JP3241096B2 - MRI superconducting magnet device equipped with iron shim static magnetic field correction means - Google Patents

MRI superconducting magnet device equipped with iron shim static magnetic field correction means

Info

Publication number
JP3241096B2
JP3241096B2 JP14060792A JP14060792A JP3241096B2 JP 3241096 B2 JP3241096 B2 JP 3241096B2 JP 14060792 A JP14060792 A JP 14060792A JP 14060792 A JP14060792 A JP 14060792A JP 3241096 B2 JP3241096 B2 JP 3241096B2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
static magnetic
gradient magnetic
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14060792A
Other languages
Japanese (ja)
Other versions
JPH05329129A (en
Inventor
勇二 井上
Original Assignee
ジーイー横河メディカルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーイー横河メディカルシステム株式会社 filed Critical ジーイー横河メディカルシステム株式会社
Priority to JP14060792A priority Critical patent/JP3241096B2/en
Publication of JPH05329129A publication Critical patent/JPH05329129A/en
Application granted granted Critical
Publication of JP3241096B2 publication Critical patent/JP3241096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はMRIに用いる勾配磁場
コイルに関し、特に鉄シム静磁場補正手段を備えたMR
I用超電導磁石装置の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient coil used for MRI, and more particularly to an MR coil provided with an iron shim static magnetic field correction means.
The present invention relates to improvement of a superconducting magnet device for I.

【0002】[0002]

【従来の技術】核磁気共鳴現象を用いて特定原子核に注
目した被検体の断層像を得るMRI装置は従来から知ら
れている。このMRI装置の概要を簡単に説明する。
2. Description of the Related Art An MRI apparatus for obtaining a tomographic image of a subject focused on a specific nucleus using a nuclear magnetic resonance phenomenon has been conventionally known. An outline of the MRI apparatus will be briefly described.

【0003】原子核は磁気を帯びた回転している独楽と
みることができるが、それを例えばz軸方向の静磁場H
0 の中に置くと、前記の原子核は次式に示す核速度ω0
で歳差運動をする。これをラモアの歳差運動という。
The nucleus can be regarded as a rotating top with magnetism, which is, for example, a static magnetic field H in the z-axis direction.
0 , the nucleus has a nuclear velocity ω 0
To precess. This is called Lamore precession.

【0004】今、静磁場のあるz軸に垂直な軸、例え
ば、x軸に高周波コイルを配置し、xy面内で回転する
前記の角速度ω0 の高周波回転磁場を印加すると磁気共
鳴が起こり、静磁場H0 のもとではゼーマン分裂をして
いた原子核の集団は共鳴条件を満足する高周波磁場によ
って準位間の遷移を生じ、エネルギー準位の高い方の準
位に遷移する。ここで、核磁気回転比γは原子核の種類
によって異なるので、共鳴周波数によって当該原子核を
特定することができる。更にその共鳴の強さを測定すれ
ば、その原子核の存在量を知ることができる。共鳴後緩
和時間と呼ばれる時定数で定まる時間の間に高い準位へ
励起された原子核は低い準位へ戻ってエネルギーの放射
を行う。
Now, when a high-frequency coil is arranged on an axis perpendicular to the z-axis where the static magnetic field is present, for example, the x-axis, and a high-frequency rotating magnetic field having the above-mentioned angular velocity ω 0 rotating in the xy plane is applied, magnetic resonance occurs. A group of nuclei that have undergone Zeeman splitting under the static magnetic field H 0 undergo transition between levels due to a high-frequency magnetic field that satisfies resonance conditions, and transition to a higher energy level. Here, since the nuclear magnetic rotation ratio γ differs depending on the type of the nucleus, the nucleus can be specified by the resonance frequency. Further, by measuring the intensity of the resonance, the abundance of the nucleus can be known. Nuclei excited to a high level during a time determined by a time constant called a relaxation time after resonance return to a low level and emit energy.

【0005】上記の原子核集団の共鳴条件は ν=γH0 /2π で与えられる。ここで、νは共鳴周波数,H0 は静磁場
の強さである。従って共鳴周波数は磁場の強さに比例す
ることが分かる。このため静磁場に線形の勾配磁場を重
畳させて、位置によって異なる強さの磁場を与え、共鳴
周波数を変化させて位置情報を得ており、この目的のた
めに筒形の静磁場コイルの内側に勾配磁場コイルが位置
されている。
[0005] The resonance condition of the above nucleus ensemble is given by ν = γH 0 / 2π. Here, ν is the resonance frequency, and H 0 is the strength of the static magnetic field. Therefore, it can be seen that the resonance frequency is proportional to the strength of the magnetic field. For this purpose, a linear gradient magnetic field is superimposed on the static magnetic field, magnetic fields of different strengths are given depending on the position, and the resonance frequency is changed to obtain position information. The gradient coil is located at

【0006】ところで、MRI装置において、静磁場が
大きいとSN比が向上するために、強い磁場が得られそ
の磁場が安定していることから超電導磁石が用いられる
ようになってきている。
In the MRI apparatus, when the static magnetic field is large, the SN ratio is improved, so that a superconducting magnet is used because a strong magnetic field is obtained and the magnetic field is stable.

【0007】従来、超電導磁石を用いる磁石装置では、
冷却効率を良くするため、熱伝導度の良いアルミニウム
製の筒で磁石を覆っているが、勾配磁場コイルに勾配電
流を流す場合、断続して流すため、アルミニウム製の筒
に渦電流が発生し、この渦電流により新たに磁場が生じ
て、本来の磁場を乱す問題があった。
Conventionally, in a magnet device using a superconducting magnet,
To improve cooling efficiency, the magnet is covered with an aluminum cylinder with good thermal conductivity.However, when a gradient current is applied to the gradient coil, an eddy current is generated in the aluminum cylinder because it flows intermittently. However, there is a problem that a new magnetic field is generated by the eddy current and disturbs the original magnetic field.

【0008】このため、勾配磁場コイルを2層にし、内
外コイルの電流の向きを逆にして、内側コイルで発生す
る磁場のうち、外側に出る磁場を消去して、アルミニウ
ム製の筒に渦電流を発生させないようにする2層の勾配
磁場コイルから成るシールド勾配磁場コイルが用いられ
るようになった。
For this reason, the gradient magnetic field coil is formed in two layers, the directions of the currents of the inner and outer coils are reversed, and the magnetic field generated in the inner coil, which is emitted to the outside, is eliminated, and the eddy current is supplied to the aluminum cylinder. Shielded gradient coils have been used which consist of two layers of gradient coils to prevent the generation of phenomena.

【0009】このシールド勾配磁場コイルを用いた磁石
装置を図4に示す。図において、1は静磁場用の磁石
で、内側に静磁場の均一性を保持するために静磁場補正
用の鉄シムアセンブリ2が取り付けられて一体化されて
いる。3は内部に収容される被検体に勾配磁場を加える
ための内側勾配磁場コイル、4は内側勾配磁場コイル3
の外側に発生する漏洩磁場を零にするためのキャンセル
用の外側勾配磁場コイルで、このように2重構造にした
勾配磁場コイルをシールド勾配磁場コイルと言ってい
る。ここで、D1 は内側勾配磁場コイル3の直径、D2
は外側勾配磁場コイル4の直径、Ds は鉄シムアセンブ
リ2のクリアボア、Dc は静磁場用磁石1のクリアボア
である。尚、クリアボアは開口径のことである。
FIG. 4 shows a magnet device using the shield gradient magnetic field coil. In the figure, reference numeral 1 denotes a magnet for a static magnetic field, on which an iron shim assembly 2 for correcting a static magnetic field is attached and integrated in order to maintain the uniformity of the static magnetic field. Reference numeral 3 denotes an inner gradient magnetic field coil for applying a gradient magnetic field to a subject housed therein, and 4 denotes an inner gradient magnetic field coil 3
The outer gradient magnetic field coil for canceling the leakage magnetic field generated outside the coil is made zero, and the gradient magnetic field coil having such a double structure is called a shield gradient magnetic field coil. Here, D 1 is the diameter of the inner gradient magnetic field coil 3, D 2
The diameter of the outer gradient coil 4, D s is the iron shims assembly 2 Kuriaboa and D c is the Kuriaboa magnet for static magnetic field 1. The clear bore is the diameter of the opening.

【0010】[0010]

【発明が解決しようとする課題】ところで、MRI装置
で容積の大きな部分は上記の磁石装置であるが、コスト
ダウンの面から、又、設置場所の面から静磁場用磁石1
のクリアボアDc は小型化される傾向にある。一方、被
検体が収容される開口の患者ボアは可能な限り広くした
い要望がある。従って、上記シールド勾配磁場コイルの
内側勾配磁場コイル3の直径D1 を大きくすることが望
まれる。
By the way, the large volume part of the MRI apparatus is the above-mentioned magnet apparatus. However, from the viewpoint of cost reduction and the place of installation, the magnet for static magnetic field 1 is required.
'S Kuriaboa D c tends to be miniaturized. On the other hand, there is a demand for making the patient bore of the opening in which the subject is accommodated as wide as possible. Therefore, it is desired to increase the diameter D 1 of the inner gradient magnetic field coil 3 of the shield gradient magnetic field coil.

【0011】又、図4に示すように鉄片を使用したパシ
ブシムが実用され、その鉄シムアセンブリ2を静磁場用
磁石1のクリアボア内に置くため静磁場用磁石1のクリ
アボアDc が更に小さくなり、鉄シムアセンブリ2のク
リアボアDs まで縮小されてしまう。
As shown in FIG. 4, a passive shim using an iron piece is put to practical use. Since the iron shim assembly 2 is placed in the clear bore of the static magnetic field magnet 1, the clear bore D c of the static magnetic field magnet 1 is further reduced. , it would be reduced to Kuriaboa D s of the iron shim assembly 2.

【0012】シールド勾配磁場コイルの効率ηは次式で
表される。 η∝{1−(D2 /D1 -4-1 この効率を良くするためには、両コイルの直径の比D2
/D1 を大きくする必要があるが、鉄シムアセンブリ2
のクリアボアDsに制限されてしまう。
The efficiency η of the shield gradient magnetic field coil is expressed by the following equation. η∝ {1- (D 2 / D 1 ) -4-1 In order to improve the efficiency, the ratio D 2 of the diameters of the two coils is
/ D 1 needs to be increased, but iron shim assembly 2
It is limited to the Kuriaboa D s.

【0013】本発明は上記の点に鑑みてなされたもの
で、その目的は、静磁場用磁石のクリアボアと内側勾配
磁場コイルの直径を変えないで、シールド勾配磁場コイ
ルの効率を良くすることのできる鉄シム静磁場補正手段
を備えたMRI用超電導磁石装置を実現することであ
る。
The present invention has been made in view of the above points, and has as its object to improve the efficiency of the shield gradient magnetic field coil without changing the diameter of the clear bore of the static magnetic field magnet and the diameter of the inner gradient magnetic field coil. An object of the present invention is to realize an MRI superconducting magnet device provided with an iron shim static magnetic field correction means.

【0014】[0014]

【課題を解決するための手段】前記の課題を解決する本
発明は、静磁場用磁石のクリアボア内に該静磁場用磁石
の磁場補正用の鉄シムアセンブリを設け、勾配磁場を作
る内側勾配磁場コイルとその外部に生ずる勾配磁場を打
ち消すための外側勾配磁場コイルとで構成されるシール
ド勾配コイルを前記静磁場用磁石のクリアボア内に設け
た鉄シム静磁場補正手段を備えたMRI用超電導磁石装
置において、前記鉄シムアセンブリを前記外側勾配磁場
コイルの内側に取り付けることにより外側勾配磁場コイ
ルの直径を大きくすることを可能にしたことを特徴とす
るものである。
According to the present invention, there is provided an inner gradient magnetic field for forming a gradient magnetic field by providing an iron shim assembly for correcting a magnetic field of the static magnetic field magnet in a clear bore of the static magnetic field magnet. MRI superconducting magnet device provided with iron shim static magnetic field correction means in which a shield gradient coil composed of a coil and an outer gradient magnetic field coil for canceling a gradient magnetic field generated outside thereof is provided in a clear bore of the static magnetic field magnet. , Wherein the diameter of the outer gradient magnetic field coil can be increased by mounting the iron shim assembly inside the outer gradient magnetic field coil.

【0015】[0015]

【作用】静磁場用磁石のクリアボア内に設けられる鉄シ
ムアセンブリを外側勾配磁場コイルの内側に取り付ける
ことにより、外側勾配磁場コイルの直径を大きくするこ
とができるようになり、内側勾配磁場コイルとの直径比
が大きくなって、外側勾配磁場コイルを用いることによ
り必要となる電流を小さくすることができる。
By attaching an iron shim assembly provided in the clear bore of the static magnetic field magnet to the inside of the outer gradient magnetic field coil, the diameter of the outer gradient magnetic field coil can be increased, and the outer gradient magnetic field coil can be connected to the outer gradient magnetic field coil. As the diameter ratio increases, the required current can be reduced by using outer gradient coils.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の一実施例の磁石装置の概略
構成図である。図において、図4と同等の動作をする部
分には同一の符号を付してある。静磁場磁石1の直径を
c,鉄シムアセンブリ2の直径をDs とする。内側勾
配磁場コイル(以下内コイルという)3はX,Y,Z軸
の3種のコイルを有する直径D1 のコイルアセンブリ、
外側勾配磁場コイル(以下外コイルという)4は同様に
X,Y,Z軸の3種のコイルを有するコイルアセンブリ
で、内コイル3と外コイル4とでシールド勾配磁場コイ
ルを構成している。鉄シムアセンブリ2は静磁場用磁石
1の磁場補正のためのパシブシムで、厚さ0.1mm程度
で、大きさが2×10cm程度の鉄片が所定の場所である
300程度の位置に固定できるような構造を有する構造
体である。 上記の内コイル3と外コイル4とは直列接
続されて駆動電源(図示せず)に接続されている。この
ことにより、内コイル3の内部、即ちイメージング領域
内に勾配磁場を発生すると共に、外コイル4の外部、静
磁場用磁石1の部分の熱シールド体であるアルミニウム
の筒及びヘリウム槽付近には勾配磁場コイルによる磁界
が発生しないように、外コイル4と内コイル3のコイル
電流分布が形成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a magnet device according to one embodiment of the present invention. In the figure, parts performing the same operations as those in FIG. 4 are denoted by the same reference numerals. Let the diameter of the static magnetic field magnet 1 be D c and the diameter of the iron shim assembly 2 be D s . An inner gradient magnetic field coil (hereinafter referred to as an inner coil) 3 is a coil assembly having a diameter D 1 having three kinds of coils of X, Y, and Z axes,
Similarly, an outer gradient magnetic field coil (hereinafter referred to as an outer coil) 4 is a coil assembly having three types of coils of X, Y, and Z axes, and the inner coil 3 and the outer coil 4 constitute a shield gradient magnetic field coil. The iron shim assembly 2 is a passive shim for correcting the magnetic field of the static magnetic field magnet 1 and has a thickness of about 0.1 mm and a size of about 2 × 10 cm so that an iron piece can be fixed at a predetermined position of about 300. It is a structure having a simple structure. The inner coil 3 and the outer coil 4 are connected in series and connected to a drive power supply (not shown). As a result, a gradient magnetic field is generated inside the inner coil 3, that is, in the imaging area, and an aluminum cylinder and a helium tank, which are heat shields of the portion of the static magnetic field magnet 1, are provided outside the outer coil 4. The coil current distribution of the outer coil 4 and the inner coil 3 is formed so that a magnetic field is not generated by the gradient coil.

【0017】この鉄シムアセンブリ2は外コイル4と一
体構造となっていて、外コイル4の内側に固定されて支
持されている。又、外コイル4は静磁場用磁石1に支持
機構を持っており、内コイル3は鉄シムアセンブリ2と
外コイル4の一体となった構造体に支持されている。
The iron shim assembly 2 has an integral structure with the outer coil 4 and is fixed and supported inside the outer coil 4. The outer coil 4 has a support mechanism for the static magnetic field magnet 1, and the inner coil 3 is supported by an integrated structure of the iron shim assembly 2 and the outer coil 4.

【0018】次に、上記のように構成された実施例の装
置の動作を説明する。内コイル3は内側に勾配磁場を発
生するが、外側に対する漏洩磁場は外コイル4に流れて
いる逆向きの電流によってキャンセルされて、静磁場用
磁石1を覆っているアルミニウムの筒やヘリウム槽付近
には勾配磁場を発生しない。
Next, the operation of the apparatus of the embodiment configured as described above will be described. The inner coil 3 generates a gradient magnetic field inside, but the leakage magnetic field to the outside is canceled by the reverse current flowing through the outer coil 4, and the vicinity of the aluminum cylinder or the helium tank covering the static magnetic field magnet 1. Does not generate a gradient magnetic field.

【0019】今、内コイル3のみの場合の勾配磁場の強
度G0 を得るために必要な電流をI 0 とすると、外コイ
ル4が加わったことで、同一の勾配磁場強度G0 を得る
ために必要な電流I′は、 I′=I0 {1−(D2 /D1 -4-1 ・・・(1) となる。
Now, the strength of the gradient magnetic field when only the inner coil 3 is used
Degree G0The current required to obtain 0Then, outside carp
The same gradient magnetic field strength G0Get
The current I 'required for this is: I' = I0{1- (DTwo/ D1)-Four-1 ... (1)

【0020】これは、勾配磁場コイルの外側の磁場のふ
るまいBn は、Bn ∝r-3(rはコイル半径)、内側の
勾配磁場強度Gn はGn ∝r-1となることによる。図2
において、内コイル3の半径をr1 ,外コイル4の半径
をr2 とすると、点rm における磁場を零とするため
に、外コイル4に流す電流I2 は内コイル3の(r2
1 -3でよい。この時、外コイル4の内側にできる勾
配磁場はコイル径の比で減るため、 (r2 /r1 -3×(r2 /r1 -1 となる。
This is because the behavior B n of the magnetic field outside the gradient coil is B n nr -3 (r is the radius of the coil), and the gradient magnetic field strength G n inside is G n ∝r -1. . FIG.
In, r 1 radius of the inner coil 3, and the radius of the outer coil 4 and r 2, in order to zero the magnetic field at the point r m, the current I 2 flowing through the outer coil 4 of the coil 3 (r 2 /
r 1 ) -3 is sufficient. At this time, the gradient magnetic field generated inside the outer coil 4 is reduced by the ratio of the coil diameters, so that (r 2 / r 1 ) −3 × (r 2 / r 1 ) −1 .

【0021】図3は(1)式から得られる外コイル4と
内コイル3との直径比に対する励磁電流比の曲線であ
る。全体の容積の面から静磁場用磁石のクリアボアを一
定とし、被検体収容の面から内コイル3の径を一定にす
る条件の下で、鉄シムアセンブリ2を外コイル4の内側
に設けるようにした本実施例の場合と、従来の磁石装置
との寸法例を表1に示す。
FIG. 3 is a curve of the exciting current ratio to the diameter ratio of the outer coil 4 and the inner coil 3 obtained from the equation (1). The iron shim assembly 2 is provided inside the outer coil 4 under the condition that the clear bore of the magnet for static magnetic field is constant from the surface of the whole volume and the diameter of the inner coil 3 is constant from the surface of the subject. Table 1 shows examples of dimensions of the present embodiment and a conventional magnet device.

【0022】[0022]

【表1】 [Table 1]

【0023】表1において、(イ)は従来例と図1の実
施例との各部の直径の一例を示したもの、(ロ)は
(イ)に示す従来例の磁石装置と本実施例の磁石装置に
おける外コイル4と内コイル3との直径比と、その直径
比における(1)式の励磁電流の比を示した表で、この
表には、同じ勾配を得るのに、本実施例では従来のコイ
ルの場合の0.84倍の電流ですむことが示されてい
る。
In Table 1, (a) shows an example of the diameter of each part of the conventional example and the embodiment of FIG. 1, and (b) shows the conventional magnet apparatus shown in (a) and the present embodiment. A table showing the diameter ratio between the outer coil 4 and the inner coil 3 in the magnet device and the ratio of the exciting current of the equation (1) in the diameter ratio is shown in the table. It shows that the current required is 0.84 times that of the conventional coil.

【0024】以上説明したように本実施例によれば、鉄
シムアセンブリを外コイルの内側に設けるようにしたた
め、外コイルの直径を大きくすることができるようにな
り、シールド勾配磁場コイルの効率が良くなって、同じ
勾配磁場強度を得るための電流を小さくすることが可能
となった。従って、同一寸法の磁石と内コイルとを用い
て同じ強度の勾配磁場を得るために要する電流が少なく
てすむようになり、又、同一の電流を与えなくても良い
とすれば、外形寸法を小さくすることができるようにな
る。
As described above, according to this embodiment, since the iron shim assembly is provided inside the outer coil, the diameter of the outer coil can be increased, and the efficiency of the shield gradient magnetic field coil can be reduced. As a result, the current for obtaining the same gradient magnetic field strength can be reduced. Therefore, the current required to obtain a gradient magnetic field of the same strength using the magnet and the inner coil of the same size can be reduced, and if the same current need not be applied, the outer dimensions can be reduced. Will be able to

【0025】[0025]

【発明の効果】以上詳細に説明したように本発明によれ
ば、磁石のクリアボアと内コイルの直径を変えることな
く、シールド勾配磁場コイルの効率を良くすることがで
きるようになり、実用上の効果は大きい。
As described above in detail, according to the present invention, it is possible to improve the efficiency of the shield gradient magnetic field coil without changing the diameter of the clear bore of the magnet and the diameter of the inner coil. The effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】内コイルと外コイルの半径の説明図である。FIG. 2 is an explanatory diagram of radii of an inner coil and an outer coil.

【図3】外コイルと内コイルの直径比に対する励磁電流
比の曲線図である。
FIG. 3 is a curve diagram of an exciting current ratio with respect to a diameter ratio of an outer coil and an inner coil.

【図4】従来のシールド勾配磁場コイルを用いた磁石装
置の概略構成図である。
FIG. 4 is a schematic configuration diagram of a magnet device using a conventional shield gradient magnetic field coil.

【符号の説明】[Explanation of symbols]

1 静磁場用磁石 2 鉄シムアセンブリ 3 内側勾配磁場コイル 4 外側勾配磁場コイル Reference Signs List 1 magnet for static magnetic field 2 iron shim assembly 3 inner gradient magnetic field coil 4 outer gradient magnetic field coil

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 静磁場用磁石(1)のクリアボア内に該
静磁場用磁石(1)の磁場補正用の鉄シムアセンブリ
(2)を設け、勾配磁場を作る内側勾配磁場コイル
(3)とその外部に生ずる勾配磁場を打ち消すための外
側勾配磁場コイル(4)とで構成されるシールド勾配コ
イルを前記静磁場用磁石(1)のクリアボア内に設けた
鉄シム静磁場補正手段を備えたMRI用超電導磁石装置
において、前記鉄シムアセンブリ(2)を前記外側勾配
磁場コイル(4)の内側に取り付けることにより外側勾
配磁場コイル(4)の直径を大きくすることを可能にし
たことを特徴とする鉄シム静磁場補正手段を備えたMR
I用超電導磁石装置。
1. An inner gradient magnetic field coil (3) for providing a gradient magnetic field by providing an iron shim assembly (2) for correcting the magnetic field of the static magnetic field magnet (1) in a clear bore of the static magnetic field magnet (1). An MRI provided with iron shim static magnetic field correction means in which a shield gradient coil composed of an outer gradient magnetic field coil (4) for canceling a gradient magnetic field generated outside thereof is provided in a clear bore of the static magnetic field magnet (1). In the superconducting magnet device for use, the diameter of the outer gradient magnetic field coil (4) can be increased by mounting the iron shim assembly (2) inside the outer gradient magnetic field coil (4). MR with iron shim static magnetic field correction means
Superconducting magnet device for I.
JP14060792A 1992-06-01 1992-06-01 MRI superconducting magnet device equipped with iron shim static magnetic field correction means Expired - Fee Related JP3241096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14060792A JP3241096B2 (en) 1992-06-01 1992-06-01 MRI superconducting magnet device equipped with iron shim static magnetic field correction means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14060792A JP3241096B2 (en) 1992-06-01 1992-06-01 MRI superconducting magnet device equipped with iron shim static magnetic field correction means

Publications (2)

Publication Number Publication Date
JPH05329129A JPH05329129A (en) 1993-12-14
JP3241096B2 true JP3241096B2 (en) 2001-12-25

Family

ID=15272648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14060792A Expired - Fee Related JP3241096B2 (en) 1992-06-01 1992-06-01 MRI superconducting magnet device equipped with iron shim static magnetic field correction means

Country Status (1)

Country Link
JP (1) JP3241096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020264C1 (en) * 2000-04-25 2001-10-11 Siemens Ag Electric coil, especially gradient coil for medical magnetic resonance device

Also Published As

Publication number Publication date
JPH05329129A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JP6832852B2 (en) Ferromagnetic enhancement for magnetic resonance imaging
US4652824A (en) System for generating images and spacially resolved spectra of an examination subject with nuclear magnetic resonance
JPH0576592B2 (en)
US5886548A (en) Crescent gradient coils
US5721523A (en) Compact MRI superconducting magnet
US20080164878A1 (en) Minimum Energy Shim Coils For Magnetic Resonance
JP5512003B2 (en) Gradient coil system with correction winding and manufacturing method thereof
JPS63272335A (en) Magnetic resonance imaging apparatus
JPH0763457B2 (en) Magnetic resonance imaging device
JPH0669027A (en) Magnetic field generation device
JP4421079B2 (en) MRI gradient coil
JPH0353584B2 (en)
JPH0653124B2 (en) Correction coil device
US9766312B2 (en) Easily accessible deep-frozen NMR shim arrangement
JPH11267112A (en) Gradient coil assembly for magnetic resonance imaging system
JPH0884720A (en) Magnetic resonance image pickup device and method of designing gradient coil for magnetic resonance image pickup device
US5568110A (en) Closed MRI magnet having reduced length
JP2001224571A (en) Open type superconductive magnetic and magnetic resonance imaging instrument using it
JPH0471324B2 (en)
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
JP3241096B2 (en) MRI superconducting magnet device equipped with iron shim static magnetic field correction means
JPH11276457A (en) Gradient coil assembly for magnetic resonance image formation system
JP3980105B2 (en) Static magnetic field generator and magnetic resonance imaging apparatus
US6617853B2 (en) Magnet arrangement comprising a superconducting magnet coil system and a magnetic field shaping device for high-resolution magnetic resonance spectroscopy
JP2592920B2 (en) Superconducting magnet for magnetic resonance imaging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees