JP3242950B2 - Predictive control method - Google Patents

Predictive control method

Info

Publication number
JP3242950B2
JP3242950B2 JP20449491A JP20449491A JP3242950B2 JP 3242950 B2 JP3242950 B2 JP 3242950B2 JP 20449491 A JP20449491 A JP 20449491A JP 20449491 A JP20449491 A JP 20449491A JP 3242950 B2 JP3242950 B2 JP 3242950B2
Authority
JP
Japan
Prior art keywords
control
amount
target
time
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20449491A
Other languages
Japanese (ja)
Other versions
JPH0546205A (en
Inventor
誠 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20449491A priority Critical patent/JP3242950B2/en
Priority to GB9216952A priority patent/GB2258742B/en
Priority to US07/929,111 priority patent/US5428559A/en
Publication of JPH0546205A publication Critical patent/JPH0546205A/en
Priority to US08/199,014 priority patent/US5566275A/en
Priority to US08/732,966 priority patent/US5852817A/en
Application granted granted Critical
Publication of JP3242950B2 publication Critical patent/JP3242950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えばマニピュレー
タのごとき例えば非線形制御対象のサンプル時の制御量
を予測する予測制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a predictive control method for predicting a control amount at the time of sampling a nonlinear control object such as a manipulator.

【0002】[0002]

【従来の技術】従来、マニピュレータのごとき非線形制
御対象の制御方法として、非線形補償とフィードバック
制御を組み合わせた方法や、非線形制御対象の数式モデ
ルから操作量を求める逆プラント手法が考えられてい
る。これらの各方法は、いずれも数式モデル(動特性の
数式モデル)が未知ならば、正確な制御はできない。
2. Description of the Related Art Conventionally, as a control method of a non-linear controlled object such as a manipulator, a method combining non-linear compensation and feedback control, and an inverse plant method of obtaining an operation amount from a mathematical model of the non-linear controlled object have been considered. In each of these methods, accurate control cannot be performed unless a mathematical model (a mathematical model of dynamic characteristics) is unknown.

【0003】また、以上述べた方法以外に、神経回路を
用いて学習により神経回路が制御対象の動特性を獲得
し、これにより、数式モデルが未知であっても、制御が
可能な神経回路を用いた非線形制御対象の制御方法が幾
つか提案されている。
[0003] In addition to the method described above, a neural circuit obtains the dynamic characteristics of a control target by learning using the neural circuit, so that a neural circuit that can be controlled even if the mathematical model is unknown. Several control methods of the non-linear control object used have been proposed.

【0004】[0004]

【発明が解決しようとする課題】ところが、前者の各方
法は、いずれも制御対象の数式モデル(動特性の数式モ
デル)が未知ならば、正確な制御はできない。また、後
者の各方法は、目標制御量から操作量を計算するフィー
ドフォワード制御であるため、外乱に対する補償ができ
ない。
However, in each of the former methods, accurate control cannot be performed unless the mathematical model of the controlled object (the mathematical model of dynamic characteristics) is unknown. In addition, since the latter methods are feedforward controls that calculate an operation amount from a target control amount, compensation for disturbance cannot be performed.

【0005】この発明は、前記の事情に鑑みてなされた
もので、動特性の数式モデルが未知である制御対象につ
いても予測制御が行え、且つ、外乱に対しても補償がで
きる制御対象の予測制御方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to perform predictive control even for a controlled object whose mathematical model of dynamic characteristics is unknown, and to predict a controlled object capable of compensating for a disturbance. It is an object to provide a control method.

【0006】[0006]

【課題を解決するための手段】この発明は、前記目的を
達成するために、以下のような工程を含んでいる。すな
わち、請求項1に対応する発明は、制御すべき制御対象
に対して操作量を与えて予測制御を行う予測制御方法に
おいて、多層神経回路を前記制御対象の同定器として用
い、この同定器に前記制御対象に対するサンプル時の制
御量および操作量を入力し、前記サンプリング時から
定時間後の制御量を予測する第1の工程と、この第1の
工程で得られた予測値と、前記制御対象の目標制御量の
誤差を求める第2の工程と、この第2の工程で得られ
御量誤差を前記同定器に入力し、誤差逆伝播法により
現時刻の操作量の誤差を求めて、前記制御対象に与えら
れる操作量を修正する第3の工程とを合んでいる。請求
項2に対応する発明は、請求項1における第2および第
3の工程を繰り返し行う第4の工程を含んでいる。
The present invention includes the following steps to achieve the above object. That is, the invention corresponding to claim 1 provides a predictive control method for performing predictive control by giving an operation amount to a control target to be controlled, wherein a multilayer neural network is used as an identifier of the control target, and enter the control amount and the operation amount during the sample relative to the control target, where the time of the sampling
A first step of predicting a control amount after a fixed time, a second step of calculating an error between the predicted value obtained in the first step, and a target control amount of the control object, and a second step of obtained in
Enter the control amount error to said identifier, seeking error in the operation amount of the present time by the error back propagation method, by N if a third step of correcting the manipulated variable applied to the controlled object. The invention corresponding to claim 2 includes a fourth step in which the second and third steps in claim 1 are repeatedly performed.

【0007】[0007]

【作用】この発明によれば、制御対象の操作量および制
御量を多層神経回路に入力して前向き計算により、サン
プル時の制御量の予測ができ、神経回路の誤差逆伝播計
算により、予測された制御量および目標制御量との誤差
から操作量の修正量を計算することができ、これにより
特性が未知の制御対象、あるいは、動特性の非線形性が
強い制御対象等の動特性の数式モデルが未知である制御
対象(特性が未知の制御対象、あるいは、動特性の非線
形性が強い制御対象)であっても制御できる。また、多
層神経回路の前向き計算では、その時刻に実現されてい
る制御量を操作量とともに、入力してサンプリング周期
後の制御量が目標制御量に近付くように操作量が修正さ
れるので、外乱に対しても補償できる。
According to the present invention, the manipulated variable and the controlled variable of the controlled object are input to the multilayer neural network, and the control variable at the time of sampling can be predicted by forward calculation, and can be predicted by the error back propagation calculation of the neural circuit. The amount of correction of the manipulated variable can be calculated from the difference between the control amount and the target control amount, and this allows the mathematical model of the dynamic characteristics of a controlled object with unknown characteristics or a highly controlled nonlinear dynamic characteristic. Can be controlled even if the control target is unknown (a control target having unknown characteristics or a control target having strong nonlinearity in dynamic characteristics). In the forward calculation of the multilayer neural network, the control amount realized at that time is input together with the operation amount, and the operation amount is corrected so that the control amount after the sampling cycle approaches the target control amount. Can be compensated for.

【0008】[0008]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明を実施するための装置の概略
構成を示すブロック図である。制御対象例えばマニピュ
レータ1、多層型神経回路モデルからなる同定器2、操
作量発生器3、積分器4、スイッチ5、フィードバック
ループ6に設けられた時間遅れ要素7からなっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an apparatus for carrying out the present invention. The control target includes, for example, a manipulator 1, an identifier 2 composed of a multilayer neural network model, an operation amount generator 3, an integrator 4, a switch 5, and a time delay element 7 provided in a feedback loop 6.

【0009】ここでは、制御対象の一例としては、図2
に示す第1関節11,第2関節12を有する2関節マニ
ピュレータを例に挙げて説明するが、これに限らず、他
の非線形制御対象であってもよい。マニピュレータ1
は、第1リンク13がx軸となす角を第1関節角θ1 、
リンク13の延長線と第2リンク14のなす角を第2関
節角θ2 とし、第1関節トルクτ1 は、第1関節11
に、また第2関節トルクτ2 は、第2関節12に各々の
関節角の正方向に加えられる場合を示している。
Here, as an example of the control object, FIG.
The following describes an example of a two-joint manipulator having a first joint 11 and a second joint 12 shown in FIG. 1, but the present invention is not limited to this, and other non-linear control targets may be used. Manipulator 1
Is the angle that the first link 13 makes with the x-axis is the first joint angle θ1,
The angle between the extension of the link 13 and the second link 14 is defined as a second joint angle θ2, and the first joint torque τ1
The second joint torque .tau.2 is applied to the second joint 12 in the positive direction of each joint angle.

【0010】マニピュレータ1には、時刻nΔtに操作
量である関節角トルクUn=(τ1,n,τ2,n )T
入力され、ここで、Xn+1 =F(Xn ,Un )、すなわ
ち、サンプリング周期Δt後の制御量である状態Xn+1
=(θ1n+1 ,θ2n+1,θ´1n+1 ,θ´2
n+1T が計測されるようになつている。
At time nΔt, the manipulator 1 receives a joint angle torque Un = (τ1, n, τ2, n) T which is an operation amount, where Xn + 1 = F (Xn, Un), that is, State X n + 1 which is a control amount after sampling period Δt
= (Θ 1, n + 1 , θ 2, n + 1, θ'1, n + 1, θ'2,
n + 1 ) T is measured.

【0011】ここで、τ1, nおよびτ2,n は、それぞれ
時刻nΔtの第1関節トルクおよび第2関節トルクを示
している。Un はトルクベクトルを示している。θ'
1,n およびθ' 2,n は時刻 nΔtの第1関節角速度およ
び第2関節角速度を示し、Xnはこれらを成分とする状
態ベクトルである。
Here, τ1, n and τ2, n indicate the first joint torque and the second joint torque at time nΔt, respectively. Un indicates a torque vector. θ '
1, n and θ ′ 2, n indicate the first joint angular velocity and the second joint angular velocity at time nΔt, and X n is a state vector having these as components.

【0012】同定器2は、図3(a),(b)に示すよ
うに多層型神経回路モデルを有しており、この第1の機
能は、後述する誤差逆伝搬学習法により、図3(a)に
示すように操作量Un とマニピュレータ1の制御量Xn
を入力すると、サンプル時(サンプリング周期後)の制
御量の予測値Zn+1 が出力されることであり、また、第
2の機能は、図3(b)に示すように予測値Zn+1 と目
標値dn+1 の差(誤差量)を用いて、誤差逆伝播計算に
よりトルクUn の誤差ΔUn を計算することである。図
3の神経回路モデルは、右側が第1層で、左側は最終層
になっている。
The identifier 2 has a multilayer neural network model as shown in FIGS. 3 (a) and 3 (b). The first function of the identifier 2 is as shown in FIG. As shown in (a), the operation amount Un and the control amount Xn of the manipulator 1 are determined.
Is input, the predicted value Zn + 1 of the control amount at the time of sampling (after the sampling period) is output. The second function is as shown in FIG. Is to calculate the error ΔUn of the torque Un by the error back propagation calculation using the difference between the target value dn + 1 and the target value dn + 1. In the neural circuit model of FIG. 3, the right side is the first layer, and the left side is the final layer.

【0013】ここで、図4のフローチャートを参照し
て、誤差逆伝播学習方法について説明する。この誤差逆
伝播学習方法は、現在、最も一般的に利用されている方
法である。この方法は、結合荷重空間に定義された誤差
関数曲面の最急降下方向を計算し、その方向に結合荷重
を変化させる方法である。初めに、結合荷重wの初期値
を乱数により設定する(S1)。次に、神経回路モデル
に学習させたいデータ、すなわち、入力信号Ui,Xi 、
および、その入力に対する望ましい出力信号tiを設定
する(S2)。ただし、i =1,2,…,data maxであ
る。
Here, the error back propagation learning method will be described with reference to the flowchart of FIG. This backpropagation learning method is currently the most commonly used method. This method is a method of calculating the steepest descent direction of an error function surface defined in a connection load space and changing the connection load in that direction. First, an initial value of the connection weight w is set by a random number (S1). Next, data that the neural network model wants to learn, that is, input signals Ui, Xi,
Then, a desired output signal ti for the input is set (S2). Here, i = 1, 2,..., Data max.

【0014】次に、全てのデータについて、結合荷重の
変化量を計算する(S5ーS10)。データの入力信号
Ui ,Xi を神経回路モデルに入力し、出力信号(神経
回路モデルにXi ,Ui を入力したときの出力信号)Z
i を、前向き計算で求める(S6)。該出力値Zi と望
ましい出力値ti から、誤差関数Ei を次のように定義
する(S7)。 1/2(ti −Zi )T (ti −Zi )
Next, the amount of change in the connection load is calculated for all the data (S5-S10). Data input signals Ui and Xi are input to a neural circuit model, and output signals (output signals when Xi and Ui are input to the neural circuit model) Z
i is obtained by forward calculation (S6). From the output value Zi and the desired output value ti, an error function Ei is defined as follows (S7). 1/2 (ti-Zi) T (Ti-Zi)

【0015】さらに、誤差逆伝播計算により、結合荷重
空間における誤差関数Ei の最急降下方向Δwi (i 番
目の学習データにより計算された神経回路の結合荷重の
変化量)を計算する(S8)。S8の式において、dE
i /dw、dg/dwはいずれも偏微分を示している。
S6からS8の計算をすべてのデータについて行う(S
5,S9,S10)。そして、求められた各々のデータ
最急降下方向を使い、結合荷重wを次のように変化させ
る(S11)。 すなわち、w+ε(Δw1 +Δw2 +…+Δw datamax)→w である。ただし、εは学習定数と呼ばれる結合荷重の変
化量のパラメータである。以上述べたステップをitemax
回繰り返すことにより、誤差関数を減少させていく(S
3,S4,S12,S13)。以上のようにして学習を
し終えた同定器2のマニピュレータ1のダイナミクスの
予測値Zn+1 を、次のような関数として表わすことがで
きる。すなわち、 Zn+1 =g(Xn ,Un ,W*) である。この場合、W*は学習後の神経回路モデルの結
合荷重を示し、Zn+1 は時刻(n+1 )Δtの制御量の予
測値である。図1において、操作量発生器3は、運動開
始時だけ初期操作量Uo を発生する働きを有している。
Further, the steepest descent direction Δwi of the error function Ei in the connection weight space (the amount of change in the connection weight of the neural circuit calculated from the i-th learning data) is calculated by the error back propagation calculation (S8). In the equation of S8, dE
Both i / dw and dg / dw indicate partial differentiation.
The calculations from S6 to S8 are performed for all data (S
5, S9, S10). Then, using the obtained steepest descent direction of each data, the coupling load w is changed as follows (S11). That is, w + ε (Δw1 + Δw2 +... + Δwdatamax) → w. Here, ε is a parameter of the amount of change in the connection weight called a learning constant. Iterate the steps mentioned above
The error function is reduced by repeating the process (S
3, S4, S12, S13). The predicted value Zn + 1 of the dynamics of the manipulator 1 of the identifier 2 having completed learning as described above can be expressed as a function as follows. That is, Zn + 1 = g (Xn, Un, W * ). In this case, W * indicates the connection weight of the neural network model after learning, and Zn + 1 is the predicted value of the control amount at time (n + 1) Δt. In FIG. 1, an operation amount generator 3 has a function of generating an initial operation amount Uo only at the start of exercise.

【0016】同定器2からの修正量ΔUn は積分器4に
より操作量Unに加算される。このサンプリング周期後
の制御量予測と操作量の修正の計算は、サンプリング時
間内に1回、または、複数回行われる。スイッチ5はサ
ンプリング時間(単位時間)毎に動作し、このときマニ
ピュレータ1に操作量Un を出力する働きを有してい
る。
The correction amount ΔUn from the identifier 2 is added to the operation amount Un by the integrator 4. The control amount prediction and the correction of the manipulated variable after the sampling period are performed once or a plurality of times within the sampling time. The switch 5 operates every sampling time (unit time), and has a function of outputting the operation amount Un to the manipulator 1 at this time.

【0017】次に、図5を参照してマニピレータ1の制
御動作について説明する。初めに目標軌道(dn )が設
定される(S20)。続いて、マニピュレータ1が初期
姿勢(X0 =d0 )をとるための操作量U0 =U(d0
)が、操作量発生器3で設定される(S21)、これ
が積分器4およびスイッチ5を介してマニピュレータ1
へ出力され、マニピュレータ1の目標軌道の初期姿勢に
一致する。そして、マニピュレータ1の運動が開始され
ると、サンプリング時間Δt後の制御量の予測と誤差逆
伝播法による操作量の修正が繰り返される(S25ーS
31)。
Next, a control operation of the manipulator 1 will be described with reference to FIG. First, a target trajectory (dn) is set (S20). Then, the operation amount U0 = U (d0) for the manipulator 1 to take the initial posture (X0 = d0).
) Is set by the manipulated variable generator 3 (S 21), and this is set via the integrator 4 and the switch 5.
To the initial position of the target trajectory of the manipulator 1. When the movement of the manipulator 1 is started, the prediction of the control amount after the sampling time Δt and the correction of the operation amount by the error back propagation method are repeated (S25-S).
31).

【0018】操作量Unと時間遅れ7を介してフィード
バックされた制御量Xnが神経回路モデルに入力され、
サンプリング時間Δt秒後の制御量の予測値Zn+1 が求
められる(S26)。この予測値Zn+1 と目標値dn+1
の差ΔXn+1 =目標値dn+1−予測値Zn+1 から誤差関
数En+1 が次のように定義される(S27)。 En+1 =1/2(ΔXn+1 )T Ks(ΔXn+1 ) ただし、Ksはゲイン行列である。前述した誤差逆伝播
法により、この誤差関数を減少させるように入力信号の
補正量が求められる(S28)。 ΔUn =−(dEn+1)/(dUn ) =dg(Xn ,Un ,W*)/dUn ×(KsΔXn+1 ) ΔXn =−(dEn+1)/(dXn ) =dg(Xn ,Un ,W*)/dXn ×(KsΔXn+1 ) そして、入力信号のうち、操作量の値が、(Un+ΔUn
→Un )のように修正される(S29)。
The manipulated variable Un and the control variable Xn fed back via the time delay 7 are input to the neural circuit model,
The predicted value Zn + 1 of the control amount after the sampling time Δt seconds is obtained (S26). The predicted value Zn + 1 and the target value dn + 1
The error function En + 1 is defined as follows from the difference ΔXn + 1 = target value dn + 1−predicted value Zn + 1 (S27). En + 1 = 1/2 (ΔXn + 1) T Ks (ΔXn + 1) where Ks is a gain matrix. The correction amount of the input signal is obtained by the above-described error back propagation method so as to reduce the error function (S28). ΔUn = − (dEn + 1) / (dUn) = dg (Xn, Un, W * ) / dUn × (KsΔXn + 1) ΔXn = − (dEn + 1) / (dXn) = dg (Xn, Un, W) * ) / DXn × (KsΔXn + 1) The value of the manipulated variable in the input signal is (Un + ΔUn)
→ Un) (S29).

【0019】再び、修正後の入力信号であるサンプリン
グ時間後の制御量の予測値Zn+1 が求められ、操作量の
修正が繰り返される。修正を一定回数(k) 繰り返した
後、サンプリング時刻に操作量がマニピュレータ1へ入
力される(S32)。以上のステップを最終時刻(time
f )まで繰り返す(S22,S23,S33,S3
5)。
Again, the predicted value Zn + 1 of the control amount after the sampling time, which is the corrected input signal, is obtained, and the correction of the manipulated variable is repeated. After the correction is repeated a fixed number of times (k), the manipulated variable is input to the manipulator 1 at the sampling time (S32). Repeat the above steps for the final time (time
f) (S22, S23, S33, S3)
5).

【0020】そして、初期時刻には操作量発生器3から
の操作量Un が与えられるが、その後は、前時刻の操作
量Un-1 の値を現時刻の操作量Un の初期値にする(S
34)。神経回路モデルがマニピュレータのダイナミク
スを十分に学習していれば、神経回路モデルの結合荷重
は、正しい値なので、予測値Zn+1 と目標値dn+1 に誤
差が生じたとすれば、それは入力信号である制御量Xn
と操作量Un に原因がある。このうち、制御量Xn は計
測値であるから、操作量Un だけ修正して、現在の制御
量Xn からサンプリング時刻後に目標値dn+1 に近づく
ようにする。サンプリング時間が短く、ある時刻の操作
量と次の時刻の操作量が近い値であれば、前時刻の操作
量の値を初期値として使うことにより、少ない回数で目
標状態に達する操作量の値が求められることが期待でき
る。
At the initial time, the manipulated variable Un from the manipulated variable generator 3 is given. Thereafter, the value of the manipulated variable Un-1 at the previous time is set to the initial value of the manipulated variable Un at the current time ( S
34). If the neural network model has sufficiently learned the dynamics of the manipulator, the connection weight of the neural network model is a correct value. Therefore, if an error occurs between the predicted value Zn + 1 and the target value dn + 1, it means that the input signal Control amount Xn
And the operation amount Un. Since the control amount Xn is a measured value, the control amount Xn is corrected by the operation amount Un so as to approach the target value dn + 1 after the sampling time from the current control amount Xn. If the sampling time is short and the manipulated variable at one time is close to the manipulated variable at the next time, the value of the manipulated variable that reaches the target state in a small number of times by using the value of the manipulated variable at the previous time as the initial value Can be expected.

【0021】図6および図7は、図2のマニピュレータ
を制御対象とし、図5のフローチャートにおいて、サン
プリング時刻に行う繰り返しを3回にした場合のシミュ
レーション結果を示すもので、図6(a)は第1関節角
度、図6(b)は第2関節角度であり、図7(a)は第
1関節トルクの波形図、図7(b)は第2関節トルクの
波形図を示している。図6、図7の横軸は運動時間(2
秒間)を示し、図6の縦軸は関節角軌道で、その単位は
ラジアン(rad)であり、図7の縦軸はトルク波形
で、その単位はニュートンメートル(Nm)である。さ
らに、図6の破線は目標軌道を示し、実線は実現軌道を
示している。図6から明らかなように、実現軌道(実
線)が目標軌道(破線)にほぼ重なっていることから、
目標軌道に良く追従していることがわかる。この場合の
トルク波形は、図7に示す通りであり、図5のフローチ
ャートにおいて、サンプリング時刻に行う繰り返し回数
を4回以上行った実験では、実現軌道はより目標軌道に
近づき、トルク波形もさらに滑らかになった。
FIGS. 6 and 7 show simulation results when the manipulator of FIG. 2 is to be controlled and the repetition performed at the sampling time is three times in the flowchart of FIG. 5, and FIG. FIG. 6B shows the first joint angle, FIG. 6B shows the second joint angle, FIG. 7A shows the waveform diagram of the first joint torque, and FIG. 7B shows the waveform diagram of the second joint torque. The horizontal axis in FIGS. 6 and 7 indicates the exercise time (2
The vertical axis in FIG. 6 is the joint angle trajectory, the unit is radian (rad), and the vertical axis in FIG. 7 is the torque waveform, and the unit is Newton meter (Nm). Further, the broken line in FIG. 6 indicates the target trajectory, and the solid line indicates the realized trajectory. As is apparent from FIG. 6, since the realized trajectory (solid line) almost overlaps the target trajectory (dashed line),
It can be seen that the vehicle follows the target trajectory well. The torque waveform in this case is as shown in FIG. 7. In the flowchart of FIG. 5, in an experiment in which the number of repetitions performed at the sampling time is four or more, the realized trajectory is closer to the target trajectory, and the torque waveform is further smooth. Became.

【0022】なお、本発明は前記実施例に限定されるこ
となく、本発明の要旨を逸脱しない範囲において種々変
形可能であることは勿論である。例えば、前記実施例で
は、非線形制御対象としてマニピュレータを例にあげた
が、これ以外の線形制御対象であっても同様に適用可能
である。
It should be noted that the present invention is not limited to the above-described embodiment, but may be variously modified without departing from the gist of the present invention. For example, in the above-described embodiment, a manipulator has been described as an example of a non-linear control target, but other linear control targets can be similarly applied.

【0023】前述の実施例では、最も簡単な例として1
サンプリング時間後の制御量だけを予測する例を示した
が、制御対象の動特性を示す微分方程式の次数が1次よ
り高い場合には、1サンプリング時間よりも更に先の時
間の制御量の予測をし、その予測値の誤差から逆伝播法
により、操作量の修正をすることが必要がある。このよ
うな場合でも、1サンプリング時間後の制御量予測だけ
でなく、2サンプリング時間後、3サンプリング時間後
というように、神経回路モデルに先の制御量を予測する
ように学習させておくことにより、動特性を示す微分方
程式の次数が高い制御対象でも制御することができる。
図8、図9に2サンプリング時間後までの制御量を予測
する神経回路モデルを示す。
In the above embodiment, the simplest example is 1
Although the example in which only the control amount after the sampling time is predicted has been described, when the order of the differential equation indicating the dynamic characteristic of the control target is higher than the first order, the control amount is predicted at a time further than one sampling time. It is necessary to correct the manipulated variable by the back propagation method from the error of the predicted value. Even in such a case, by learning not only the control amount prediction after one sampling time but also the neural circuit model so as to predict the previous control amount such as after two sampling times and three sampling times. In addition, it is possible to control even a controlled object having a high order of a differential equation showing dynamic characteristics.
8 and 9 show neural circuit models for predicting the control amount up to two sampling times later.

【0024】図8は3層からなる神経回路モデルで、図
8(a)の第1層(最右層)から操作量Un 、制御量X
n が入力されると、第3層から1サンプリング時間後の
制御量の予測値Zn+1 と2サンプリング時間後の制御量
予測値Zn+2 が出力される。図8(bの誤差逆伝播計算
では、サンプリング時間後の予測値の誤差ΔXn+1 =d
n+1 −Zn+1 と2サンプリング時間後の予測値の誤差Δ
Xn+2 =dn+2 −Zn+2 が第3層から逆伝播され、操作
量の修正量ΔUn が求められる。
FIG. 8 shows a neural network model composed of three layers. The operation amount Un and the control amount X from the first layer (rightmost layer) in FIG.
When n is input, a predicted value Zn + 1 of the control amount after one sampling time and a predicted value Zn + 2 of the control amount after two sampling times are output from the third layer. In the error backpropagation calculation in FIG. 8B, the error ΔXn + 1 = d of the predicted value after the sampling time
Error Δ between n + 1−Zn + 1 and the predicted value after two sampling times
Xn + 2 = dn + 2−Zn + 2 is back-propagated from the third layer, and the correction amount ΔUn of the manipulated variable is obtained.

【0025】図9は5層からなる神経回路モデルで、図
9(a)の第1層(最右層)から操作量Un 、制御量X
n が入力されると、第3層から1サンプリング時間後の
制御量の予測値Zn+1 、第5層から2サンプリング時間
後の制御量の予測値Zn+2 が出力される。そして、図9
(b)の誤差逆伝播計算では、1サンプリング時間後の
予測値の誤差ΔXn+1 =dn +1−Zn+1 は第3層から、
2サンプリング時間後の予測値の誤差ΔXn+2 =dn +2
−Zn+2 は第5層から逆伝播され、操作量の修正量ΔU
n が求められる。
FIG. 9 shows a neural network model composed of five layers. The operation amount Un and the control amount X are calculated from the first layer (rightmost layer) in FIG.
When n is input, a predicted value Zn + 1 of the control amount after one sampling time from the third layer and a predicted value Zn + 2 of the control amount after two sampling times from the fifth layer are output. And FIG.
In the error backpropagation calculation of (b), the error ΔXn + 1 = dn + 1−Zn + 1 of the predicted value after one sampling time is obtained from the third layer.
Error ΔXn + 2 = dn + 2 of the predicted value after two sampling times
−Zn + 2 is back-propagated from the fifth layer, and the correction amount ΔU
n is required.

【0026】[0026]

【発明の効果】以上述べたこの発明によれば、動特性の
数式モデルが未知である制御対象についても制御が行
え、且つ、外乱に対しても補償ができる制御対象の予測
制御方法を提供することができる。
According to the present invention described above, there is provided a predictive control method for a controlled object which can control a controlled object whose mathematical model of dynamic characteristics is unknown and can also compensate for a disturbance. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明方法を実施する装置の概略構成を示す
ブロック図。
FIG. 1 is a block diagram showing a schematic configuration of an apparatus for implementing the method of the present invention.

【図2】図1のマニピュレータを説明するための図。FIG. 2 is a view for explaining the manipulator of FIG. 1;

【図3】図1における同定器の第1の例を説明するため
のフローチャート。
FIG. 3 is a flowchart for explaining a first example of the identifier in FIG. 1;

【図4】図1の初期状態のとき学習方法を説明するため
の図。
FIG. 4 is a diagram for explaining a learning method in an initial state of FIG. 1;

【図5】図1の制御動作を説明するためのフローチャー
ト。
FIG. 5 is a flowchart for explaining the control operation of FIG. 1;

【図6】図1の実施例の作用効果を説明するための図。FIG. 6 is a diagram for explaining the operation and effect of the embodiment of FIG. 1;

【図7】図1の実施例の作用効果を説明するための図。FIG. 7 is a view for explaining the operation and effect of the embodiment of FIG. 1;

【図8】図1における同定器の第2の例を説明するため
の図。
FIG. 8 is a view for explaining a second example of the identifier in FIG. 1;

【図9】図1における同定器の第3の例を説明するため
の図。
FIG. 9 is a view for explaining a third example of the identifier in FIG. 1;

【符号の説明】[Explanation of symbols]

1…マニピュレータ、2…同定器、3…操作量発生器、
4…積分器、5…スイッチ、6…フィードバックルー
プ、7…遅れ要素。
DESCRIPTION OF SYMBOLS 1 ... Manipulator, 2 ... Identifier, 3 ... Manipulated variable generator,
4 integrator, 5 switch, 6 feedback loop, 7 delay element.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】制御すべき制御対象に対して操作量を与え
て予測制御を行う予測制御方法において、 多層神経回路を前記制御対象の同定器として用い、この
同定器に前記制御対象に対するサンプリング時の制御量
および操作量を入力し、前記サンプリング時から所定時
間後の制御量を予測する第1の工程と、 この第1の工程で得られた予測値と、前記制御対象の目
標制御量の誤差を求める第2の工程と、 この第2の工程で得られた制御量誤差を前記同定器に入
力し、誤差逆伝播法により前記目標制御量に対する操作
量の感度を求めるとともに、前記目標制御量の誤差に前
記感度を乗算して当該操作量の修正量を求める第3の工
程と、 を含むことを特徴とする予測制御方法。
1. A predictive control method for performing predictive control by giving an operation amount to a control target to be controlled, wherein a multi-layer neural circuit is used as an identifier of the control target, and the identifier uses the neural network for sampling the control target. A first step of inputting a control amount and an operation amount of the control target and predicting a control amount after a predetermined time from the sampling time; a prediction value obtained in the first step; and a target control amount of the control target. A second step of obtaining an error; and inputting the control amount error obtained in the second step to the identifier, and operating the target control amount by an error back propagation method.
Of the target control amount,
A third step of multiplying the sensitivity to obtain a correction amount of the manipulated variable .
【請求項2】一時刻についての前記操作量の修正量を、
前記第1乃至第3の工程の繰り返しを経て決定すること
を特徴とする請求項1記載の予測制御方法。
2. A correction amount of the operation amount for one time,
Determination through repetition of the first to third steps
The predictive control method according to claim 1, wherein:
【請求項3】前記第1の工程は前記サンプリング時から
サンプリング周期の整数倍の時間後またはサンプリング
周期単位以外に制御量を予測することを特徴とする請求
項1または2記載の予測制御方法。
3. The predictive control method according to claim 1, wherein the first step predicts the control amount after an integer multiple of the sampling period from the time of the sampling or in units other than the sampling period.
JP20449491A 1991-08-14 1991-08-14 Predictive control method Expired - Fee Related JP3242950B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20449491A JP3242950B2 (en) 1991-08-14 1991-08-14 Predictive control method
GB9216952A GB2258742B (en) 1991-08-14 1992-08-11 Predictive control method and apparatus
US07/929,111 US5428559A (en) 1991-08-14 1992-08-13 Predictive control method and apparatus
US08/199,014 US5566275A (en) 1991-08-14 1994-02-18 Control method and apparatus using two neural networks
US08/732,966 US5852817A (en) 1991-08-14 1996-10-10 Intelligent control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20449491A JP3242950B2 (en) 1991-08-14 1991-08-14 Predictive control method

Publications (2)

Publication Number Publication Date
JPH0546205A JPH0546205A (en) 1993-02-26
JP3242950B2 true JP3242950B2 (en) 2001-12-25

Family

ID=16491461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20449491A Expired - Fee Related JP3242950B2 (en) 1991-08-14 1991-08-14 Predictive control method

Country Status (3)

Country Link
US (1) US5428559A (en)
JP (1) JP3242950B2 (en)
GB (1) GB2258742B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
JP3084928B2 (en) * 1992-05-29 2000-09-04 三菱電機株式会社 Motor position control device
DE4416364B4 (en) * 1993-05-17 2004-10-28 Siemens Ag Method and control device for regulating a process
DE4416317B4 (en) * 1993-05-17 2004-10-21 Siemens Ag Method and control device for controlling a material processing process
WO1995002213A1 (en) * 1993-07-05 1995-01-19 Siemens Aktiengesellschaft Process for determining the optimum values of the correcting variables of a technical system
US6000827A (en) * 1993-09-10 1999-12-14 Fujitsu Limited System identifying device and adaptive learning control device
JPH07175876A (en) * 1993-10-12 1995-07-14 At & T Corp Method and apparatus for control of feedback of process using neural network
US5586221A (en) * 1994-07-01 1996-12-17 Syracuse University Predictive control of rolling mills using neural network gauge estimation
US5633987A (en) * 1994-07-28 1997-05-27 Motorola, Inc. Auto-scaling controller and method of use therefor
DE19519627C2 (en) * 1995-05-29 1999-04-29 Siemens Ag Process for optimizing the process control of production processes
US5923335A (en) * 1996-02-07 1999-07-13 Multigen, Inc. Computer generated objects having magnets and targets
US5992383A (en) * 1996-05-28 1999-11-30 U.S. Philips Corporation Control unit having a disturbance predictor, a system controlled by such a control unit, an electrical actuator controlled by such a control unit, and throttle device provided with such an actuator
EP0907117A1 (en) * 1997-09-05 1999-04-07 Communauté Européenne (CE) Nonlinear neural predictive control system
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6298454B1 (en) 1999-02-22 2001-10-02 Fisher-Rosemount Systems, Inc. Diagnostics in a process control system
EP1374139B1 (en) * 2001-03-29 2011-05-04 LASX Industries, Inc. Controller for a laser using predictive models ofa laser beam motion system
SG100786A1 (en) * 2002-03-28 2003-12-26 Sony Electronics Singapore Pte Methods and devices for compensating for periodic disturbances in servo-systems
CN103345161B (en) * 2013-07-05 2015-09-02 杭州电子科技大学 Cracking waste plastics stove waste heat drying device compress control method
US9859829B2 (en) * 2016-01-08 2018-01-02 Jtekt Corporation Motor control device
CN106406085B (en) * 2016-03-15 2019-02-01 吉林大学 Based on the space manipulator Trajectory Tracking Control method across Scale Model
CN114460845A (en) * 2022-01-25 2022-05-10 中国船舶重工集团公司第七二四研究所 Delta manipulator control method added with CMAC uncertainty compensation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2423806A1 (en) * 1977-05-26 1979-11-16 Anvar REGULATION PROCESS WITH REFERENCE MODEL AND REGULATOR IMPLEMENTING THIS PROCESS
GB2157459B (en) * 1983-10-14 1987-02-11 Ford Motor Co Selective parametric self-calibrating control system
US5092343A (en) * 1988-02-17 1992-03-03 Wayne State University Waveform analysis apparatus and method using neural network techniques
US5095443A (en) * 1988-10-07 1992-03-10 Ricoh Company, Ltd. Plural neural network system having a successive approximation learning method
JP2676397B2 (en) * 1989-01-05 1997-11-12 株式会社エイ・ティ・アール視聴覚機構研究所 Dynamic trajectory generation method for dynamic system
US5119468A (en) * 1989-02-28 1992-06-02 E. I. Du Pont De Nemours And Company Apparatus and method for controlling a process using a trained parallel distributed processing network
IL93522A0 (en) * 1989-02-28 1990-11-29 Du Pont Apparatus and method for controlling a process
JPH0738186B2 (en) * 1989-03-13 1995-04-26 シャープ株式会社 Self-expanding neural network
JP2885823B2 (en) * 1989-04-11 1999-04-26 株式会社豊田中央研究所 Visual recognition device
FR2646575A1 (en) * 1989-04-26 1990-11-02 Labo Electronique Physique METHOD AND STRUCTURE FOR DATA COMPRESSION
JP2575215B2 (en) * 1989-10-30 1997-01-22 富士写真フイルム株式会社 Color image forming equipment
JP2568710B2 (en) * 1989-12-29 1997-01-08 松下電器産業株式会社 Drawing control method
US5220373A (en) * 1991-03-22 1993-06-15 Ricoh Company, Ltd. Electrophotographic process control device using a neural network for estimating states of the device
US5204872A (en) * 1991-04-15 1993-04-20 Milltech-Hoh, Inc. Control system for electric arc furnace

Also Published As

Publication number Publication date
US5428559A (en) 1995-06-27
GB2258742A (en) 1993-02-17
JPH0546205A (en) 1993-02-26
GB9216952D0 (en) 1992-09-23
GB2258742B (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JP3242950B2 (en) Predictive control method
US8296107B2 (en) Computer method and apparatus for constraining a non-linear approximator of an empirical process
US6278962B1 (en) Hybrid linear-neural network process control
EP0788626B1 (en) A variable horizon predictor for controlling dead time dominant processes, multivariable interactive processes, and processes with time variant dynamics
Fekih et al. Neural networks based system identification techniques for model based fault detection of nonlinear systems
JPH10133703A (en) Adaptive robust controller
CA2079147C (en) Simulator using a neural network
Huang et al. Adaptive neural control for uncertain constrained pure feedback systems with severe sensor faults: A complexity reduced approach
US20010025232A1 (en) Hybrid linear-neural network process control
US6000827A (en) System identifying device and adaptive learning control device
US6768927B2 (en) Control system
WO2006046500A1 (en) Remote control system for transmitting and receiving signals via communication path having communication delay
JPH03189856A (en) Learning system for external evaluation criterion
Al-Dabooni et al. Convergence of recurrent neuro-fuzzy value-gradient learning with and without an actor
Keighobadi et al. Composite fuzzy voltage-based command-filtered learning control of electrically-driven robots with input delay using disturbance observer
JP3260538B2 (en) Control device
JPH06242802A (en) Control method using neural circuit model
Mehrjouyan et al. Adaptive-neural command filtered synchronization control of tele-robotic systems using disturbance observer with safety enhancement
Castañeda et al. Output based bilateral adaptive control of partially known robotic systems
WO2000010098A1 (en) Information processor, information processing method, and providing medium
Fekih et al. Two neural net-learning methods for model based fault detection
JPH0736505A (en) Identifying/controlling method for controlled system
JPH05128082A (en) Data processor constituting hierarchical network and its learning processing method
Nakonechnyi et al. Inverse-Dynamic Neural Controller Simulation
JPH0527808A (en) Controller using neural network model

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees