JP3242535U - Filtration performance predictor - Google Patents

Filtration performance predictor Download PDF

Info

Publication number
JP3242535U
JP3242535U JP2023000427U JP2023000427U JP3242535U JP 3242535 U JP3242535 U JP 3242535U JP 2023000427 U JP2023000427 U JP 2023000427U JP 2023000427 U JP2023000427 U JP 2023000427U JP 3242535 U JP3242535 U JP 3242535U
Authority
JP
Japan
Prior art keywords
water
filtered
filtration
transparency
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023000427U
Other languages
Japanese (ja)
Inventor
圭介 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2023000427U priority Critical patent/JP3242535U/en
Application granted granted Critical
Publication of JP3242535U publication Critical patent/JP3242535U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】ろ過処理の適用を検討する場合に、ろ過原水の水質変動等を考慮すると相当数の根拠データ収集が必要となり労務的・時間的・経済的負担が大きいため、実際にろ過することなくろ過性能を予測するシステムを提供する。【解決手段】予め類似する液の透視度と懸濁性物質量の実測値と、その液を実際にろ過処理した際の水質、単位時間当たりのろ過処理水量減少の経時変化などのろ過性能をコンピューターのデータベースに収集蓄積する。予測したい液の透視度の測定値をデータに照合することで、実際にろ過を行うことなくろ過性能を予測する。【選択図】図8[Problem] When considering the application of filtration, it is necessary to collect a considerable amount of evidence data in consideration of changes in the water quality of the raw water to be filtered. A system for predicting filtration performance is provided. [Solution] Filtration performance such as measured values of transparency and amount of suspended solids of similar liquid in advance, water quality when the liquid is actually filtered, and filtration performance such as change over time in reduction of filtered water amount per unit time. Collect and accumulate in a computer database. Filtration performance can be predicted without actually performing filtration by matching the measured value of transparency of the liquid to be predicted with the data. [Selection drawing] Fig. 8

Description

本考案は、井戸水や海水、河川水、池やプール、水槽等の貯留液を飲用、生活用、産業用、事業用等の用途に供するために、液中に懸濁している不溶解性物質をフィルターやメンブレンなどのろ過体を用いて物理的に分離除去するろ過処理の性能予測に関するものである。 The present invention is an insoluble substance suspended in well water, seawater, river water, ponds, pools, water tanks, etc., for drinking, daily use, industrial use, business use, etc. This paper relates to the performance prediction of the filtration process that physically separates and removes by using a filtration medium such as a filter or membrane.

飲用、生活用、産業用、事業用等の用途に供する水に対する水質管理項目の一部として、濁度およびSS(浮遊物質または懸濁物質)がある。 Turbidity and SS (suspended solids or suspended solids) are some of the water quality control items for water used for drinking, daily life, industrial use, business use, and the like.

例えば水道水質基準では「濁度2度以下」、公衆浴場における水質基準では原湯、原水、上り用湯及び上り用水「濁度2度以下」および浴槽水「濁度5度以下」、プール用水では「濁度2度以下」という基準値がある。 For example, the water quality standard for tap water is "turbidity of 2 degrees or less", the water quality standard for public baths is "turbidity of 2 degrees or less" and bathtub water is "turbidity of 5 degrees or less", and pool water is There is a standard value of "turbidity of 2 degrees or less".

また比較的懸濁性物質が多い排水処理の放流水に関しては、水質汚濁防止法の一律排水基準に「浮遊物質量(SS)200mg/l以下」という基準値がある。 Regarding effluent from wastewater treatment, which contains a relatively large amount of suspended solids, the Uniform Wastewater Standards of the Water Pollution Control Law stipulates a standard value of "suspended solids (SS) of 200 mg/l or less".

その他各種工場や施設でもそれぞれの用途に合わせて懸濁性物質除去に合致したろ過処理が行われている。 Filtration processes suitable for removing suspended solids are also carried out in various other factories and facilities according to their respective uses.

ろ過処理は遵法および品質管理に重要であるので、日本工業規格(JIS K0101、K0102、以下「JIS法」と記す)に定められた測定が必要である。 Filtration treatment is important for legal compliance and quality control, so it is necessary to measure according to Japanese Industrial Standards (JIS K0101, K0102, hereinafter referred to as "JIS method").

また、ろ過工程が未だ設置されていない検討・設計段階においては、ろ過処理方法の仕様を決めるために類似のろ過処理を行い、懸濁性物質の除去性能や連続運転性を推定することになる。 In addition, at the study and design stage where the filtration process has not yet been installed, a similar filtration process will be performed to determine the specifications of the filtration process method, and the removal performance of suspended solids and continuous operation will be estimated. .

ろ過工程の管理は遵法および品質維持のために必須であるが、JIS法に則ると専門技術者や専用の分析機器が必要であるため、管理のための労務的・時間的・経済的な負担が大きい。 Management of the filtration process is essential for legal compliance and quality maintenance. It's a big burden.

また、現在ろ過工程を設置していない場合においてろ過処理の適用を検討する場合には、ろ過原水の水質変動等を考慮すると相当数の根拠データ収集が必要となり、労務的・時間的・経済的な負担が大きい。 In addition, when considering the application of filtration treatment when no filtration process is currently installed, it will be necessary to collect a considerable amount of evidence data in consideration of changes in the water quality of the filtered raw water. a heavy burden.

本考案は、透視度という簡易かつ安価な測定方法とデータベースに蓄積したろ過処理の実測データから、実際にろ過することなくろ過性能を予測する手法である。 The present invention is a method of predicting filtration performance without actually performing filtration, based on a simple and inexpensive measurement method called transparency and actual measurement data of filtration processing accumulated in a database.

予めろ過対象となる井戸水や海水、河川水、池やプール、水槽等の貯留液の透視度と懸濁性物質量(濁度、SS等)の実測値をコンピューター等のデータベースに収集蓄積する。集積したデータをグラフ化した一例が図1、図2である。 Measured values of transparency and amounts of suspended solids (turbidity, SS, etc.) of well water, seawater, river water, ponds, pools, water tanks, etc. to be filtered are collected and stored in a database such as a computer in advance. An example of graphing the accumulated data is shown in FIGS. 1 and 2. FIG.

前項の収集蓄積するデータは、ろ過工程が専ら常時同一の水源の水を処理する場合は、その水源の実測値がよい。 If the filtration process always treats water from the same water source, the collected and accumulated data in the preceding paragraph should be the actual measurements of that water source.

一方、今回の考案の予測値を新たなろ過工程の設計等の参考にする場合は、様々な地域、季節、降雨の多少など収集条件を広げた方がよい。 On the other hand, when using the predicted value of this invention as a reference for the design of a new filtration process, etc., it is better to expand the collection conditions such as various regions, seasons, and amount of rainfall.

前3項の要領で収集したろ過原水に対して、実際にろ過処理した際の水質、単位時間当たりのろ過処理水量減少の経時変化、ろ過に要する加圧エネルギー上昇の経時変化、の全部または一部をデータベース化する。データをグラフ化した一例が図3、図4、図5である。 For the filtered raw water collected according to the procedure in the preceding three paragraphs, all or one of the water quality when actually filtered, the change over time in the decrease in the amount of filtered water per unit time, and the change over time in the increase in pressurization energy required for filtration part of the database. Examples of data graphs are shown in FIGS. 3, 4, and 5. FIG.

ろ過性能を予測したい液の透視度を測定する。測定方法は日本工業規格(JIS K0101、K0102)に定める方法でもよいし、透明な管類や容器を用いた簡易法でもよい。簡易法の場合は、10センチメートル以上の水深を確保できる透明な管類(例えばメスシリンダー様)や容器(たとえばペットボトル)が望ましい。用いる器具の例を図6に示す。 Measure the transparency of the liquid whose filtration performance you want to predict. The measuring method may be a method defined in Japanese Industrial Standards (JIS K0101, K0102), or a simple method using transparent tubes or containers. In the case of the simple method, it is desirable to use transparent tubing (for example, graduated cylinder-like) or container (for example, PET bottle) that can secure a water depth of 10 cm or more. An example of the equipment used is shown in FIG.

また透視度測定に器具を用いずとも、ろ過原水の水面上から水深何センチメートルまで見通せるかを指標としてもよい。 Further, even if no instrument is used for measuring transparency, the depth of water in centimeters that can be seen from the surface of the filtered raw water may be used as an index.

前記のようにJIS法で測定した透視度、または簡易法で測定した透視度相当値を、図3、図4、図5のデータに照合して、ろ過性能を予測する。 The transparency measured by the JIS method as described above or the transparency equivalent value measured by the simplified method is collated with the data shown in FIGS. 3, 4 and 5 to predict the filtration performance.

すでに稼働しているろ過工程の場合、ろ過原水の透視度を測定することで、ろ過処理水の濁度または浮遊物質量(SS)の数値、単位時間当たりのろ過処理水量の減少の経時変化、ろ過に要する加圧エネルギーの上昇の経時変化を予測することができる。
この予測方法により現場での労務的・時間的・経済的な負担が削減でき、より迅速かつ頻度の高い水質管理が可能となり、遵法および品質向上、コスト削減に貢献する。
In the case of the filtration process that is already in operation, by measuring the transparency of the filtered raw water, the turbidity or suspended solids (SS) value of the filtered water, the change over time of the decrease in the filtered water volume per unit time, It is possible to predict the change over time of the increase in pressurization energy required for filtration.
This prediction method reduces labor, time, and economic burdens on site, and enables quicker and more frequent water quality control, contributing to legal compliance, quality improvement, and cost reduction.

現在ろ過工程を設置していないがろ過工程を設置することを想定し、そのろ過性能を予測する場合には、ろ過原水の透視度を測定し類似するろ過原水のろ過性能データと照合することで、ろ過処理水の濁度または浮遊物質量(SS)の数値、単位時間当たりのろ過処理水量の減少の経時変化、ろ過に要する加圧エネルギーの上昇の経時変化を予測することができる。
この予測方法により適切な規模や仕様のろ過工程が選定でき、計画作業の労務的・時間的・経済的な負担が削減でき、ろ過工程の最適化、コスト削減に貢献する。
Assuming that a filtration process is installed even though the filtration process is not currently installed, when predicting the filtration performance, it is possible to measure the transparency of the filtered raw water and compare it with the filtration performance data of similar filtered raw water. , numerical value of turbidity or suspended solids (SS) of filtered water, change over time in decrease in amount of filtered water per unit time, and change over time in increase in pressurization energy required for filtration can be predicted.
Using this prediction method, it is possible to select a filtration process with an appropriate scale and specifications, reduce the labor, time, and economic burden of planning work, and contribute to optimization of the filtration process and cost reduction.

ろ過原水の透視度と濁度の実測値を蓄積しグラフ化した例である。It is an example of accumulating and graphing the measured values of transparency and turbidity of filtered raw water. ろ過原水の透視度とSSの実測値を蓄積しグラフ化した例である。It is an example of accumulating and graphing the transparency of filtered raw water and the measured values of SS. 一定の条件でろ過した場合のろ過原水の透視度とろ過処理水の濁度の関係を蓄積しグラフ化した例である。It is an example of accumulating and graphing the relationship between the transparency of filtered raw water and the turbidity of filtered water when filtered under certain conditions. ろ過原水の透視度ごとに一定の条件におけるろ過処理水量の経時変化の関係を蓄積しグラフ化した例である。It is the example which accumulate|stored the relationship of the time-dependent change of the amount of filtered water in a fixed condition for every transparency of filtered raw water, and made a graph. ろ過原水の透視度ごとに一定の条件におけるろ過に要する圧力の経時変化の関係を蓄積しグラフ化した例である。It is an example of accumulating and graphing the relationship of changes over time in pressure required for filtration under certain conditions for each degree of transparency of filtered raw water. JIS法で用いる透視度計と、簡易法で使用可能な透視度相当値を測定する器具の例である。It is an example of a transparency meter used in the JIS method and an instrument for measuring the transparency equivalent value that can be used in the simple method. ろ過原水の透視度の測定値を用いて、ろ過処理水の濁度を予測する方法の例である。This is an example of a method of predicting the turbidity of filtered water using the measured value of transparency of filtered raw water. ろ過原水の透視度の測定値を用いて、ろ過処理水量の経時変化を予測する方法の例である。This is an example of a method of predicting changes over time in the volume of filtered water using the measured value of the transparency of filtered raw water. ろ過原水の透視度の測定値を用いて、ろ過に要する圧力の経時変化を予測する方法の例である。This is an example of a method of predicting changes over time in pressure required for filtration using measured values of transparency of raw filtered water.

予測法の一例を図7、図8、図9を用いて説明する。 An example of the prediction method will be described with reference to FIGS. 7, 8 and 9. FIG.

ろ過した水の濁度を予想する場合、例えば図7においてろ過原水の透視度が60センチメートルであった場合(図7[1])、横軸のろ過原水の透視度60センチメートルの位置から上方に線を延ばし性能曲線と交わる点(図7[2])から、縦軸に向けて水平な線を延ばすと交点は約1度となり(図7[3])、予測されるろ過処理水の濁度は約1度となる。 When predicting the turbidity of the filtered water, for example, when the transparency of the filtered raw water is 60 cm in FIG. 7 (FIG. 7 [1]), Extending the line upward and extending a horizontal line toward the vertical axis from the point where it intersects the performance curve (Fig. 7 [2]), the intersection point will be about 1 degree (Fig. 7 [3]), and the predicted filtered water The turbidity of is about 1 degree.

要求されるろ過処理水量が5リットル毎分以上であり、ろ過体の詰まりを考慮してろ過の継続時間を予測する場合、例えば図8においてろ過原水の透視度60センチメートルが当てはまる性能曲線はB(図8[4])であるので、縦軸のろ過処理水量5.0リットル毎分(図8[5])から水平に右に線を延ばし、性能曲線Bとの交点(図8[6])から下にたどり横軸との交点である約1.8時間が予測値となる(図8[7])。 When the required filtered water volume is 5 liters per minute or more and the duration of filtration is predicted in consideration of clogging of the filter body, for example, in FIG. (Fig. 8 [4]), so the line is extended horizontally to the right from the vertical axis of the filtered water volume of 5.0 liters per minute (Fig. 8 [5]), and the intersection with the performance curve B (Fig. 8 [6 ]), and about 1.8 hours at the intersection with the horizontal axis is the predicted value ([7] in FIG. 8).

ろ過圧力を0.25メガパスカル以下で運転したく、ろ過体の詰まりによるろ過圧力の上昇を考慮してろ過の継続時間を予測する場合、例えば図9において原水の透視度60センチメートルが当てはまる性能曲線はB(図9[8])であるので、縦軸のろ過圧力0.25メガパスカル(図9[9])から水平に右に線を延ばし、性能曲線Bとの交点(図9[10]から下にたどり横軸との交点である約1.4時間が予測値となる(図9[11])。 If you want to operate at a filtration pressure of 0.25 megapascals or less and predict the duration of filtration in consideration of the increase in filtration pressure due to clogging of the filter body, for example, the transparency of raw water of 60 cm in FIG. Since the curve is B (Fig. 9 [8]), extend the line horizontally to the right from the filtration pressure of 0.25 MPa (Fig. 9 [9]) on the vertical axis, and the intersection with the performance curve B (Fig. 9 [ 10], the predicted value is approximately 1.4 hours, which is the intersection with the horizontal axis (Fig. 9 [11]).

1 (図7)予測したい液の透視度実測値60センチメートルに合致する点
2 (図7)符号1から上方に線を延ばし性能曲線と交わる点
3 (図7)符号2から水平に延ばし縦軸と交わる点
4 (図8)ろ過原水の透視度の区分
5 (図8)要求されるろ過処理水量に合致する点
6 (図8)符号5から水平に右に線を延ばし性能曲線Bと交わる点
7 (図8)符号6から下方の横軸と交わる点
8 (図9)ろ過原水の透視度の区分
9 (図9)ろ過圧力の設定上限に合致する点
10 (図9)符号9から水平に右に線を延ばし性能曲線Bと交わる点
11 (図9)符号10から下方の横軸と交わる点
1 (Fig. 7) The point that matches the actual measurement value of 60 centimeters for the transparency of the liquid you want to predict 2 (Fig. 7) The point 3 that extends the line upward from symbol 1 and intersects with the performance curve 3 (Fig. 7) Extends horizontally from symbol 2 and vertically Point 4 that intersects with the axis (Fig. 8) Classification of transparency of filtered raw water 5 (Fig. 8) Point 6 that matches the amount of filtered water required Intersecting point 7 (Fig. 8) Point 8 intersecting with the lower horizontal axis from code 6 (Fig. 9) Permeability division 9 of filtered raw water (Fig. 9) Point 10 matching the upper limit of filtration pressure setting (Fig. 9) Code 9 Point 11 (Fig. 9) where the line extends horizontally to the right and intersects the performance curve B (Fig. 9)

Claims (4)

井戸水や海水、河川水、池やプール、水槽等の貯留液(以下「ろ過原水」と呼ぶ)に懸濁している不溶解性物質を、ろ過体を用いて物理的に分離除去するろ過工程の設計または管理において用いられるシステムであって、
前記ろ過原水の透視度と、予めコンピューターのデータベースに収集蓄積してある透視度とろ過性能との相関関係から、当該ろ過原水をろ過した場合のろ過性能を予測するシステム。
A filtration process that physically separates and removes insoluble substances suspended in well water, seawater, river water, ponds, pools, water tanks, etc. (hereinafter referred to as "filtration raw water") using a filter. A system used in design or management,
A system for predicting filtration performance when the raw water to be filtered is filtered from the transparency of the raw water to be filtered and the correlation between the transparency and the filtration performance previously collected and stored in a computer database.
前記ろ過原水の透視度は、日本工業規格(JIS K0101、K0102等)により測定されたもの、透明な管類や容器を用いて測定されたもの、および前記ろ過原水の水面上から水深何センチメートルまで見通せるかの指標のうちいずれか1つである、請求項1記載のシステム。 The transparency of the filtered raw water is measured according to Japanese Industrial Standards (JIS K0101, K0102, etc.), is measured using transparent tubes or containers, and is measured in centimeters from the surface of the filtered raw water. 2. The system of claim 1, wherein any one of the indicators of visibility to. 前記ろ過性能とは、ろ過された水の濁度またはSS(浮遊物質または懸濁物質)の数値、またはろ過原水とろ過処理水の水質値の差から計算される除去率、またはろ過体が捕捉物質により徐々に閉塞することに起因する単位時間当たりのろ過処理水量の減少の経時変化、またはろ過に要する加圧エネルギーの上昇の経時変化、の1つ以上である、請求項1記載のシステム。 The filtration performance refers to the turbidity or SS (suspended solids or suspended solids) value of filtered water, or the removal rate calculated from the difference between the water quality values of filtered raw water and filtered water, or the filter body captures 2. The system according to claim 1, which is one or more of a decrease in filtered water volume per unit time due to gradual clogging by a substance, or an increase in pressurization energy required for filtration. 前記ろ過原水の透視度として、前記透明な管類や容器を用いて測定される場合、前記透明な管類または容器において読み取れる液の深さは10センチメートルを超える、請求項2記載のシステム。
3. The system of claim 2, wherein when the transparency of the raw filtered water is measured using the transparent tubing or container, the liquid depth readable in the transparent tubing or container is greater than 10 centimeters.
JP2023000427U 2023-02-15 2023-02-15 Filtration performance predictor Active JP3242535U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023000427U JP3242535U (en) 2023-02-15 2023-02-15 Filtration performance predictor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023000427U JP3242535U (en) 2023-02-15 2023-02-15 Filtration performance predictor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020136855A Continuation JP2022021282A (en) 2020-07-21 2020-07-21 Prediction method of filtration performance

Publications (1)

Publication Number Publication Date
JP3242535U true JP3242535U (en) 2023-06-23

Family

ID=86771578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023000427U Active JP3242535U (en) 2023-02-15 2023-02-15 Filtration performance predictor

Country Status (1)

Country Link
JP (1) JP3242535U (en)

Similar Documents

Publication Publication Date Title
KR20090062503A (en) Optimized operation control system and method for membrane process using intermittent aeration
Raffin et al. Optimising operation of an integrated membrane system (IMS)—A Box–Behnken approach
Amosa et al. Studies on pore blocking mechanism and technical feasibility of a hybrid PAC-MF process for reclamation of irrigation water from biotreated POME
Vrouwenvelder et al. Biofouling of spiral wound membrane systems
KR20080101588A (en) Automatic contro method and device for membrane filtering system
JP3242535U (en) Filtration performance predictor
Hasnaningrum et al. Planning advanced treatment of tap water consumption in Universitas Pertamina
Sánchez et al. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration
Mitrouli et al. Pretreatment for desalination of seawater from an open intake by dual-media filtration: Pilot testing and comparison of two different media
Abu-Obaid et al. Characterization of performance of full-scale tertiary membranes under stressed operating conditions
Engelhardt Granular media filtration for water treatment applications
Omar Evaluation of water quality and the efficiency of Ifraz-2 water treatment plant-units
JP2022021282A (en) Prediction method of filtration performance
Hurst et al. Parameters affecting steady-state floc blanket performance
Rasooly et al. Assessment of Drinking Water Quality and the Efficiency of the Two Water Treatment Plants in UP, India
CN101699261B (en) Method for monitoring suspended solid SS in sludge water of water treatment plant
Cescon et al. Assessment of recycled glass and expanded clay in a dual media configuration for drinking water treatment
CN209652000U (en) A kind of processing system of nickel-containing waste water
Bick et al. Immersed Membrane BioReactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm
Aziz et al. Performance Evaluation and Water Quality Index Analysis for Qandil Water Treatment Plant
CN205275329U (en) Oxidation aluminium production waste water treatment clarifier
CN109293034A (en) A kind of processing system and processing method of nickel-containing waste water
Wadi Effect of a gravel bed flocculator on the efficiency of a low cost water treatment plants
Al-Shammari et al. Comparative performance evaluation of microfiltration submerged and pressurized membrane treatment of wastewater
CN216273509U (en) Sewage treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 3242535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150