS (= XS1 +
XS2 +... + XSn / n). As a result, an error due to disturbance is removed, and more accurate upper and lower limit monitoring values of the average detection value XSS can be set.
【0013】[0013]
【発明の実施の態様】続いて、本発明の実施の形態の一
例について説明する。ここで、図1は本発明の一実施例
に係る負荷状態監視装置の構成を示すブロック図、図2
は本発明の一実施例に係る負荷状態監視装置の動作を示
すフロー図、図3は本発明の一実施例に係る負荷状態監
視装置の監視条件設定の動作を示すフロー図、図4は本
発明の一実施例に係る負荷状態監視装置の上限および下
限監視値設定の動作を示すフロー図、図5は本発明の一
実施例に係る負荷状態監視装置の負荷状態監視の動作を
示すフロー図である。Next, an example of an embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a load state monitoring apparatus according to an embodiment of the present invention.
FIG. 3 is a flowchart showing the operation of the load state monitoring apparatus according to one embodiment of the present invention, FIG. 3 is a flowchart showing the operation of setting the monitoring conditions of the load state monitoring apparatus according to one embodiment of the present invention, and FIG. FIG. 5 is a flowchart showing an operation of setting an upper limit and a lower limit monitoring value of the load state monitoring apparatus according to one embodiment of the present invention. FIG. 5 is a flowchart showing an operation of load state monitoring of the load state monitoring apparatus according to one embodiment of the present invention. It is.
【0014】図1には、本発明の実施形態の負荷状態監
視装置を全体的にコントロールする制御系ブロック図が
示されている。FIG. 1 is a block diagram of a control system for controlling the entire load state monitoring apparatus according to the embodiment of the present invention.
【0015】同図において、200はマイクロコンピュ
ータであり、該マイクロコンピュータ200には、負荷
状態監視装置を全体的に制御する記憶、演算、制御を備
えた市販のCUP(中央処理部)201、そして、CP
U201に接続され、上限及び下限監視値設定プログラ
ム、負荷状態監視プログラムおよび各種(監視条件)設
定値入力プログラムが記載されたROM202、さら
に、設定・変更された監視条件、設定された上限及び下
限監視値等を一時的に記憶するRAM203を備えてい
る。In FIG. 1, reference numeral 200 denotes a microcomputer. The microcomputer 200 includes a commercially available CUP (central processing unit) 201 having storage, calculation, and control for controlling the entire load condition monitoring device. , CP
ROM 202 which is connected to U201 and stores an upper limit and lower limit monitoring value setting program, a load state monitoring program, and various (monitoring condition) setting value input programs, furthermore, monitoring conditions that have been set and changed, and upper limit and lower limit monitoring that have been set. A RAM 203 for temporarily storing values and the like is provided.
【0016】そして、前記CUP201には、計測アン
プ101、アナログ値をデジタル値に変換するA/D変
換器102を備えた検出処理部100が接続されてい
る。また、操作スイッチ206、入力回路207を備え
た監視条件設定入力部208が接続されている。さら
に、監視条件上限及び下限監視値、負荷状態を表示する
液晶表示部204が接続されている。さらにまた、警報
ブザー300を鳴動する出力回路301が接続されてい
る。そして、前記CPU(セントラル・プロセッシング
・ユニット)201には、外部接続端子のインターフェ
ース(RS−232C)205を備え、外部に設置され
た図示されていないパーソナルコンピュータ(PC)か
ら監視条件の設定・変更入力等を行ことかできる。The CUP 201 is connected to a measurement amplifier 101 and a detection processing unit 100 including an A / D converter 102 for converting an analog value to a digital value. Further, a monitoring condition setting input unit 208 including an operation switch 206 and an input circuit 207 is connected. Further, a liquid crystal display unit 204 for displaying the monitoring condition upper and lower monitoring values and the load state is connected. Further, an output circuit 301 for sounding the alarm buzzer 300 is connected. The CPU (Central Processing Unit) 201 has an interface (RS-232C) 205 as an external connection terminal, and sets and changes monitoring conditions from a personal computer (PC) (not shown) installed outside. You can do input etc.
【0017】つぎに、本発明の負荷状態監視装置の基本
動作を図2、図3に基づき説明する。Next, the basic operation of the load condition monitoring device of the present invention will be described with reference to FIGS.
【0018】本発明では、図2、図3に示すように、ス
タート/ストップボタンの信号あるいはラインのシーケ
ンサからメッキ開始の信号があると、CPU201に記
載された実行プログラムが実行され、監視条件の設定・
変更の初期設定がされる(ステップ401)。初期設定
入力を行うか、行わないかを判断する。初期設定入力を
行う場合には、ROM202に記載された各種(監視条
件)設定値入力プログラムを読み込み、各種(監視条
件)設定値入力を実行する(ステップA)。ここで、設
定・変更は操作(設定)スイッチ206で監視モード、
監視幅、監視値、継続時間、グリッチ検出回数等の監視
条件値の設定・変更を行う、その結果はRAM203に
格納される。In the present invention, as shown in FIGS. 2 and 3, when there is a start / stop button signal or a plating start signal from the line sequencer, the execution program described in the CPU 201 is executed, and the monitoring condition is monitored. Configuration·
Initial settings for change are made (step 401). It is determined whether the initial setting input is performed or not. When performing the initial setting input, the program reads various (monitoring condition) setting value input programs stored in the ROM 202 and executes various (monitoring condition) setting value input (step A). Here, the setting / change is performed by the operation (setting) switch 206 in the monitoring mode.
The monitoring condition values such as the monitoring width, the monitoring value, the duration, and the number of times of glitch detection are set and changed. The result is stored in the RAM 203.
【0019】初期設定入力を行わない場合には、自動サ
ンプリング(上限及び下限監視値設定)を行うか、行わ
ないかの判断を行い、自動サンプリング(上限及び下限
監視値設定)を行う場合には、ROM202に記載され
た上限及び下限監視値設定プログラムを呼び込み、これ
を実行して自動サンプリング(上限及び下限監視値設
定)を行う(ステップB)。その結果はRAM203に
格納される。If no initial setting input is performed, it is determined whether to perform automatic sampling (upper and lower monitoring value setting) or not. If automatic sampling (upper and lower monitoring value setting) is to be performed, Then, the upper limit and lower limit monitoring value setting program described in the ROM 202 is called and executed to perform automatic sampling (upper and lower limit monitoring value setting) (step B). The result is stored in the RAM 203.
【0020】自動サンプリング(上限及び下限監視値設
定)Bを行わない場合には、自動監視(負荷状態監視)
を行うか、行わないかの判断を行い、自動監視(負荷状
態監視)を行う場合には、ROM202に記載された負
荷状態監視プログラムを呼び込み、これを実行して自動
監視(負荷状態監視)を行う(ステップC)。さらに、
ROM202に記載された電源チェックプログラムを呼
び込み、これを実行して電源チェックを行う(ステップ
D)。そして、その結果は液晶表示器204すると共
に、警報ブザー300を鳴動させる。If automatic sampling (upper and lower limit monitoring value setting) B is not performed, automatic monitoring (load state monitoring)
When performing automatic monitoring (load status monitoring) by determining whether or not to perform the automatic monitoring (load status monitoring), the load status monitoring program described in the ROM 202 is called and executed to execute the automatic monitoring (load status monitoring). Perform (Step C). further,
The power supply check program written in the ROM 202 is called up and executed to perform a power supply check (step D). Then, the result is displayed on the liquid crystal display 204 and the alarm buzzer 300 is sounded.
【0021】自動監視(負荷状態監視)を行わない場合
は、監視条件設定入力(ステップ401)に戻り各ステ
ップを順次実行する。When the automatic monitoring (load condition monitoring) is not performed, the process returns to the input of the monitoring condition setting (step 401), and the respective steps are sequentially executed.
【0022】以上の基本動作のなかで実行される上限及
び下限監視値設定(自動サンプリング)、負荷状態監
視、電源チェックの各ステップB、C、Dを図1〜図5
に基づき詳細に説明する。The steps B, C, and D of setting the upper and lower monitoring values (automatic sampling), monitoring the load condition, and checking the power supply, which are executed in the above basic operations, are shown in FIGS.
This will be described in detail based on FIG.
【0023】上限及び下限監視値設定(自動サンプリン
グ)Bは、上限及び下限監視値設定プログラムを実行す
ることによって行われる。The upper and lower limit monitoring value setting (automatic sampling) B is performed by executing an upper and lower limit monitoring value setting program.
【0024】図4にしめすように、メッキ電源装置の最
適負荷条件の出力値(検出値)Xを所定回数の検出処理
を行う(ステップB1)。検出条件が連続処理か、間歇
処理かを判断する。検出処理が間歇処理ならば指定時間
の間隔で電源装置の出力値(検出値)Xの検出処理を行
う(ステップB2)。検出処理が連続処理ならば電源の
スタート信号により所定回数だけ電源装置の出力値(検
出値)Xの検出処理を行う(ステップB3)。そして、
ステップB2、ステップB3で指定回数の検出処理が完了
したか判断する。検出処理が完了していない場合は、R
ETUNでステップB1に戻り検出処理を継続して行
う。検出処理が完了している場合は、所定回数(n回)
の検出値Xの和の平均検出値XS(=X1+X2+・・・
+Xn/n)を演算する(ステップB4)。ステップB4
で算出した平均検出値XSを絶対値とし、予め設定され
た監視幅設定係数の上限及び下限パーセンテージY1、
Y2 とから上限監視値XH(=XS+XS×Y1%)及び下
限監視値XL(=XS−XS×Y2%)を設定する演算処理
する(ステップB5)。その演算結果の上限監視値XH、
下限監視値XLをRAM203(図1参照)格納する。As shown in FIG. 4, the output value (detection value) X under the optimum load condition of the plating power supply device is detected a predetermined number of times (step B1). It is determined whether the detection condition is continuous processing or intermittent processing. If the detection process is an intermittent process, a detection process of the output value (detection value) X of the power supply device is performed at specified time intervals (step B2). If the detection process is a continuous process, the output value (detection value) X of the power supply device is detected a predetermined number of times by the start signal of the power supply (step B3). And
In steps B2 and B3, it is determined whether the specified number of detection processes has been completed. If the detection process is not completed, R
In ETUN, the process returns to step B1 to continue the detection process. If the detection process has been completed, a predetermined number of times (n times)
Average detection value XS (= X1 + X2 +...)
+ Xn / n) (step B4). Step B4
The average detection value XS calculated in the above is defined as an absolute value, and the upper limit and lower limit percentage Y1, of a preset monitoring width setting coefficient,
A calculation process is performed to set an upper limit monitoring value XH (= XS + XS × Y1%) and a lower limit monitoring value XL (= XS−XS × Y2%) from Y2 (step B5). The upper limit monitoring value XH of the calculation result,
The lower limit monitoring value XL is stored in the RAM 203 (see FIG. 1).
【0025】負荷状態監視値(自動監視)Cは、負荷状
態監視プログラムを実行することによって行われる。The load state monitoring value (automatic monitoring) C is performed by executing a load state monitoring program.
【0026】図5に示すように、メッキ電源装置の現在
の出力値(検出値)Mの検出処理を行う(ステップC
1)。検出値がステップB5で設定され、RAM203に
格納された上限監視値XH、下限監視値XLの範囲内にあ
るか、範囲外かを判断する。出力値(検出値)Mが範囲
内(上限監視値XH>検出値M>下限監視値XL)である
場合、継続時間計測タイマーをリセットしてメッキ処理
を継続する(ステップC2)。出力値(検出値)Mが範
囲外(上限監視値XH<検出値M又は下限監視値XL>検
出値M)である場合、検出値Mが範囲外に所定時間以上
継続したか、継続しなかったかを判断する。検出値Mが
範囲外に所定時間以上継続した場合、アラームを出力し
て警報ブザーを鳴動させると共に、負荷状態を液晶表示
器に表示する(ステップC3)。検出値Mが範囲外に所
定時間以上継続しなかった場合、所定回数以上グリッチ
を検出したか、検出しなかったかを判断する。所定回数
以上グリッチを検出した場合、アラームを出力して警報
ブザーを鳴動させると共に、負荷状態を液晶表示器に表
示する(ステップC4)。所定回数以上グリッチを検出
しなかつた場合、メッキ処理を継続する。As shown in FIG. 5, a process of detecting the current output value (detected value) M of the plating power supply device is performed (step C).
1). The detected value is set in step B5, and it is determined whether the detected value is within the range of the upper limit monitoring value XH and the lower limit monitoring value XL stored in the RAM 203 or not. When the output value (detection value) M is within the range (upper limit monitoring value XH> detection value M> lower limit monitoring value XL), the duration measuring timer is reset and the plating process is continued (step C2). If the output value (detection value) M is out of the range (upper limit monitoring value XH <detection value M or lower limit monitoring value XL> detection value M), the detection value M has been out of the range for a predetermined time or has not continued. To determine When the detected value M is out of the range and continues for a predetermined time or more, an alarm is output to sound the alarm buzzer and the load state is displayed on the liquid crystal display (step C3). If the detected value M has not been out of the range for a predetermined time or more, it is determined whether a glitch has been detected for a predetermined number of times or not. If a glitch is detected a predetermined number of times or more, an alarm is output to sound an alarm buzzer and the load state is displayed on the liquid crystal display (step C4). If no glitch has been detected a predetermined number of times or more, the plating process is continued.
【0027】[0027]
【発明の効果】請求項1の発明では、最適な負荷状態の
電圧又は電流値を所定回数の検出処理を行いそれらの検
出値の和の平均値を絶対値とし、この平均検出値の上限
及び下限の監視値を、監視条件で設定された上限監視パ
ーセンテージ及び下限監視パーセンテージを用いて前記
平均検出値の上限及び下限の監視値を演算し、自動的に
設定するようにしているので、従来技術に比べて、手作
業による演算設定がなくなり、上限及び下限監視値の設
定作業が著しく向上すると共に、上限及び下限監視値の
設定ミスや設定漏れの発生がなくなり、初期の負荷状態
を維持することができる。According to the first aspect of the present invention, a voltage or current value in an optimal load state is detected a predetermined number of times, and an average value of the sum of the detected values is defined as an absolute value. Since the lower limit monitoring value is calculated automatically using the upper limit monitoring percentage and the lower limit monitoring percentage set in the monitoring condition, the upper limit and the lower limit monitoring values of the average detection value are automatically set. In comparison with the above, there is no need for manual calculation setting, and the setting work of the upper and lower monitoring values is significantly improved.Also, setting errors of the upper and lower monitoring values and omission of setting are eliminated, and the initial load state is maintained. Can be.
【図1】本発明の一実施例に係る負荷状態監視装置のブ
ロック図である。FIG. 1 is a block diagram of a load state monitoring device according to one embodiment of the present invention.
【図2】本発明の一実施例に係る負荷状態監視装置の動
作を示すフロー図である。FIG. 2 is a flowchart showing an operation of the load state monitoring device according to one embodiment of the present invention.
【図3】本発明の一実施例に係る負荷状態監視装置の監
視条件設定FIG. 3 is a diagram illustrating a monitoring condition setting of the load state monitoring apparatus according to the embodiment of the present invention;
【図4】本発明の一実施例に係る負荷状態監視装置の自
動サンプリングの動作を示すフロー図である。FIG. 4 is a flowchart showing an operation of automatic sampling of the load state monitoring device according to one embodiment of the present invention.
【図5】本発明の一実施例に係る負荷状態監視装置の自
動監視の動作を示すフロー図である。FIG. 5 is a flowchart showing an operation of automatic monitoring of the load state monitoring device according to one embodiment of the present invention.
100 検出処理部 101 計測アンプ 102 A/D変換器 200 マイクロコンピュータ 201 CUP(中央処理部) 202 ROM 203 RAM 204 液晶表示部 205 インターフェース(RS−232C) 206 操作スイッチ 207 入力回路 208 監視条件設定入力部 300 警報ブザー 301 出力回路 Reference Signs List 100 detection processing unit 101 measurement amplifier 102 A / D converter 200 microcomputer 201 CUP (central processing unit) 202 ROM 203 RAM 204 liquid crystal display unit 205 interface (RS-232C) 206 operation switch 207 input circuit 208 monitoring condition setting input unit 300 Alarm buzzer 301 Output circuit
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25D 21/12 G05F 1/10 304 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C25D 21/12 G05F 1/10 304
Claims (5)
する電気メッキ用の電源装置に用いられており、 負荷状態を監視する監視条件設定値入力手段と、前記電
源装置が設定した最適な負荷状態の出力値を検出する計
測アンプと計測アンプで検出された検出値(アナログ
値)をデジタル値に変換するA/D変換器とを備え、前
記デジタル値をマイクロコンピュータの中央処理部(C
PU)に供給する検出処理手段と、前記電源装置の最適
な負荷状態の電圧又は電流の検出値で上限監視値及び下
限監視値を設定する上限及び下限監視値設定手段と、前
記電源装置の電圧又は電流値の現在の検出値と前記上限
監視値及び下限監視値とを比較し、前記上限監視値及び
下限監視値の領域内か、領域外かを判断する負荷状態監
視手段とから成り、前記上限及び下限監視値設定手段に
は、所要数(n回)の最適な負荷状態の検出値Xの検出
処理を行い、その和の平均値XS( =X1+X2+・・+
Xn/n)を算出し、その平均値XS と予め設定された
監視幅係数の上限及び下限パーセンテージY1、Y2とか
ら上限監視値XH(=XS+XS×Y1%)及び下限監視値
XL(=XS−XS×Y2%)を演算する上限及び下限監視
値設定プログラムを備え、さらに、前記負荷状態監視手
段には、電圧又は電流の現在の検出値Mと設定された前
記上限監視値XH及び下限監視値XLとを比較する負荷状
態監視プログラムを備え、前記電源装置から出力される
現在の電圧又は電流の検出値Mが上限監視値XH及び下
限監視値HLを外れた場合(XH<M、M<XL)に警報
を出力と共に、負荷状態を表示する警報・表示出力手段
を備えた構成とされて成ることを特徴とする負荷状態監
視装置。1. A power supply device for electroplating for producing a good metal film layer on a substrate of a product, wherein a monitoring condition set value input means for monitoring a load condition, and an optimum condition set by the power supply device. And a A / D converter for converting a detection value (analog value) detected by the measurement amplifier into a digital value, and a central processing unit (MPU) of the microcomputer. C
PU), upper and lower monitoring value setting means for setting an upper monitoring value and a lower monitoring value based on a voltage or current detection value of an optimum load state of the power supply, and a voltage of the power supply. Or a load state monitoring means for comparing the current detection value of the current value with the upper limit monitoring value and the lower limit monitoring value, and determining whether the current value is within the range of the upper limit monitoring value and the lower limit monitoring value or outside the range. The upper limit and lower limit monitoring value setting means performs detection processing of the required number (n times) of the optimum load state detection values X, and averages the sum X S (= X 1 + X 2 +... +
Xn / n) is calculated, and the upper limit monitoring value XH (= XS + XS × Y1%) and the lower limit monitoring value XL (= XS−) are calculated from the average value XS and the preset upper and lower percentages Y1 and Y2 of the monitoring width coefficient. XS × Y2%), and the load condition monitoring means further includes a current detection value M of the voltage or current and the set upper limit monitoring value XH and lower limit monitoring value. XL and a load state monitoring program for comparing the current voltage or current detected value M output from the power supply with the upper limit monitoring value XH and the lower limit monitoring value HL (XH <M, M <XL). ) Is provided with an alarm / display output means for outputting an alarm and displaying a load state.
監視値の設定に用いる設定係数は、±1%〜99%の上
限及び下限パーセンテージの範囲で選択を行う構成とし
たことを特徴とする請求項1記載の負荷状態監視装置。2. The apparatus according to claim 1, wherein the setting coefficient used for setting the upper monitoring value and the lower monitoring value of the voltage or the current is selected within a range of an upper limit and a lower limit percentage of ± 1% to 99%. The load state monitoring device according to claim 1.
Mが上限監視値XH及び下限監視値XLを外れた継続時間
又は所定時間内のグリッチ数及びその波形を検出して行
うことを特徴とする請求項1記載の負荷状態監視装置。3. The warning and display of the load state is performed by detecting a continuous time in which the detection value M deviates from the upper monitoring value XH and the lower monitoring value XL or the number of glitches within a predetermined time and its waveform. The load state monitoring device according to claim 1, wherein
は、n回の測定値のサンプリングを行い、その和の平均
値MS(=MS1+MS2+・・・+MSn /n)を用いたこ
とを特徴とする請求項1記載のを負荷状態監視装置。4. The measured value M of said load condition monitoring means.
2. The load state monitoring apparatus according to claim 1, wherein the sampling of the measured values is performed n times, and an average value MS (= MS1 + MS2 +... + MSn / n) is used.
Xの検出処理を所定の回数行い、その和の平均値XSの
算出を所要回数(n回)行い、この平均検出値XS和の
平均検出値XSS(=XS1+XS2+・・・+XSn/n)を
用いたことを特徴とする請求項1記載の負荷状態監視装
置。5. The detection value X of the detection processing means is subjected to a detection process of the detection value X a predetermined number of times, an average value XS of the sum is calculated a required number of times (n times), and the average detection value XS sum is calculated. 2. The load state monitoring device according to claim 1, wherein the average detection value XSS (= XS1 + XS2 +... + XSn / n) is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24909396A JP3245366B2 (en) | 1996-08-31 | 1996-08-31 | Load condition monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24909396A JP3245366B2 (en) | 1996-08-31 | 1996-08-31 | Load condition monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1072700A JPH1072700A (en) | 1998-03-17 |
JP3245366B2 true JP3245366B2 (en) | 2002-01-15 |
Family
ID=17187880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24909396A Expired - Fee Related JP3245366B2 (en) | 1996-08-31 | 1996-08-31 | Load condition monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3245366B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111088518B (en) * | 2020-01-09 | 2021-08-17 | 橙河微系统科技(上海)有限公司 | Closed-loop control system for three-dimensional micro-area electrochemical deposition |
-
1996
- 1996-08-31 JP JP24909396A patent/JP3245366B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1072700A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7054769B2 (en) | Statistical method and apparatus for monitoring parameters in an electric power distribution system | |
JP3200339B2 (en) | Battery remaining capacity measurement device | |
JP4805192B2 (en) | Battery internal resistance measuring device | |
JPH07198643A (en) | Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor | |
JP3245366B2 (en) | Load condition monitoring device | |
CN110261792A (en) | DC power supply detection method, device, test terminal and readable storage medium storing program for executing | |
CN113866661A (en) | Power supply dynamic response test method, system and related components | |
JP6021518B2 (en) | Resistance measuring device and resistance measuring method | |
JPH0843508A (en) | Capacity and residual time indicator of storage battery | |
CN115770930A (en) | Welding machine equipment and voltage calibration method and device thereof | |
JP2002286623A (en) | Corrosion measuring device | |
JPH08114634A (en) | Contact resistance measuring device | |
EP1233843B1 (en) | Method and apparatus for monitoring weld quality | |
CN210833767U (en) | Static capacitance liquid level meter with temperature self-regulation | |
JP2002286678A (en) | Corrosion control-supporting apparatus for metal material | |
JP4686000B2 (en) | Power meter waveform judgment method | |
JP5152280B2 (en) | Current distribution measuring device | |
JP2620169B2 (en) | Power supply for electroplating | |
JP2578181B2 (en) | Water quality abnormality detection device | |
CN112827655B (en) | Dust removal module calibration method, device and equipment | |
CN211061609U (en) | Large-current intelligent temperature-control direct-current shunt resistance detection equipment | |
US6948356B2 (en) | Viscoelasticity measuring instrument | |
JPH0890230A (en) | Arc welding monitoring device | |
JP3011471U (en) | High frequency power measurement and graphic display | |
CN112526188A (en) | Device and method for quickly measuring power failure of instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071026 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091026 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |