JP3242205B2 - Method for producing electrolyte solution for redox battery - Google Patents

Method for producing electrolyte solution for redox battery

Info

Publication number
JP3242205B2
JP3242205B2 JP13286493A JP13286493A JP3242205B2 JP 3242205 B2 JP3242205 B2 JP 3242205B2 JP 13286493 A JP13286493 A JP 13286493A JP 13286493 A JP13286493 A JP 13286493A JP 3242205 B2 JP3242205 B2 JP 3242205B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
chloride
ferrochrome
redox
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13286493A
Other languages
Japanese (ja)
Other versions
JPH06325784A (en
Inventor
信雄 金山
通正 鈴木
優 粟屋
文治 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP13286493A priority Critical patent/JP3242205B2/en
Publication of JPH06325784A publication Critical patent/JPH06325784A/en
Application granted granted Critical
Publication of JP3242205B2 publication Critical patent/JP3242205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レドックス電池用電解
液の製造方法に関する。
The present invention relates to a method for producing an electrolyte for a redox battery.

【0002】[0002]

【従来の技術】電力は社会生活上においてもまた工業上
においても貴重なエネルギー源であり、電力の消費は年
毎に増加の一途である。近年この汎用性の高いエネルギ
ーである電力を貯蔵する方法として各種の2次電池が研
究されており、この中でも特にレドックス電池が注目さ
れている。
2. Description of the Related Art Electric power is a valuable energy source both in social life and in industry, and power consumption is increasing year by year. In recent years, various secondary batteries have been studied as a method for storing electric power, which is a highly versatile energy, and among them, a redox battery has attracted particular attention.

【0003】このレドックス電池は、隔膜で仕切られた
電解槽に、鉄(Fe)イオン及びクロム(Cr)イオン
を含むレドックス電池用電解液を収容して構成され、こ
の電解槽内では下記の(1)〜(3)式に示す反応が起
こり電力の充電が行われる。また左側に進行する反応に
より電力の放電が行われる。 正極側:Fe2+→Fe3++e …(1) 負極側:Cr3++e→Cr2+ …(2) 全反応:Fe2++Cr3+→Fe3++Cr2+ …(3) このレドックス電池用電解液は、塩酸(HCl)、塩化
第一鉄(FeCl2 )、塩化第二クロム(CrCl3
を所定濃度に調整した混合液であるが、塩化第二クロム
の市販品は高価であるため、レドックス電池を工業化す
る上で大きな障害となっていた。そこでレドックス電池
用電解液の製造方法としては、特開昭60−14806
8号に開示されているように、塩化第二クロムと比較し
て安価であるフェロクロムやクロム鉄鉱石を塩酸に溶解
させた後、鉄、クロム、塩酸の濃度を所定濃度に調整す
る方法や、また特公平3−61988号に開示されるよ
うに、クロム鉄鉱石を炭素質還元剤と共に成形し、部分
還元して得られたクロムペレットを塩酸に溶解し、鉄、
クロムを抽出して各イオンの濃度を調整する方法が知ら
れている。
[0003] This redox battery is constituted by containing an electrolyte for a redox battery containing iron (Fe) ions and chromium (Cr) ions in an electrolytic cell partitioned by a diaphragm. The reactions shown in equations (1) to (3) occur, and electric power is charged. Further, electric power is discharged by a reaction proceeding to the left. Positive electrode side: Fe 2+ → Fe 3+ + e (1) Negative electrode side: Cr 3+ + e → Cr 2+ (2) Total reaction: Fe 2+ + Cr 3+ → Fe 3+ + Cr 2+ (3) The electrolyte for redox batteries includes hydrochloric acid (HCl), ferrous chloride (FeCl 2 ), and chromic chloride (CrCl 3 ).
Is adjusted to a predetermined concentration, but a commercially available product of chromic dichloride is expensive, which has been a major obstacle in industrializing a redox battery. Therefore, a method for producing an electrolyte solution for redox batteries is disclosed in Japanese Patent Application Laid-Open No. 60-14806.
As disclosed in No. 8, after dissolving ferrochrome or chromite ore, which is less expensive than chromic chloride, in hydrochloric acid, iron, chromium, a method of adjusting the concentration of hydrochloric acid to a predetermined concentration, Further, as disclosed in Japanese Patent Publication No. 3-61988, chromium ore is formed together with a carbonaceous reducing agent, and chromium pellets obtained by partial reduction are dissolved in hydrochloric acid, and iron,
A method of extracting chromium and adjusting the concentration of each ion is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前者の製
造方法では、フェロクロムやクロム鉄鉱石は非常に塩酸
に溶解しにくく、特にフェロクロムの中でも安価な高炭
素フェロクロムは溶解しにくいため、フェロクロムやク
ロム鉄鉱石を塩酸に溶解させる際には、高温で長時間処
理を行わなければならず、面倒であるという問題があっ
た。
However, in the former production method, ferrochrome and chromium ore are very difficult to dissolve in hydrochloric acid, and in particular, inexpensive high-carbon ferrochrome among ferrochrome is difficult to dissolve. When dissolving in hydrochloric acid, there is a problem that the treatment must be performed at a high temperature for a long time, which is troublesome.

【0005】また後者の製造方法では、原料となるクロ
ム還元ペレットの調整作業が必要であると共に、この調
整作業はクロム鉄鋼石と炭素質還元剤を配合したものに
バインダーを加えて粒径6〜12mmの大きさに造粒
し、さらに炭素質還元剤と共にロータリーキルンで12
00〜1400℃で還元するものであるため、手間がか
かり、高温を要するという問題があった。
In the latter production method, it is necessary to adjust chromium-reduced pellets as a raw material, and this adjustment is performed by adding a binder to a mixture of chromium steel ore and a carbonaceous reducing agent, and adding a binder to the mixture. Granulate to a size of 12 mm, and further with a carbonaceous reducing agent in a rotary kiln
Since the reduction is carried out at 00 to 1400 ° C., there is a problem that it is troublesome and requires a high temperature.

【0006】本発明は、このような事情のもとになされ
たものであり、その目的は、レドックス電池用電解液を
安価かつ容易に製造する方法を提供することにある。
The present invention has been made under such circumstances, and an object of the present invention is to provide a method for easily and inexpensively producing a redox battery electrolyte.

【0007】[0007]

【課題を解決するための手段及び作用】請求項1の発明
は、フェロクロム及び/またはクロム鉄鉱石を塩素化し
て塩化第二クロム及び塩化第二鉄を生成する工程と、
いで前記工程により得られた前記塩化第二鉄ガスを塩酸
溶液に捕集すると共に、この塩酸溶液に塩化第二鉄の還
元剤と、前記工程により得られた塩化第二クロムと、塩
化第一クロムとを溶解して、2価の鉄イオン及び3価の
クロムイオンを生成する工程と、を含み、 これら3価の
クロムイオン及び2価の鉄イオンが塩酸中に含有された
レドックス電池用電解液を得ることを特徴とする。
According to the first aspect of the present invention, there is provided a method for chlorinating ferrochrome and / or chromium ore.
Generating a second chromium chloride and ferric chloride Te, following
The ferric chloride gas obtained in the above step
While collecting the solution, the hydrochloric acid solution is used to recover ferric chloride.
Base agent, chromic chloride obtained in the above step, and salt
Dissolves with ferrous chromium and divalent iron ions and trivalent
Wherein generating a chromium ion, a, of trivalent
Chromium ion and divalent iron ion were contained in hydrochloric acid
It is characterized by obtaining an electrolyte solution for redox batteries.

【0008】請求項2の発明は、フェロクロム及び/ま
たはクロム鉄鉱石を塩素化して塩化第二クロム及び塩化
第二鉄を生成する工程と、 前記塩化第二鉄ガスを塩酸溶
液に捕集し、この塩酸溶液中で還元剤と反応させて2価
の鉄イオンを生成する工程と、 前記塩酸溶液に塩化第二
クロムを塩化第一クロムの存在下で溶解して3価のクロ
ムイオンを生成する工程と、を含み、 これら3価のクロ
ムイオン及び2価の鉄イオンが塩酸中に含有されたレド
ックス電池用電解液を得ることを特徴とする。
[0008] The invention of claim 2 provides ferrochrome and / or ferrochrome.
Or chromium ore is chlorinated to form chromium chloride and chloride
Producing ferric chloride , and dissolving the ferric chloride gas in hydrochloric acid.
Collected in a liquid and reacted with a reducing agent in this hydrochloric acid solution to form a divalent solution.
Producing iron ions, and adding hydrochloric acid to the hydrochloric acid solution.
Chromium is dissolved in the presence of
Producing trivalent ions.
Red ion in which hydrochloric acid and divalent iron ions are contained in hydrochloric acid
The present invention is characterized in that an electrolyte for a battery is obtained.

【0009】請求項3の発明は、フェロクロム及び/ま
たはクロム鉄鉱石を塩素化して塩化第二クロムを生成す
る工程と、 次いで前記工程にて得られた塩化第二クロム
と塩化第一クロムとを塩酸溶液中に溶解して3価のクロ
ムイオンを生成する工程と、を含み、 3価のクロムイオ
ンが塩酸中に含有されたレドックス電池用電解液の負極
液を得ることを特徴とする。
[0009] The invention of claim 3 provides ferrochrome and / or ferrochrome.
Or chromium ore to chlorinate to produce chromic chloride
That step and, then the resulting chloride chromic at the step
And chromous chloride are dissolved in hydrochloric acid
Generating trivalent chromium ions
Negative electrode of redox battery electrolyte solution containing hydrochloric acid in hydrochloric acid
It is characterized by obtaining a liquid.

【0010】すなわち本発明は、クロムと鉄とを含有
し、クロムの唯一の鉱石であるクロム鉄鉱石や、これの
精製物でありクロム−鉄合金であるフェロクロムを塩素
化することにより、クロム鉄鉱石やフェロクロム中に含
まれるクロム及び鉄を塩化物とした後、これらを塩酸に
溶解させることによりレドックス電池用電解液を製造す
るものである。
That is, the present invention provides a chromite ore containing chromium and iron by chlorinating chromite ore, which is the only ore of chromium, and ferrochrome, which is a purified product thereof and is a chromium-iron alloy. Chromium and iron contained in stone and ferrochrome are converted into chlorides and then dissolved in hydrochloric acid to produce a redox battery electrolyte.

【0011】原料として用いられるフェロクロム、例え
ばクロム53.5%、鉄37.3%、炭素(C)8.1
%、ケイ素(Si)1.1%、硫黄(S)0.04%、
リン(P)0.02%の組成を有する高炭素フェロクロ
ムを、例えば電気炉中で炉内温度500℃の下で塩素
(Cl2 )ガスと反応させることにより塩素化すると、
高炭素フェロクロム中に含まれるクロムと鉄は塩素ガス
と容易に反応し、下記の(4)式、(5)式に示すよう
に、それぞれ塩化第二クロム及び塩化第二鉄(FeCl
3 )となる。 2Cr+3Cl2 →2CrCl3 …(4) 2Fe+3Cl2 →2FeCl3 …(5) ここで300℃以上では、塩化第二鉄は気化しガスとし
て飛散するので、電気炉内には塩化第二クロムのみが残
るが、塩化第二鉄ガスを補集することによって両者は別
々に得られる。
Ferrochrome used as a raw material, for example, 53.5% chromium, 37.3% iron, 8.1 carbon (C)
%, Silicon (Si) 1.1%, sulfur (S) 0.04%,
Chlorination of high carbon ferrochrome having a composition of 0.02% phosphorus (P) by reacting it with chlorine (Cl 2 ) gas in an electric furnace at a furnace temperature of 500 ° C., for example,
Chromium and iron contained in high-carbon ferrochrome easily react with chlorine gas, and as shown in the following formulas (4) and (5), ferric chloride and ferric chloride (FeCl
3 ) 2Cr + 3Cl 2 → 2CrCl 3 (4) 2Fe + 3Cl 2 → 2FeCl 3 (5) Here, at 300 ° C. or more, only ferric chloride remains in the electric furnace because ferric chloride is vaporized and scattered as a gas. However, both are obtained separately by collecting ferric chloride gas.

【0012】レドックス電池用電解液は、(従来の技
術)の欄で記載したように、塩酸に塩化第二クロム及び
塩化第一鉄を溶解させた混合液すなわち3価のクロムイ
オン(Cr3+)及び2価の鉄イオン(Fe2+)を含む塩
酸溶液であるが、上述の高炭素フェロクロムの塩素化に
より得られた塩化第二鉄は塩酸や純水中に補集されると
塩酸や純水に溶解し、例えば鉄材等の還元剤を添加する
ことにより容易に塩化第一鉄に還元できる。一方同じく
高炭素フェロクロムの塩素化により得られた塩化第二ク
ロムはそのままでは水や塩酸に溶解しにくいが、約10
-5%程度の微量の塩化第一クロム(CrCl2 )の存在
下では速やかに溶解することが知られている。
As described in (Prior Art), the electrolyte solution for redox batteries is a mixed solution of chromic chloride and ferrous chloride dissolved in hydrochloric acid, that is, trivalent chromium ion (Cr 3+). ) And a hydrochloric acid solution containing divalent iron ions (Fe 2+ ). Ferric chloride obtained by the chlorination of high-carbon ferrochrome described above, when collected in hydrochloric acid or pure water, contains hydrochloric acid and It can be easily reduced to ferrous chloride by dissolving in pure water and adding a reducing agent such as, for example, an iron material. On the other hand, chromic chloride obtained by chlorination of high-carbon ferrochrome is difficult to dissolve in water or hydrochloric acid as it is, but about 10%.
It is known that it dissolves quickly in the presence of a trace amount of chromic chloride (CrCl 2 ) of about -5 %.

【0013】従って、上述の高炭素フェロクロムの塩素
化により得られた塩化第二鉄を所定濃度の塩酸溶液に補
集し、適当な還元剤により塩化第一鉄に還元すると共
に、この溶液に、塩化第二クロムを少量のフェロクロム
と共に添加し、塩化第二クロムを溶解させることによ
り、Cr3+イオンとFe2+イオンとを含む塩酸溶液より
なるレドックス電池用電解液が作成される。また電解液
の濃度は塩化第二クロムや塩化第二鉄及び塩酸の添加量
により調整する。
Therefore, ferric chloride obtained by the chlorination of high-carbon ferrochrome is collected in a hydrochloric acid solution having a predetermined concentration and reduced to ferrous chloride with a suitable reducing agent. By adding chromic chloride together with a small amount of ferrochrome and dissolving the chromic chloride, an electrolyte for a redox battery comprising a hydrochloric acid solution containing Cr 3+ ions and Fe 2+ ions is prepared. The concentration of the electrolytic solution is adjusted by the amount of chromic chloride, ferric chloride and hydrochloric acid added.

【0014】なおフェロクロムの塩素化により塩化第二
鉄と塩化第二クロムは別々に得られるため、3価のクロ
ムイオンを含むレドックス電池用電解液の負極液と2価
の鉄イオンを含む正極液とを別々に製造してもよい。し
かし負極液中に含有する鉄イオンまたは正極液中に含有
するクロムイオンはレドックス電池の性能に影響を与え
ないので、負極液と正極液に同一液を用いることが一般
的である。
Since ferric chloride and ferric chloride are obtained separately by chlorination of ferrochrome, a negative electrode solution of a redox battery electrolyte containing trivalent chromium ions and a positive electrode solution containing divalent iron ions And may be manufactured separately. However, since the iron ions contained in the negative electrode solution or the chromium ions contained in the positive electrode solution do not affect the performance of the redox battery, it is common to use the same solution for the negative electrode solution and the positive electrode solution.

【0015】[0015]

【実施例】次に本発明を実施例をもって具体的に説明す
る。なお本発明の効果を確認するために、比較実験とし
て従来の方法を用いてレドックス電池用電解液の製造を
行った。
Next, the present invention will be described specifically with reference to examples. In order to confirm the effects of the present invention, an electrolytic solution for a redox battery was manufactured using a conventional method as a comparative experiment.

【0016】[実施例1] (方法)高炭素フェロクロム約50gを電気炉中で炉内
温度500℃の下で塩素ガスと反応させ、得られた塩化
第二鉄ガスを10%塩酸溶液に補集し、この溶液中に鉄
粉10gを添加して、塩化第一鉄濃度12%、塩酸濃度
10%の混合溶液500gを作成した。この混合溶液中
に塩化第二クロム120gを、フェロクロム50gと共
に添加し、溶液を約80℃に加熱しながら塩化第二クロ
ムを溶解させ、溶液中のクロム濃度及び溶解に要した時
間を測定した。
Example 1 (Method) About 50 g of high carbon ferrochrome was reacted with chlorine gas in an electric furnace at a furnace temperature of 500 ° C., and the obtained ferric chloride gas was replaced with a 10% hydrochloric acid solution. 10 g of iron powder was added to this solution to prepare 500 g of a mixed solution having a ferrous chloride concentration of 12% and a hydrochloric acid concentration of 10%. 120 g of chromic chloride was added to the mixed solution together with 50 g of ferrochrome, and the solution was heated to about 80 ° C. to dissolve chromic chloride, and the chromium concentration in the solution and the time required for dissolution were measured.

【0017】(結果)混合溶液中のクロム濃度が0〜6
%になるまで、塩化第二クロムの溶解に要した時間は3
0分であった。
(Results) The chromium concentration in the mixed solution is from 0 to 6
%, The time required for dissolution of chromic chloride is 3%
It was 0 minutes.

【0018】[比較例] (方法)35%塩酸溶液約5lにフェロクロム1000
gを添加し、溶液を約80℃に加熱しながらフェロクロ
ムを溶解させ、溶液中のクロム濃度及び溶解に要した時
間を測定した。
Comparative Example (Method) Ferrochrome 1000 was added to about 5 l of a 35% hydrochloric acid solution.
g was added and ferrochrome was dissolved while heating the solution to about 80 ° C., and the chromium concentration in the solution and the time required for dissolution were measured.

【0019】(結果)実験結果を表1に示す。混合溶液
中のクロム濃度が0〜6%になるまで、フェロクロムの
溶解に要した時間は32時間以上であった。
(Results) The experimental results are shown in Table 1. Until the chromium concentration in the mixed solution became 0 to 6%, the time required for dissolving ferrochrome was 32 hours or more.

【0020】[0020]

【表1】 これらの実験結果から明らかなように、本発明の方法を
用いることにより、従来の方法と比較して極めて短時間
でレドックス電池用電解液を製造できることが確認され
た。すなわち塩化第二クロムと共にフェロクロムを塩酸
溶液中に添加することにより、塩化第二クロムが塩酸溶
液中に速やかに溶解することが確認された。これは塩化
第二クロムの一部がフェロクロムに含有するクロムメタ
ルにより塩化第一クロムに還元されて、溶液中に塩化第
一クロムが存在することになるためと推定される。
[Table 1] As is clear from these experimental results, it was confirmed that the use of the method of the present invention can produce an electrolyte for redox batteries in an extremely short time as compared with the conventional method. That is, it was confirmed that by adding ferrochrome to the hydrochloric acid solution together with the chromic chloride, the chromic chloride was rapidly dissolved in the hydrochloric acid solution. This is presumably because part of the chromic chloride is reduced to chromic chloride by the chromium metal contained in ferrochrome, and the chromic chloride is present in the solution.

【0021】このように本発明のレドックス電池用電解
液の製造方法は、フェロクロムの中でも安価な高炭素フ
ェロクロムを原料としているため、レドックス電池用電
解液を安価に製造することができる。
As described above, the method for producing an electrolyte solution for a redox battery of the present invention uses an inexpensive high-carbon ferrochrome among ferrochromes, so that an electrolyte solution for a redox battery can be produced at low cost.

【0022】またレドックス電池用電解液はフェロクロ
ムを塩素化し、フェロクロムに含まれるクロム及び鉄
を、それぞれ塩化第二クロム、塩化第二鉄とした後、こ
れらを塩酸に溶解させることにより製造されるが、この
際塩化第二クロムはそのままでは水や塩酸には難溶であ
るが、溶液中に塩化第一クロムが存在すると速やかに溶
解することに注目し、塩化第二クロムと共にフェロクロ
ムを添加し塩化第一クロムを生成させたので、塩化第二
クロムを短時間で溶解させることができ、これにより溶
液中のクロム濃度の調整も簡単になり、このためレドッ
クス電池用電解液を容易に製造することができる。
An electrolyte for a redox battery is produced by chlorinating ferrochrome to convert chromium and iron contained in ferrochrome into chromic ferric chloride and ferric chloride, respectively, and then dissolving them in hydrochloric acid. At this time, chromic chloride is insoluble in water or hydrochloric acid as it is, but if chromic chloride is present in the solution, it dissolves promptly. Since chromium (I) is generated, chromium (II) chloride can be dissolved in a short period of time, which makes it easy to adjust the chromium concentration in the solution, and thus facilitates the production of an electrolyte for redox batteries. Can be.

【0023】以上本発明において、レドックス電池用電
解液の原料としては高炭素フェロクロム以外のフェロク
ロムや、クロム鉄鉱石、またはこれらを混合したものを
用いることもできる。また塩化第二クロムの還元剤とし
てはフェロクロム以外の還元剤例えば塩化第一鉄等を用
いてもよく、塩化第二クロムの還元により塩化第一クロ
ムを生成する代わりに最初から塩化第一クロムを添加し
てもよい。さらに塩化第二鉄とその還元剤、塩化第二ク
ロムとその還元剤を同時に塩酸に溶解させてもレドック
ス電池用電解液を製造することができる。
In the present invention, ferrochrome other than high-carbon ferrochrome, chromium ore, or a mixture thereof may be used as a raw material of the electrolyte solution for redox batteries. As a reducing agent for chromic chloride, a reducing agent other than ferrochrome, such as ferrous chloride, may be used.Instead of producing chromic chloride by reduction of chromic chloride, chromic chloride is used from the beginning. It may be added. Further, an electrolytic solution for redox batteries can be produced by simultaneously dissolving ferric chloride and its reducing agent, and chromic chloride and its reducing agent in hydrochloric acid.

【0024】[0024]

【発明の効果】本発明は、フェロクロム及び/またはク
ロム鉄鉱石を塩素化した後、これを塩酸に溶解させるこ
とによりレドックス電池用電解液を製造しているので、
電解液を安価かつ容易に製造することができる。
According to the present invention, an electrolyte for a redox battery is produced by chlorinating ferrochrome and / or chromite ore and then dissolving it in hydrochloric acid.
Electrolyte can be manufactured cheaply and easily.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平原 文治 神奈川県横浜市鶴見区末広町1−7 鶴 見曹達株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01M 8/18 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Bunji Hirahara 1-7 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within Tsurumi Soda Co., Ltd. (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8 / 18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フェロクロム及び/またはクロム鉄鉱石
を塩素化して塩化第二クロム及び塩化第二鉄を生成する
工程と、 次いで前記工程により得られた前記塩化第二鉄ガスを塩
酸溶液に捕集すると共に、この塩酸溶液に塩化第二鉄の
還元剤と、前記工程により得られた塩化第二クロムと、
塩化第一クロムとを溶解して、2価の鉄イオン及び3価
のクロムイオンを生成する工程と、を含み、 これら3価のクロムイオン及び2価の鉄イオンが塩酸中
に含有されたレドックス電池用電解液を得ることを特徴
とするレドックス電池用電解液の製造方法。
(1)Ferrochrome and / or chromite ore
Chlorinates to produce chromic chloride and ferric chloride
Process and Next, the ferric chloride gas obtained in the above step is salted.
While collecting the acid solution, this hydrochloric acid solution
A reducing agent, and chromic chloride obtained by the step,
Dissolves chromous chloride and divalent iron ion and trivalent
Generating chromium ions of These trivalent chromium ions and divalent iron ions in hydrochloric acid
Characterized by obtaining an electrolyte for redox batteries contained in
A method for producing a redox battery electrolyte.
【請求項2】 フェロクロム及び/またはクロム鉄鉱石
を塩素化して塩化第二クロム及び塩化第二鉄を生成する
工程と、 前記塩化第二鉄ガスを塩酸溶液に捕集し、この塩酸溶液
中で還元剤と反応させて2価の鉄イオンを生成する工程
と、 前記塩酸溶液に塩化第二クロムを塩化第一クロムの存在
下で溶解して3価のクロムイオンを生成する工程と、を
含み、 これら3価のクロムイオン及び2価の鉄イオンが塩酸中
に含有されたレドックス電池用電解液を得ることを特徴
とするレドックス電池用電解液の製造方法。
(2)Ferrochrome and / or chromite ore
Chlorinates to produce chromic chloride and ferric chloride
Process and The ferric chloride gas is collected in a hydrochloric acid solution, and the hydrochloric acid solution is collected.
Producing divalent iron ions by reacting with a reducing agent
When, The presence of chromic chloride in the hydrochloric acid solution
Dissolving underneath to produce trivalent chromium ions;
Including These trivalent chromium ions and divalent iron ions in hydrochloric acid
Characterized by obtaining an electrolyte for redox batteries contained in
A method for producing a redox battery electrolyte.
【請求項3】 フェロクロム及び/またはクロム鉄鉱石
を塩素化して塩化第二クロムを生成する工程と、 次いで前記工程にて得られた塩化第二クロムと塩化第一
クロムとを塩酸溶液中に溶解して3価のクロムイオンを
生成する工程と、を含み、 3価のクロムイオンが塩酸中に含有されたレドックス電
池用電解液の負極液を得ることを特徴とするレドックス
電池用電解液の製造方法。
(3)Ferrochrome and / or chromite ore
Chlorinating to produce chromic chloride; and Next, the chromic chloride and the chloride
Chromium is dissolved in hydrochloric acid solution to form trivalent chromium ions
Generating; and Redox electrode containing trivalent chromium ions in hydrochloric acid
Redox characterized by obtaining a negative electrode solution for a pond electrolyte
A method for producing a battery electrolyte.
JP13286493A 1993-05-10 1993-05-10 Method for producing electrolyte solution for redox battery Expired - Fee Related JP3242205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13286493A JP3242205B2 (en) 1993-05-10 1993-05-10 Method for producing electrolyte solution for redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13286493A JP3242205B2 (en) 1993-05-10 1993-05-10 Method for producing electrolyte solution for redox battery

Publications (2)

Publication Number Publication Date
JPH06325784A JPH06325784A (en) 1994-11-25
JP3242205B2 true JP3242205B2 (en) 2001-12-25

Family

ID=15091331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13286493A Expired - Fee Related JP3242205B2 (en) 1993-05-10 1993-05-10 Method for producing electrolyte solution for redox battery

Country Status (1)

Country Link
JP (1) JP3242205B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8993183B2 (en) 2012-12-31 2015-03-31 Enervault Corporation Operating a redox flow battery with a negative electrolyte imbalance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541121B2 (en) 2011-01-13 2013-09-24 Deeya Energy, Inc. Quenching system
CN115832379A (en) * 2023-02-21 2023-03-21 北京西融新材料科技有限公司 Preparation method and application of key material of electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8993183B2 (en) 2012-12-31 2015-03-31 Enervault Corporation Operating a redox flow battery with a negative electrolyte imbalance
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes

Also Published As

Publication number Publication date
JPH06325784A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
CN111187913B (en) Method for selectively recovering lithium and copper in waste lithium iron phosphate batteries
CN1938436B (en) Recovery of metals from oxidised metalliferous materials
EP2584055B1 (en) Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel
CN102031383B (en) Wet process for lead-silver residues
JP3242205B2 (en) Method for producing electrolyte solution for redox battery
KR102130899B1 (en) A Preparing Method Of Nickel-Cobalt-Manganese Complex Sulfate Solution By Removing Calcium and Silicon Ions Simultaneously In Recycling A Wasted Lithium Secondary Battery Cathode Material
CN106350673B (en) A kind of method for controlling current potential selective precipitation separation cobalt
CN105648214B (en) It is a kind of to control the method that current potential vulcanization separates valuable metal in solution
CN102286759A (en) Method for preparing electrodeposited zinc from high-fluorine high-chlorine secondary zinc oxide powder
CN112430740B (en) Method for strengthening vanadium-chromium separation by cooperatively roasting vanadium slag through calcium salt and manganese salt
WO2014142003A1 (en) Sodium tungstate production method
Devi et al. Oxidation of chalcopyrite in the presence of manganese dioxide in hydrochloric acid medium
KR20200083578A (en) How to dispose of lithium ion waste battery
WO2023035886A1 (en) Method for producing cuprous chloride through high-value utilization of chlorine ion-containing wastewater
JPH05255772A (en) Method for recovering zinc and lead from flue dust generated in electric steelmaking, method for recirculating refined metal into furnace and apparatus for executing this method
Pan et al. Ammonium vanadate/ammonia precipitation for vanadium production from a high vanadate to sodium ratio solution obtained via membrane electrolysis method
CN102864289A (en) Method for performing annealing and acid-washing on SUS430 stainless steel
Liu et al. Water leaching of roasted vanadium slag: Desiliconization and precipitation of ammonium vanadate from vanadium solution
EP0021809A1 (en) Chloride leaching
CN114988381A (en) Method for preparing iron phosphate by using waste lithium iron phosphate battery
Sergeev et al. Processing of technogenic lead-containing intermediates using complexing agent solutions
CN104141047B (en) A kind of recycling processing method of molybdenum iron slag
CN113860363A (en) Method for removing vanadium impurities in titanium tetrachloride
JP2005060220A (en) Minute tin oxide powder, its manufacture method, and its use
CN109913743A (en) A method of molybdenum-iron is prepared using molybdenum carbide and iron oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees