JP3239617B2 - Semiconductor device reliability test method - Google Patents

Semiconductor device reliability test method

Info

Publication number
JP3239617B2
JP3239617B2 JP15719994A JP15719994A JP3239617B2 JP 3239617 B2 JP3239617 B2 JP 3239617B2 JP 15719994 A JP15719994 A JP 15719994A JP 15719994 A JP15719994 A JP 15719994A JP 3239617 B2 JP3239617 B2 JP 3239617B2
Authority
JP
Japan
Prior art keywords
oxide film
electric field
time
life
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15719994A
Other languages
Japanese (ja)
Other versions
JPH0823019A (en
Inventor
典雄 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15719994A priority Critical patent/JP3239617B2/en
Publication of JPH0823019A publication Critical patent/JPH0823019A/en
Application granted granted Critical
Publication of JP3239617B2 publication Critical patent/JP3239617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の信頼性試験
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing the reliability of a semiconductor device.

【0002】[0002]

【従来の技術】半導体集積回路装置の高密度化、高集積
化、微細化の進行に伴い、それを構成するMOSトラン
ジスタまたはMOSキャパシタで用いられるSiO2
(以下酸化膜と称する)は薄膜化される傾向にある。こ
の一方で、半導体集積回路装置の電源電圧が通常一定に
保たれることから、酸化膜に印加される電界強度は薄膜
化に伴って増大する。この状況の下で、酸化膜の経時絶
縁破壊(TDDB:TimeDependent Dielectric Breakdo
wn)が信頼性において重大な問題となってきている。こ
れは酸化膜に電界が印加された場合、電界の印加開始か
らある時間が経過した時点で酸化膜が破壊し、電気的な
絶縁性が失われて、短絡が生じる現象である(この時間
を以下酸化膜寿命と称する)。このように酸化膜寿命推
定のための経時絶縁破壊試験が半導体集積回路装置の設
計・開発上必須の項目となっており、その重要性はさら
に増大する傾向にある。従来の酸化膜寿命の推定方法を
以下に示す。
2. Description of the Related Art With the progress of high density, high integration and miniaturization of a semiconductor integrated circuit device, an SiO 2 film (hereinafter referred to as an oxide film) used for a MOS transistor or a MOS capacitor constituting the device has been reduced in thickness. Tend to be. On the other hand, since the power supply voltage of the semiconductor integrated circuit device is usually kept constant, the intensity of the electric field applied to the oxide film increases as the thickness decreases. Under this circumstance, the time-dependent dielectric breakdown (TDDB) of the oxide film is performed.
wn) has become a serious problem in reliability. This is a phenomenon in which, when an electric field is applied to an oxide film, the oxide film is destroyed after a certain period of time has elapsed since the start of the application of the electric field, the electrical insulation is lost, and a short circuit occurs. Hereinafter referred to as oxide film life). As described above, a time-dependent dielectric breakdown test for estimating the life of an oxide film is an essential item in the design and development of a semiconductor integrated circuit device, and its importance tends to further increase. A conventional method for estimating the life of an oxide film will be described below.

【0003】図3および図4は従来の経時絶縁破壊から
酸化膜寿命を推定する方法を示したものである。図3は
各ストレス電界強度における酸化膜寿命の測定結果、図
4は酸化膜寿命の推定方法の例である。
FIGS. 3 and 4 show a conventional method for estimating the lifetime of an oxide film from dielectric breakdown with time. FIG. 3 shows the measurement results of the oxide film life at each stress electric field strength, and FIG. 4 shows an example of the method of estimating the oxide film life.

【0004】図3において、横軸は酸化膜に電界を印加
するストレス時間、右の縦軸は酸化膜経時絶縁破壊によ
る累積故障率P、左の縦軸は累積故障率Pから計算され
たln(−ln(1−P))を示している。図3におい
て、1は各ストレス電界強度の下で個々の酸化膜破壊が
生じた時点での累積故障率、2は各ストレス電界強度の
下での累積故障率の時間依存性、3は酸化膜経時絶縁破
壊による50%累積故障時間の実測値である。累積故障
率Pを図3の様に横軸を時間の対数、縦軸をln(−l
n(1−P))のグラフ上にプロットすることは一般に
ワイブルプロットと呼ばれている。故障がワイブル分布
に従う場合、ワイブルプロットの結果は直線となる。ワ
イブルプロットは酸化膜の経時絶縁破壊の累積故障率を
グラフ化する方法として広く用いられている。
In FIG. 3, the horizontal axis represents the stress time during which an electric field is applied to the oxide film, the right vertical axis represents the cumulative failure rate P due to the dielectric breakdown of the oxide film with time, and the left vertical axis represents ln calculated from the cumulative failure rate P. (-Ln (1-P)). In FIG. 3, 1 is the cumulative failure rate at the time when an individual oxide film breakdown occurs under each stress electric field strength, 2 is the time dependency of the cumulative failure rate under each stress electric field strength, and 3 is the oxide film. It is a measured value of 50% cumulative failure time due to aging dielectric breakdown. As shown in FIG. 3, the cumulative failure rate P is represented by the logarithm of time on the horizontal axis and ln (−l
Plotting on the graph of n (1-P)) is generally called Weibull plot. If the fault follows the Weibull distribution, the result of the Weibull plot is a straight line. The Weibull plot is widely used as a method for graphing the cumulative failure rate of dielectric breakdown with time of an oxide film.

【0005】図4において、横軸は酸化膜に印加される
電界強度、縦軸は酸化膜寿命を示している。図4におい
て、4は酸化膜寿命の推定値、5は実使用時の酸化膜印
加電界強度の最大値、6は実使用時の酸化膜寿命の推定
値、7は50%累積故障時間の実測値、8はストレス電
界強度である。
In FIG. 4, the horizontal axis represents the electric field intensity applied to the oxide film, and the vertical axis represents the life of the oxide film. In FIG. 4, 4 is an estimated value of the oxide film life, 5 is the maximum value of the oxide film applied electric field strength in actual use, 6 is an estimated value of the oxide film life in actual use, and 7 is the actual measurement of 50% cumulative failure time. The value 8 is the stress field strength.

【0006】酸化膜寿命を推定するため同一の形状、寸
法、製造プロセスにより形成された同等の酸化膜をキャ
パシタ絶縁膜とするMOSキャパシタを多数準備され
る。これが複数の組に分けられる。各組に対しては、そ
れぞれ、図4に示した実使用時の酸化膜印加電界強度の
最大値5よりも高いストレス電界強度8を、定電圧スト
レスの形で印加する。このストレス印加により、各組の
酸化膜は経時絶縁破壊を生じ、時間の経過に伴って故障
となる酸化膜の個数が増大する。
In order to estimate the life of an oxide film, a number of MOS capacitors are prepared in which an equivalent oxide film formed by the same shape, size and manufacturing process is used as a capacitor insulating film. This is divided into multiple sets. For each set, respectively, a maximum value of 5 by remote high stress field strength 8 of oxide film applied electric field strength in actual use as shown in FIG. 4, it is applied in the form of a constant voltage stress. Due to the application of the stress, dielectric breakdown occurs with time in each set of oxide films, and the number of failure-producing oxide films increases with time.

【0007】この各ストレス電界強度の下で個々の酸化
膜破壊が生じた時点での累積故障率1を、図3に示すよ
うに、ワイブルプロットする。経験的に酸化膜経時絶縁
破壊の故障はワイブル分布に従い、このため累積故障率
の時間依存性のワイブルプロットは通常直線となる。こ
れから各ストレス電界強度の下で個々の酸化膜破壊が生
じた時点での累積故障率1に対して回帰直線を求めるこ
とにより、各ストレス電界強度の下での累積故障率1の
時間依存性2を求める。この累積故障率1の時間依存性
2を用いて、各ストレス電界強度に対して累積故障率1
が50%に達する時間、すなわち50%累積故障時間の
実測値3を求める。
As shown in FIG. 3, a Weibull plot is made of the cumulative failure rate 1 at the time when individual oxide film breakdown occurs under each stress electric field strength. Empirically, the failure due to the time-dependent dielectric breakdown of the oxide film follows the Weibull distribution, so that the Weibull plot of the time dependence of the cumulative failure rate is usually a straight line. From this, a regression line is obtained for the cumulative failure rate 1 at the time when each oxide film breakdown occurs under each stress electric field strength, and the time dependency 2 of the cumulative failure rate 1 under each stress electric field strength is obtained. Ask for. Using the time dependency 2 of the cumulative failure rate 1, the cumulative failure rate 1
Is 50%, that is, the actual measured value 3 of the 50% cumulative failure time.

【0008】この50%累積故障時間を酸化膜寿命とみ
なして、図4に示すように50%累積故障時間の実測値
を横軸酸化膜に印加される電界強度、縦軸酸化膜寿命
の片対数グラフにプロットする。経験的には50%累積
故障時間の実測値はこのグラフ上で直線となる。これ
にもとづいて50%累積故障時間の実測値の回帰直
線、すなわち酸化膜寿命の推定値4を求め、この直線を
用いて実使用時の酸化膜印加電界強度の最大値5におけ
る実使用時の酸化膜寿命の推定値6を求める。
[0008] The 50% cumulative failure time is regarded as the oxide film life, and as shown in FIG.
7 is plotted on a semilogarithmic graph of the electric field intensity applied to the oxide film on the horizontal axis and the life of the oxide film on the vertical axis. Empirically, the measured value 7 of the 50% cumulative failure time is a straight line on this graph. Based on this, a regression line of the actually measured value 7 of the 50% cumulative failure time, that is, the estimated value 4 of the oxide film life, is obtained, and this straight line is used to obtain the maximum value 5 of the electric field strength applied to the oxide film in the actual use. The estimated value 6 of the oxide film life of the above is obtained.

【0009】拡散工程を終了したウエハ上のMOSキャ
パシタを用いて酸化膜の信頼性を短時間に評価するに
は、評価対象となる酸化膜をキャパシタ絶縁膜とする多
数のMOSキャパシタをウエハ状態のままで試験する。
この場合、オートプローバを用いてウエハ上のMOSキ
ャパシタに対して、測定点を移動しながら順次プロービ
ングして測定する。
In order to evaluate the reliability of an oxide film in a short time using a MOS capacitor on a wafer that has completed a diffusion process, a large number of MOS capacitors using an oxide film to be evaluated as a capacitor insulating film in a wafer state are used. Test as is.
In this case, measurement is performed by sequentially probing the MOS capacitor on the wafer while moving the measurement point using an autoprober.

【0010】[0010]

【発明が解決しようとする課題】しかし従来の酸化膜寿
命の推定方法には以下の問題点があった。
However, the conventional method for estimating the life of an oxide film has the following problems.

【0011】一般に製造プロセス開発の際にプロセス条
件が頻繁に変更される。このためプロセス条件の変更に
より酸化膜寿命が変化する可能性があることから、酸化
膜寿命の推定を頻繁に行う必要がある。
Generally, process conditions are frequently changed during development of a manufacturing process. For this reason, the life of the oxide film may change due to a change in the process conditions. Therefore, it is necessary to frequently estimate the life of the oxide film.

【0012】あるいは工場で製品を量産する際に、装置
のトラブル等によるプロセス条件の変動により拡散工程
を終了したウエハ毎に酸化膜寿命が変動し、ときにはい
ちじるしく酸化膜寿命が短く信頼性上の基準を満たさな
くなる可能性がある。このような異常が発生した場合
に、市場に信頼性が不十分な製品を出荷することを防ぐ
ため、見落としなく早急に酸化膜寿命の推定値を測定す
ることが必要になる。
Alternatively, when mass-producing a product in a factory, the life of an oxide film varies for each wafer that has completed the diffusion process due to fluctuations in process conditions due to troubles in equipment, etc., and sometimes the life of the oxide film is short, and the reliability standard is short. May not be satisfied. When such an abnormality occurs, it is necessary to immediately measure the estimated value of the oxide film lifetime without overlooking it in order to prevent products with insufficient reliability from being shipped to the market.

【0013】以上の場合において拡散工程を終了した全
ウエハに対して、ウエハ毎に酸化膜寿命の推定値を短期
間で測定することが必要となる。
In the above case, it is necessary to measure the estimated value of the oxide film lifetime for each wafer in a short period of time for all wafers that have completed the diffusion process.

【0014】従来の酸化膜寿命の試験方法の中で、ウエ
ハ状態のままで試験をする場合においては、オートプロ
ーバを用いてウエハ上のMOSキャパシタに順次プロー
ビングして測定する。このため、同時に試験が可能なM
OSキャパシタは、プローブカードのプローブ針で同時
に電気的接続を取ることのできる、1個あるいは数個に
限られる。このため、多数のMOSキャパシタに複数の
ストレス電界強度を印加して累積故障率1を測定しよう
とすると、長時間を要する。特に低ストレス電界強度の
測定においてこの傾向がいちじるしく、全ウエハの酸化
膜寿命の推定をする際の大きな障害となっている。
In the conventional method of testing the life of an oxide film, when performing a test in a wafer state, the MOS capacitors on the wafer are sequentially probed using an auto prober and measured. For this reason, M
The number of OS capacitors is limited to one or several that can be electrically connected at the same time by the probe needle of the probe card. Therefore, it takes a long time to measure the cumulative failure rate 1 by applying a plurality of stress electric field strengths to a large number of MOS capacitors. In particular, this tendency is remarkable in the measurement of the low-stress electric field strength, which is a major obstacle in estimating the lifetime of the oxide film of all the wafers.

【0015】測定時間を短くするためには、測定に用い
るMOSキャパシタの数を少なくする、または試験時の
ストレス電界強度を高くする等の方法がある。
In order to shorten the measurement time, there are methods such as reducing the number of MOS capacitors used for the measurement or increasing the stress electric field strength at the time of the test.

【0016】しかし、測定に用いるMOSキャパシタの
数を少なくした場合には、複数のストレス電界強度に対
して累積故障率1を求めることから、各ストレス電界強
度に割り当てられるMOSキャパシタの数は一層少なく
なる。同一ウエハ上のMOSキャパシタは同等であると
仮定されているにもかかわらず、実際には特性にばらつ
きを持っている。各ストレス電界強度における累積故障
率1は異なるMOSキャパシタから求められる。このた
め、各ストレス電界強度に割り当てられるMOSキャパ
シタの数が少なくなるほど、各MOSキャパシタの特性
のばらつきが各ストレス電界強度における累積故障率1
の分布の変位となって現われる。この結果各MOSキャ
パシタの特性のばらつきが各ストレス電界強度における
酸化膜寿命の変位として現われ、これが最終的に酸化膜
寿命の推定値の誤差を大きくする。結論として測定に用
いるMOSキャパシタの数を少なくして測定時間を短く
し、全ウエハの酸化膜寿命を推定することは不適切であ
る。
However, when the number of MOS capacitors used for measurement is reduced, the cumulative failure rate 1 is obtained for a plurality of stress field strengths. Therefore, the number of MOS capacitors allocated to each stress field strength is further reduced. Become. Although the MOS capacitors on the same wafer are assumed to be equivalent, they actually have variations in characteristics. The cumulative failure rate 1 at each stress electric field strength is obtained from different MOS capacitors. Therefore, as the number of MOS capacitors assigned to each stress electric field intensity decreases, the variation in the characteristics of each MOS capacitor increases as the cumulative failure rate 1 at each stress electric field intensity increases.
It appears as a displacement of the distribution. As a result, variations in the characteristics of each MOS capacitor appear as displacement of the oxide film life at each stress electric field strength, and this eventually increases the error in the estimated value of the oxide film life. In conclusion, it is inappropriate to reduce the number of MOS capacitors used for the measurement, shorten the measurement time, and estimate the oxide film lifetime of all wafers.

【0017】また、ストレス時の電界強度を高くした場
合には、測定器の時間精度が不十分となるという問題、
および高電界により試験時に多量の発熱が生じ、酸化膜
の温度が予測不可能な上昇をし、経時絶縁破壊の時間が
本来の温度および電界強度における値よりも短くなると
いう問題により寿命推定に大きな誤差が生じる。このた
めストレス時の電界強度を高くして測定時間を短くし、
全ウエハの酸化膜寿命を推定することもまた不適切であ
る。
Also, when the electric field strength under stress is increased, the time accuracy of the measuring instrument becomes insufficient.
A large amount of heat is generated during the test due to the high electric field, the temperature of the oxide film rises unpredictably, and the time of dielectric breakdown with time becomes shorter than the value at the original temperature and electric field strength. An error occurs. For this reason, the electric field strength during stress is increased to shorten the measurement time,
Estimating the oxide lifetime of an entire wafer is also inappropriate.

【0018】結局、ウエハ状態のままでオートプローバ
を用いてウエハ上のMOSキャパシタに順次プロービン
グして測定する方法では、実用上十分短い測定時間と実
用上十分高い精度を有する酸化膜寿命の推定値を実現す
ることができず、全ウエハの酸化膜寿命を推定すること
は不可能である。
After all, in the method of sequentially probing the MOS capacitors on the wafer by using an auto prober in the wafer state and performing measurement, the estimated value of the oxide film life having a sufficiently short measuring time and a sufficiently high accuracy in practical use Cannot be realized, and it is impossible to estimate the oxide film life of all the wafers.

【0019】本発明の目的は実用上十分短い測定時間
と、実用上十分高い推定精度を有し、かつ従来の方法に
よる推定値と互換性のある酸化膜寿命の推定方法を提供
することにより、拡散工程を終了した全ウエハに対して
酸化膜寿命の推定値を短期間で測定することを可能と
し、これにより製造プロセス開発の際のプロセス条件の
変更による酸化膜寿命の変化、あるいは工場で製品を量
産する際に、装置のトラブル等によるプロセス条件の変
動による酸化膜寿命の変動を短期間で見落とすことなく
モニタリングすることを可能とするものである。
An object of the present invention is to provide a method for estimating the life of an oxide film which has a sufficiently short measurement time for practical use, a sufficiently high estimation accuracy for practical use, and is compatible with the estimated value obtained by the conventional method. It is possible to quickly measure the estimated value of the oxide film life for all wafers that have completed the diffusion process, thereby changing the oxide film life due to changes in the process conditions during the development of the manufacturing process, or at the factory. It is possible to monitor the fluctuation of the oxide film life due to the fluctuation of the process condition due to the trouble of the apparatus and the like in a short period of time without overlooking when mass-producing.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明の半導体素子の信頼性試験方法は、ウエハ上に
形成された絶縁膜に時間とともに増大する階段波形をと
る電流密度を印加し、前記階段波形の各段における電界
強度を測定し、絶縁膜破壊が生じる時点までの前記電流
密度を時間に関して積分して総電荷量Qbdを計算し、
前記総電荷量Qbdを前記階段波形の各段における電流
密度で除去し、前記階段波形の各段における電界強度に
おける酸化膜寿命の推定値を求め、前記推定値を近似
し、任意の電界強度における酸化膜寿命を推定する。
In order to achieve the above object, a method for testing the reliability of a semiconductor device according to the present invention comprises applying a current density having a stepwise waveform which increases with time to an insulating film formed on a wafer. Measuring the electric field strength at each step of the staircase waveform, calculating the total charge Qbd by integrating the current density with respect to time up to the point at which the insulating film breakdown occurs,
The total charge amount Qbd is removed by the current density at each stage of the staircase waveform, an estimated value of the oxide film lifetime at the electric field intensity at each stage of the staircase waveform is obtained, and the estimated value is approximated. Estimate the oxide film life.

【0021】[0021]

【作用】上記本発明の酸化膜寿命の推定方法の構成によ
れば、酸化膜寿命の推定値を従来多数のMOSキャパシ
タを用いて求めていたのに対して、1個のMOSキャパ
シタから求めることができる。
According to the structure of the method for estimating the life of an oxide film of the present invention, the estimated value of the life of an oxide film is obtained from one MOS capacitor, compared with the conventional method using a large number of MOS capacitors. Can be.

【0022】さらに、ストレス印加の時間は階段波形の
各段の時間を、各段の電界強度において破壊を生じる時
間より十分短くする。さらに、酸化膜に印加する階段波
形の電界強度の最大値を測定器の時間精度が不十分とな
るという問題や、高電界により試験時の発熱により経時
絶縁破壊の時間が本来の温度および電界強度における値
よりも短くなるという問題を生じない範囲内で高くす
る。一例として、従来の酸化膜寿命の推定方法における
複数のストレス電界強度の中で最高のストレス電界強度
と同程度とすることにより、従来の酸化膜寿命の推定方
法における低ストレス電界印加時の測定時間よりも大幅
に短くすることが可能である。
Further, the time of stress application is set so that the time of each step of the staircase waveform is sufficiently shorter than the time at which destruction occurs in the electric field strength of each step. Furthermore, the maximum value of the electric field strength of the staircase waveform applied to the oxide film is determined by the problem that the time accuracy of the measuring instrument is insufficient, and the time of dielectric breakdown due to heat generation at the time of testing due to a high electric field depends on the original temperature and electric field strength. Is set higher within a range that does not cause a problem of becoming shorter than the value in. As an example, the measurement time at the time of applying a low stress electric field in the conventional method of estimating the life of the oxide film is set to be approximately the same as the highest stress electric field strength among the plurality of stress electric field strengths in the conventional method of estimating the life of the oxide film. It is possible to be much shorter than this.

【0023】これに加えて階段波形のストレスを使用す
ることにより、測定時間を時間精度が確保でき、かつ実
用上十分短い範囲内に収めることができる。すなわち、
酸化膜の破壊までの総電荷量Qbdがばらついて極端に
小さくなっている場合でも、ストレス印加初期における
電流密度を十分に小さくすることができる。これによ
り、酸化膜が破壊するまでの時間を測定精度が確保でき
る程度に長くすることができる。また反対に、Qbdが
ばらつきにより極端に大きくなっている場合でも、破壊
直前の電流密度は十分大きくすることができる。これに
より測定時間が長くなることを防ぐことができる。
In addition to this, by using the stress of the staircase waveform, it is possible to ensure the time accuracy of the measurement time and to keep it within a practically short range. That is,
Even when the total charge Qbd up to the destruction of the oxide film varies and becomes extremely small, the current density at the initial stage of stress application can be sufficiently reduced. Thus, the time until the oxide film is broken can be made long enough to ensure the measurement accuracy. Conversely, even when Qbd is extremely large due to variation, the current density immediately before breakdown can be sufficiently increased. This can prevent the measurement time from being lengthened.

【0024】以上の理由から、本発明における酸化膜寿
命の推定方法における測定時間は、従来の酸化膜寿命の
推定方法よりも数十分の一から数千分の一に短縮され、
実用上十分短い測定時間で酸化膜寿命の推定値を求める
ことが可能となる。
For the above reasons, the measurement time in the method for estimating the life of an oxide film according to the present invention is reduced from several tenths to several thousandths in comparison with the conventional method for estimating the life of an oxide film.
It is possible to obtain an estimated value of the oxide film life in a measurement time that is sufficiently short for practical use.

【0025】一方、本発明による酸化膜寿命の推定方法
においては、同一のMOSキャパシタから各電界強度に
おける酸化膜寿命の推定値を求め、この各電界強度にお
ける酸化膜寿命の推定値にもとづいて、実使用時の酸化
膜寿命の推定値を求めることができる。このため、従来
の酸化膜寿命の推定方法における問題、すなわち各スト
レス電界強度における酸化膜寿命が異なるMOSキャパ
シタから求められるため、各MOSキャパシタの特性の
ばらつきが各ストレス電界強度での酸化膜寿命の変位と
なって現われ、最終的に酸化膜の寿命推定の誤差が大き
くなるという問題を排除することができる。
On the other hand, in the method for estimating the life of an oxide film according to the present invention, the estimated value of the life of the oxide film at each electric field strength is obtained from the same MOS capacitor, and based on the estimated value of the life of the oxide film at each electric field strength, An estimated value of the life of the oxide film in actual use can be obtained. For this reason, the problem in the conventional method of estimating the life of an oxide film, that is, since the life of the oxide film at each stress electric field strength is obtained from a different MOS capacitor, the variation in the characteristics of each MOS capacitor causes the life of the oxide film at each stress electric field strength to vary. It is possible to eliminate the problem that the displacement appears and the error in the estimation of the lifetime of the oxide film eventually increases.

【0026】以上の理由から、本発明における酸化膜寿
命の推定方法における推定精度は、測定時間を短縮して
も低下することなく、従来の酸化膜寿命の推定方法と同
程度かそれ以上の精度を保つことができる。
For the above reasons, the estimation accuracy of the method for estimating the life of an oxide film in the present invention does not decrease even if the measurement time is shortened, and is equal to or higher than that of the conventional method for estimating the life of an oxide film. Can be kept.

【0027】さらに、本発明中の各電界強度における酸
化膜寿命の推定値は、酸化膜の破壊までの総電荷量Qb
dが電界強度あるいは電流密度に依存しない一定値とな
るという広く認められた経験的事実にもとづいて求めら
れている。このため、各電界強度における酸化膜寿命の
実測値とよく一致する。このように、本発明による実使
用時の酸化膜寿命の推定値は、従来の方法による実使用
時の酸化膜寿命の推定値と高い互換性を有する。
Further, the estimated value of the life of the oxide film at each electric field strength in the present invention is based on the total charge amount Qb up to the destruction of the oxide film.
It is determined based on the widely accepted empirical fact that d is a constant value independent of electric field strength or current density. For this reason, it is in good agreement with the measured value of the oxide film life at each electric field strength. As described above, the estimated value of the oxide film life in actual use according to the present invention has high compatibility with the estimated value of the oxide film life in actual use by the conventional method.

【0028】[0028]

【実施例】以下本発明を実施例により図面を参照して詳
細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0029】図1および2は本発明における酸化膜寿命
の推定方法を示したものである。図1は酸化膜破壊が生
じる時点まで酸化膜に階段波形をとる電流密度を印加し
た際の酸化膜印加電界強度の測定結果、図2は酸化膜寿
命の推定方法の例である。
FIGS. 1 and 2 show a method of estimating the life of an oxide film according to the present invention. FIG. 1 shows a measurement result of an electric field intensity applied to an oxide film when a current density having a staircase waveform is applied to the oxide film until the oxide film breakdown occurs, and FIG. 2 shows an example of a method of estimating a lifetime of the oxide film.

【0030】図1において、横軸は電流密度を酸化膜に
印加するストレス時間、左の縦軸は酸化膜印加電流密度
J、右の縦軸は酸化膜印加電界強度Eを示している。図
1において、11は階段波形をとる酸化膜印加電流密
度、12は階段波形の各段における酸化膜印加電流密
度、13は酸化膜印加電界強度の時間変化、14は各電
流密度における酸化膜印加電界強度、15は酸化膜破壊
が生じた時点である。
In FIG. 1, the horizontal axis represents the stress time for applying the current density to the oxide film, the left vertical axis represents the current density J applied to the oxide film, and the right vertical axis represents the electric field intensity E applied to the oxide film. In FIG. 1, reference numeral 11 denotes an oxide film applied current density having a staircase waveform, 12 denotes an oxide film applied current density at each stage of the staircase waveform, 13 denotes a time change of an oxide film applied electric field strength, and 14 denotes an oxide film applied current at each current density. The electric field strength 15 is the time when the oxide film breakdown occurred.

【0031】図2において、横軸は酸化膜に印加される
電界強度、縦軸は酸化膜寿命を示している。図2におい
て、14は各電流密度における酸化膜印加電界強度、1
6は各電界強度における酸化膜寿命の推定値、17は酸
化膜寿命の推定値、18は実使用時の酸化膜印加電界強
度の最大値、19は実使用時の酸化膜寿命の推定値であ
る。
In FIG. 2, the horizontal axis represents the intensity of the electric field applied to the oxide film, and the vertical axis represents the life of the oxide film. In FIG. 2, reference numeral 14 denotes an oxide film applied electric field strength at each current density,
6 is the estimated value of the oxide film lifetime at each electric field strength, 17 is the estimated value of the oxide film lifetime, 18 is the maximum value of the oxide film applied electric field intensity in actual use, and 19 is the estimated value of the oxide film life in actual use. is there.

【0032】拡散工程を終了したウエハ上のMOSキャ
パシタを用いて酸化膜の信頼性を短時間に評価するに
は、評価対象となる酸化膜をキャパシタ絶縁膜とする多
数のMOSキャパシタをウエハ状態のままで試験する。
この場合、オートプローバを用いてウエハ上のMOSキ
ャパシタに対して測定点を移動しながら、順次プロービ
ングして測定する。
In order to evaluate the reliability of the oxide film in a short time by using the MOS capacitor on the wafer after the diffusion step, a number of MOS capacitors in which the oxide film to be evaluated is a capacitor insulating film and the MOS capacitor in the wafer state is used. Test as is.
In this case, the measurement is performed by sequentially probing while moving the measurement point with respect to the MOS capacitor on the wafer using an auto prober.

【0033】拡散工程を終了したウエハにおける酸化膜
寿命は、ウエハ上に形成されたMOSキャパシタを用い
て測定され、その測定値から図2に示す実使用時の酸化
膜寿命の推定値19が求められる。今回の酸化膜の膜厚
は12nm、酸化膜寿命の推定に用いたMOSキャパシ
タの酸化膜寸法は100μm×50μmである。
The oxide film life of the wafer after the diffusion step is measured using a MOS capacitor formed on the wafer, and an estimated value 19 of the oxide film life in actual use shown in FIG. 2 is obtained from the measured value. Can be The thickness of the oxide film this time is 12 nm, and the size of the oxide film of the MOS capacitor used for estimating the life of the oxide film is 100 μm × 50 μm.

【0034】このウエハ上のMOSキャパシタを、ウエ
ハ状態のままでオートプローバと連動した測定器を用い
て、ウエハ上の測定点を移動しながら順次プロービング
して測定する。この測定器には電圧源、電流源、電圧
計、電流計、および容量計が備わっている。
The MOS capacitors on the wafer are sequentially probed and measured while moving the measurement points on the wafer while using the measuring device in conjunction with the autoprober in the wafer state. The instrument has a voltage source, a current source, a voltmeter, an ammeter, and a capacity meter.

【0035】まず、MOSキャパシタが蓄積状態となる
ような電圧をMOSキャパシタに印加する。この電圧と
してP型基板上に形成されたMOSキャパシタの場合に
は、基板に対して上部電極に負の電圧、たとえば−5V
を印加する。反対にN型基板上に形成されたMOSキャ
パシタの場合には、基板に対して上部電極に正の電圧、
たとえば+5Vを印加する。MOSキャパシタが蓄積状
態の場合、酸化膜の容量がMOSキャパシタの容量とし
て現われる。そこでMOSキャパシタの容量を測定し、
その容量と酸化膜寸法から酸化膜厚を計算する。この酸
化膜厚は酸化膜に印加された電圧から酸化膜に印加され
る電界強度を求める際に使用する。
First, a voltage is applied to the MOS capacitor so that the MOS capacitor is in a storage state. In the case of a MOS capacitor formed on a P-type substrate, a negative voltage such as -5 V is applied to the upper electrode with respect to the substrate.
Is applied. Conversely, in the case of a MOS capacitor formed on an N-type substrate, a positive voltage is applied to the upper electrode with respect to the substrate,
For example, +5 V is applied. When the MOS capacitor is in the accumulation state, the capacitance of the oxide film appears as the capacitance of the MOS capacitor. So we measured the capacitance of the MOS capacitor,
The oxide film thickness is calculated from the capacitance and the oxide film size. This oxide film thickness is used when obtaining the electric field intensity applied to the oxide film from the voltage applied to the oxide film.

【0036】続いて図1に示すように、酸化膜破壊が生
じる時点まで時間とともに増大する階段波形をとる酸化
膜印加電流密度11を印加する。この実施例において
は、階段波形の各段における酸化膜印加電流密度12と
してストレス印加開始よりストレス印加時間10秒まで
は酸化膜印加電流密度J=0.1A/cm2、ストレス印
加時間10秒より20秒まではJ=0.2A/cm2、ス
トレス印加時間20秒より30秒まではJ=0.5A/
cm2、ストレス印加時間30秒より酸化膜破壊が生じ
た時点15、この例では36秒まではJ=1.0A/c
2を印加する。この過程において酸化膜印加電圧の時
間変化を測定し、この測定値を先に求めた酸化膜厚で除
することにより、酸化膜印加電界強度の時間変化13を
測定する。この測定値から前記階段波形の各段における
酸化膜印加電界強度14を求める。この例では、階段波
形の各段における酸化膜印加電界強度はストレス印加開
始より順次11.8MV/cm、12.2MV/cm、1
2.7MV/cm、13.1MV/cmである。
Subsequently, as shown in FIG. 1, an oxide film applied current density 11 having a stepwise waveform which increases with time until the time when oxide film breakdown occurs is applied. In this embodiment, as the oxide film applied current density 12 in each step of the staircase waveform, from the start of stress application to the stress application time 10 seconds, the oxide film applied current density J = 0.1 A / cm 2 , and the stress application time 10 seconds J = 0.2 A / cm 2 up to 20 seconds, J = 0.5 A / cm from stress application time 20 seconds to 30 seconds
cm 2, time 15 stressing time oxide breakdown than 30 seconds has occurred, up to 36 seconds in this example J = 1.0A / c
Apply m 2 . In this process, the time change 13 of the voltage applied to the oxide film is measured by measuring the time change of the voltage applied to the oxide film and dividing the measured value by the oxide film thickness obtained previously. From the measured values, the electric field intensity 14 applied to the oxide film at each stage of the staircase waveform is obtained. In this example, the electric field strength applied to the oxide film in each step of the staircase waveform is 11.8 MV / cm, 12.2 MV / cm, 1
2.7 MV / cm and 13.1 MV / cm.

【0037】ストレス時間36秒の時点で酸化膜印加電
圧は突然大きく減少する。この酸化膜印加電圧の突然の
大きな減少が生じた時点が酸化膜破壊が生じた時点15
である。酸化膜破壊が生じた時点15までの酸化膜印加
電流密度を時間に関して積分し、酸化膜の破壊までの総
電荷量Qbd(C/cm2)を計算する。この例では酸
化膜の破壊までの総電荷量Qbd=14C/cm2であ
る。この破壊までの総電荷量Qbdは電界強度あるいは
電流密度Jに依存しない一定値となる。
At a stress time of 36 seconds, the voltage applied to the oxide film suddenly decreases greatly. The point at which the sudden large decrease in the oxide film applied voltage occurs is the point at which the oxide film breakdown occurs.
It is. The current density applied to the oxide film up to the time point 15 at which the oxide film breakdown occurs is integrated with respect to time, and the total charge amount Qbd (C / cm 2 ) until the oxide film breakdown is calculated. In this example, the total charge Qbd until the oxide film is destroyed is 14 C / cm 2 . The total charge amount Qbd up to the breakdown is a constant value independent of the electric field strength or the current density J.

【0038】この酸化膜の破壊までの総電荷量Qbdの
値を先に測定した階段波形の各段における酸化膜印加電
流密度で除することにより、前記階段波形の各段におけ
る各電界強度における酸化膜寿命の推定値16を求め
る。この例においては酸化膜寿命の推定値は前記階段波
形の各段に対して最初より順次140秒、70秒、28
秒、14秒である。
By dividing the value of the total charge amount Qbd up to the breakdown of the oxide film by the current density applied to the oxide film in each step of the previously measured staircase waveform, the oxidation at each electric field intensity in each step of the staircase waveform is obtained. An estimated value 16 of the film life is obtained. In this example, the estimated value of the oxide film lifetime is 140 seconds, 70 seconds, 28
Seconds, 14 seconds.

【0039】この各電界強度における酸化膜寿命の推定
値16を、図2に示すように、横軸酸化膜に印加される
電界強度、縦軸酸化膜寿命の片対数グラフにプロットす
る。これにもとづいて各電界強度における酸化膜寿命の
推定値16の回帰直線、すなわち酸化膜寿命の推定値1
7を求め、この直線を用いて実使用時の酸化膜印加電界
強度の最大値18における実使用時の酸化膜寿命の推定
値19を求める。
As shown in FIG. 2, the estimated value 16 of the oxide film life at each electric field strength is plotted on a semi-logarithmic graph of the electric field strength applied to the oxide film on the horizontal axis and the oxide film life on the vertical axis. Based on this, the regression line of the estimated value 16 of the oxide film life at each electric field strength, that is, the estimated value 1 of the oxide film life,
Then, using this straight line, an estimated value 19 of the life of the oxide film in actual use at the maximum value 18 of the electric field strength applied to the oxide film in actual use is obtained.

【0040】本発明の実施例においては、拡散工程を終
了した1ロット約50枚のウエハに対して各ウエハ5点
の測定点がある場合、約2.5時間という短時間で全測
定が終了し、各ウエハ上の各測定点の酸化膜寿命の推定
値が得られる。この測定時間は、1つの酸化膜寿命の推
定値を得るのに必要なMOSキャパシタの個数が1個だ
けであり、かつ1個当りの測定時間を短縮できるため、
従来の酸化膜寿命の推定方法による場合の数十分の一で
あり、飛躍的な測定効率の向上が実現される。
In the embodiment of the present invention, when there are five measurement points for each wafer for about 50 wafers in one lot after the diffusion process is completed, the entire measurement is completed in a short time of about 2.5 hours. Then, an estimated value of the oxide film lifetime at each measurement point on each wafer is obtained. This measurement time is necessary because only one MOS capacitor is required to obtain an estimated value of the lifetime of one oxide film, and the measurement time per one capacitor can be reduced.
This is several tenths of the conventional method for estimating the lifetime of an oxide film, and a dramatic improvement in measurement efficiency is realized.

【0041】一方、本発明による酸化膜寿命の推定方法
においては、同一のMOSキャパシタから各電界強度に
おける酸化膜寿命の推定値を求め、この各電界強度にお
ける酸化膜寿命の推定値にもとづいて、実使用時の酸化
膜寿命の推定値を求めている。このため、酸化膜寿命の
推定精度は、測定時間が短縮されたにもかかわらず、低
下しない。
On the other hand, in the method for estimating the life of an oxide film according to the present invention, the estimated value of the life of the oxide film at each electric field strength is obtained from the same MOS capacitor, and based on the estimated value of the life of the oxide film at each electric field strength, The estimated value of the oxide film life in actual use is obtained. Therefore, the accuracy of estimating the life of the oxide film does not decrease even though the measurement time is shortened.

【0042】さらに、本発明中の各電界強度における酸
化膜寿命の推定値は実測値とよく一致するため、本発明
による実使用時の酸化膜寿命の推定値は、従来の方法に
よる実使用時の酸化膜寿命の推定値と高い互換性を有す
る。
Further, since the estimated value of the oxide film life at each electric field strength in the present invention agrees well with the actually measured value, the estimated value of the oxide film life in the actual use according to the present invention is It has high compatibility with the estimated value of the oxide film lifetime.

【0043】[0043]

【発明の効果】本発明によれば、酸化膜寿命の推定値を
得るための測定時間を従来の方法との推定値の互換性を
保ったまま、推定精度の低下を伴うことなく、大幅に短
縮することができる。これにより拡散工程を終了した全
ウエハに対して酸化膜寿命の推定値を短期間で測定する
ことを実現する。
According to the present invention, the measurement time for obtaining the estimated value of the oxide film lifetime can be greatly reduced without lowering the estimation accuracy while maintaining the compatibility of the estimated value with the conventional method. Can be shortened. As a result, the estimated value of the oxide film lifetime can be measured in a short period of time for all the wafers that have completed the diffusion process.

【0044】これにより製造プロセス開発の際にはプロ
セス条件の変更による酸化膜信頼性の変化を短期間で評
価でき、開発効率の大幅な向上および開発コストの削減
という効果が得られる。
As a result, in the development of the manufacturing process, the change in the reliability of the oxide film due to the change in the process conditions can be evaluated in a short period of time, and the effect of greatly improving the development efficiency and reducing the development cost can be obtained.

【0045】一方、工場で製品を量産する際には、装置
のトラブル等によるプロセス条件の変動による酸化膜寿
命の変動を、低コストかつ短期間で全ウエハに対してモ
ニタリングすることが可能となることから、低コストで
製品の信頼性の向上が実現できるという効果が得られ
る。
On the other hand, when products are mass-produced in a factory, it is possible to monitor fluctuations in the oxide film life due to fluctuations in process conditions due to equipment troubles and the like for all wafers at low cost and in a short period of time. Therefore, the effect that the reliability of the product can be improved at low cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による階段波形をとる電流密
度を印加した際の酸化膜印加電界強度の測定結果を示す
FIG. 1 is a view showing a measurement result of an electric field intensity applied to an oxide film when a current density having a staircase waveform is applied according to an embodiment of the present invention.

【図2】本発明の一実施例による酸化膜寿命の推定方法
を説明する図
FIG. 2 is a diagram illustrating a method for estimating the life of an oxide film according to an embodiment of the present invention.

【図3】従来の方法による各ストレス電界強度における
酸化膜寿命の測定結果を示す図
FIG. 3 is a view showing a measurement result of an oxide film life at each stress electric field strength according to a conventional method.

【図4】従来の方法による酸化膜寿命の推定方法を説明
する図
FIG. 4 is a diagram illustrating a method for estimating the life of an oxide film according to a conventional method.

【符号の説明】[Explanation of symbols]

11、12 電流密度 13 時間変化 14 電界強度 15 時点 16、17 推定値 18 最大値 19 推定値 11, 12 Current density 13 Time change 14 Electric field strength 15 Time point 16, 17 Estimated value 18 Maximum value 19 Estimated value

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/66 G01N 27/92 G01R 31/26 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/66 G01N 27/92 G01R 31/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ウエハ上に形成された絶縁膜に時間とと
もに増大する階段波形をとる電流密度を印加し、前記階
段波形の各段における電界強度を測定し、絶縁膜破壊が
生じる時点までの前記電流密度を時間に関して積分して
総電荷量Qbdを計算し、前記総電荷量Qbdを前記階
段波形の各段における電流密度で除去し、前記階段波形
の各段における電界強度における酸化膜寿命の推定値を
求め、前記推定値を近似し、任意の電界強度における酸
化膜寿命を推定することを特徴とする半導体素子の信頼
性試験方法。
1. A method according to claim 1, further comprising: applying a current density having a stepwise waveform increasing with time to an insulating film formed on the wafer, measuring an electric field intensity at each step of the stepwise waveform, and measuring the electric field intensity until a point at which an insulating film breakdown occurs. The current density is integrated with respect to time to calculate the total charge Qbd, the total charge Qbd is removed by the current density at each stage of the staircase waveform, and the estimation of the oxide film lifetime at the electric field intensity at each stage of the staircase waveform A reliability test method for a semiconductor device, comprising: obtaining a value, approximating the estimated value, and estimating an oxide film life at an arbitrary electric field intensity.
JP15719994A 1994-07-08 1994-07-08 Semiconductor device reliability test method Expired - Fee Related JP3239617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15719994A JP3239617B2 (en) 1994-07-08 1994-07-08 Semiconductor device reliability test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15719994A JP3239617B2 (en) 1994-07-08 1994-07-08 Semiconductor device reliability test method

Publications (2)

Publication Number Publication Date
JPH0823019A JPH0823019A (en) 1996-01-23
JP3239617B2 true JP3239617B2 (en) 2001-12-17

Family

ID=15644375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15719994A Expired - Fee Related JP3239617B2 (en) 1994-07-08 1994-07-08 Semiconductor device reliability test method

Country Status (1)

Country Link
JP (1) JP3239617B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049213A (en) * 1998-01-27 2000-04-11 International Business Machines Corporation Method and system for testing the reliability of gate dielectric films
US6188234B1 (en) 1999-01-07 2001-02-13 International Business Machines Corporation Method of determining dielectric time-to-breakdown

Also Published As

Publication number Publication date
JPH0823019A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
Martin et al. Dielectric reliability measurement methods: a review
US7579859B2 (en) Method for determining time dependent dielectric breakdown
US6077719A (en) Semiconductor device evaluation method, method of controlling the semiconductor device production processes and recording medium
US6049213A (en) Method and system for testing the reliability of gate dielectric films
US20110031981A1 (en) Valuation method of dielectric breakdown lifetime of gate insulating film, valuation device of dielectric breakdown lifetime of gate insulating film and program for evaluating dielectric breakdown lifetime of gate insulating film
CN102522386B (en) Gate-oxidizing-layer interface-trap density-testing structure and testing method
JP3789220B2 (en) Insulating film evaluation method and apparatus, and process evaluation method
US5485097A (en) Method of electrically measuring a thin oxide thickness by tunnel voltage
JP2004500707A (en) Method of measuring stress dielectric leakage current using corona discharge and method of measuring gate dielectric integrity
US6198301B1 (en) Method for determining the hot carrier lifetime of a transistor
US5793212A (en) Method of measuring the breakdown charge of a dielectric film
US5598102A (en) Method for detecting defects in semiconductor insulators
US3882391A (en) Testing the stability of MOSFET devices
Yeats Assessing the reliability of silicon nitride capacitors in a GaAs IC process
JP3239617B2 (en) Semiconductor device reliability test method
US6377067B1 (en) Testing method for buried strap and deep trench leakage current
JP4844101B2 (en) Semiconductor device evaluation method and semiconductor device manufacturing method
JPH0846000A (en) Method for testing reliability of semiconductor element
JP4640203B2 (en) Semiconductor wafer evaluation method
JP3859357B2 (en) Insulating film evaluation method
JPH08153764A (en) Method for testing reliability of semiconductor element
JP3019564B2 (en) Evaluation method of insulating film
JP2584093B2 (en) Insulation film reliability evaluation method
JP3632364B2 (en) Method for measuring carrier concentration of p-type silicon epitaxial layer
JPH1197500A (en) Evaluation method of semiconductor device semiconductor device manufacturing process control method and recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees