JP3238484B2 - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JP3238484B2
JP3238484B2 JP20100592A JP20100592A JP3238484B2 JP 3238484 B2 JP3238484 B2 JP 3238484B2 JP 20100592 A JP20100592 A JP 20100592A JP 20100592 A JP20100592 A JP 20100592A JP 3238484 B2 JP3238484 B2 JP 3238484B2
Authority
JP
Japan
Prior art keywords
light
axis
output
receiving unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20100592A
Other languages
Japanese (ja)
Other versions
JPH0651191A (en
Inventor
一幸 前田
秀夫 ▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20100592A priority Critical patent/JP3238484B2/en
Publication of JPH0651191A publication Critical patent/JPH0651191A/en
Application granted granted Critical
Publication of JP3238484B2 publication Critical patent/JP3238484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、オートフォーカスカメ
ラ等に用いられるガラス越し撮影検出機能を有するアク
ティブタイプの測距装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an active type distance measuring device having a function of detecting photographing through glass used in an autofocus camera or the like.

【0002】[0002]

【従来の技術】従来の多点測距方式の測距装置を使った
カメラでガラス越し、例えばショーウィンドウ内の物、
あるいは窓ガラスの向こう側の風景等を撮影する場合、
ガラスを誤測距してガラスにピントが合ってしまい、例
えば撮りたかったガラスの向こうの遠景がピンぼけ写真
となることがあった。
2. Description of the Related Art A camera using a conventional multi-point distance measuring method through a glass, for example, an object in a show window,
Or if you want to shoot the scenery behind the window glass,
Incorrect distance measurement of the glass causes the glass to be in focus, and for example, a distant view beyond the glass that the user wanted to take may become a blurred photograph.

【0003】そこで、本出願人は特願平3−19031
3号において、ガラス越しであっても所望するガラスの
向こう側に位置する遠景等の被写体にピントを合わせる
ことができるガラス越し撮影検出機能を備えた測距装置
を提案している。
Accordingly, the present applicant has filed Japanese Patent Application No. Hei 3-19031.
No. 3 proposes a distance measuring device having a function of detecting photographing through glass that can focus on a subject such as a distant view located on the other side of the desired glass even through the glass.

【0004】図6は、上記したガラス越し撮影検出機能
を備えた測距装置の概略を示し、1は測距装置の外装、
2は投光レンズ、3は受光レンズである。4は投光素子
で、ファインダ内の右側、中央、左側被写体用の各発光
素子4R、4C、4Lを有している。5は受光素子で、
2分割SPDあるいはPSD半導体位置検出器より構成
され、3つの受光素子5R、5C、5Lより構成されて
いる。
FIG. 6 schematically shows a distance measuring device having the above-described photographing function through glass, and 1 is an exterior of the distance measuring device,
Reference numeral 2 denotes a light projecting lens, and 3 denotes a light receiving lens. Reference numeral 4 denotes a light projecting element having light emitting elements 4R, 4C, and 4L for the right, center, and left objects in the finder. 5 is a light receiving element,
It is composed of a two-part SPD or PSD semiconductor position detector, and is composed of three light receiving elements 5R, 5C and 5L.

【0005】このように構成した多点測距装置は、投光
素子4の各素子が不図示の制御装置により制御されて逐
次発光し、被写体あるいはガラスに反射した光が受光素
子5に受光され、該制御装置によりガラス越しの撮影か
否かの判断がなされる。
In the multi-point distance measuring apparatus thus configured, each element of the light projecting element 4 is controlled by a control device (not shown) to emit light sequentially, and light reflected on a subject or glass is received by the light receiving element 5. The control device determines whether or not the photographing is performed through the glass.

【0006】図3は、投光素子4Cより投光された光が
受光素子5に受光する様子を示す図で、(a)は被写体
が至近の場合、(b)はガラス越しの遠景の場合、
(c)はショーウインドウ越しの陳列物(近距離)の場
合を示している。
FIGS. 3A and 3B are diagrams showing a state in which light emitted from the light emitting element 4C is received by the light receiving element 5. FIG. 3A shows a case where a subject is close, and FIG. 3B shows a case where a distant view through glass. ,
(C) shows a case of a display object (short distance) through a show window.

【0007】図3の(a)に示す被写体が至近距離の場
合、投光素子4Cより投光された光線Aは、被写体より
反射し、受光素子5Lに受光される。この時、受光素子
5Lより出力される信号Nは被写体距離が近いので大き
い。
When the object shown in FIG. 3A is at a close distance, the light beam A emitted from the light projecting element 4C is reflected from the object and received by the light receiving element 5L. At this time, the signal N output from the light receiving element 5L is large because the subject distance is short.

【0008】図3の(b)に示すガラス越し遠景の場
合、投光素子4Cより投光された光線Aは、ガラス8の
ガラス面で正反射した光線Bと、ガラス8を透過した光
線Cと、ガラス8の表面の微小な凹凸や汚れ等により拡
散された弱い光線Dとに分かれ、受光素子5にはガラス
表面での拡散反射光Dのみが到達する。
In the case of the distant view through the glass shown in FIG. 3B, the light beam A projected from the light projecting element 4C is divided into a light beam B specularly reflected on the glass surface of the glass 8 and a light beam C transmitted through the glass 8. And a weak light beam D diffused due to minute irregularities or dirt on the surface of the glass 8, and only the diffusely reflected light D on the glass surface reaches the light receiving element 5.

【0009】図3の(C)は、例えばショーウィンドウ
越しの陳列物を撮影するように、ガラス越しに近接して
被写体がある場合、ガラス8を透過した光線Cが被写体
に反射し、受光素子5Cに入射する。また、拡散反射光
線Dも受光素子5Lに入射する。
FIG. 3C shows a case in which a subject is located close to the glass, for example, when a display object is taken through a show window, the light beam C transmitted through the glass 8 is reflected on the subject, and the light receiving element is detected. It is incident on 5C. Further, the diffusely reflected light beam D also enters the light receiving element 5L.

【0010】このように構成したガラス越し撮影検出機
能を有する測距装置の動作を図7のフローチャートに基
づき説明する。
The operation of the distance measuring apparatus having the function of detecting photographing through glass will be described with reference to the flowchart of FIG.

【0011】[ステップ(以下#と略記する)1]投光
素子4Cを発光させ被写体に向けて投光し、受光素子5
Lの出力信号レベルNを記憶し、#2に進む。この記憶
した信号レベルNは、後で行う至近警告、ガラス越し遠
景判定のデーターとして用いる。
[Step (hereinafter abbreviated as #) 1] Light-emitting element 4C emits light, projects light toward a subject, and receives light
The output signal level N of L is stored, and the process proceeds to # 2. The stored signal level N is used as data for a close warning to be performed later and distant view through glass.

【0012】[#2]投光素子4Rを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Rのデー
タに基づき、ファインダー内右側の測距を行い、測距デ
ータRを記憶し、#3に進む。
[# 2] Based on the data of the light receiving element 5R which receives the reflected light by causing the light projecting element 4R to emit light, the right distance in the viewfinder is measured based on the data of the light receiving element 5R, and the distance measurement data R is stored. Then, proceed to # 3.

【0013】[#3]投光素子4Lを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Lのデー
タに基づき、ファインダー内左側の測距を行い、測距デ
ータLを記憶し、#4に進む。
[# 3] Based on the data of the light receiving element 5L that emits light toward the subject by causing the light emitting element 4L to emit light, distance measurement is performed on the left side in the viewfinder based on data of the light receiving element 5L, and the distance measurement data L is stored. Then, proceed to # 4.

【0014】[#4]投光素子4Cを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Cのデー
タに基づき、ファインダー内中央の測距を行い、測距デ
ータCを記憶し、#5に進む。
[# 4] Based on the data of the light receiving element 5C that emits light toward the subject by causing the light emitting element 4C to emit light, the distance in the center of the finder is measured based on the data of the light receiving element 5C, and the distance measuring data C is stored. Then, proceed to # 5.

【0015】[#5]至近警告の判定を行う。#1で記
憶した信号Nの大きさを閾値と比較し、信号Nが閾値よ
りも大きければ至近警告と判定され、#11に進み、至
近警告を行うと共に、測距データを至近あるいは超至近
とする。また信号Nが閾値よりも小さければ#6に進
む。
[# 5] A close warning is determined. The magnitude of the signal N stored in # 1 is compared with a threshold value. If the signal N is larger than the threshold value, it is determined that a close warning has been issued. I do. If the signal N is smaller than the threshold, the process proceeds to # 6.

【0016】[#6]ショーウインドウ越し被写体判定
を行う。#4で測定した信号Cを閾値と比較し、信号C
が閾値よりも大きければ、ショーウインドウ越しに被写
体があると判定し、#10に進み、得られた測距データ
を選ぶ。また、信号Cが閾値よりも小さければ、#7に
進む。
[# 6] Subject determination through the show window is performed. The signal C measured in # 4 is compared with a threshold, and the signal C
Is larger than the threshold value, it is determined that there is a subject over the show window, and the process proceeds to # 10, where the obtained distance measurement data is selected. If the signal C is smaller than the threshold, the process proceeds to # 7.

【0017】[#7]ガラス越し遠景判定を行う。#1
で測定した信号Nの有無を判定し、信号Nがなければ#
10に進み、得られた測距データを選ぶ。また、信号N
があればガラス越し遠景と判定し、#9に進む。
[# 7] A distant view through glass is determined. # 1
The presence or absence of the signal N measured in the step is determined.
Proceed to 10 and select the obtained distance measurement data. The signal N
If there is, it is determined that it is a distant view through the glass, and the process proceeds to # 9.

【0018】[#9]ガラス越し遠景と判定されたの
で、測距データを無限とする。
[# 9] Since it is determined that the view is a distant view through the glass, the distance measurement data is set to infinity.

【0019】[0019]

【発明が解決しようとする課題】上記した従来の測距装
置において、投光素子4の不具合に起因して、ガラス越
し誤検出する場合があった。
In the above-described conventional distance measuring apparatus, an erroneous detection through the glass may be caused due to a defect of the light projecting element 4.

【0020】投光素子4は、図4の(a)に示すように
アルミ電極部4−1上に発光部4R、4C、4Lが設け
られ、また図4の(b)に示すようにアルミ電極部4−
1にはボンディングライン4−2がボンディングされて
いて、これら発光部4R、4C、4Lの上部にはマスク
(不図示)が覆われている。
The light projecting element 4 has light emitting portions 4R, 4C, and 4L provided on an aluminum electrode portion 4-1 as shown in FIG. 4A, and also has aluminum as shown in FIG. Electrode part 4-
1, a bonding line 4-2 is bonded, and a mask (not shown) is covered on the upper part of the light emitting units 4R, 4C, and 4L.

【0021】このような構成の投光素子4において、黒
く塗りつぶした正規発光部からの発光とは別に、マスク
間から斜線で示すように光りが直接漏れる正規外発光が
生じたり、あるいは図4の(b)に示すようにボンディ
ングライン4−2に投光光が照射され、そこで反射した
光が正規外発光として漏れることがあった。
In the light projecting element 4 having such a configuration, extraordinary light emission in which light directly leaks as shown by oblique lines occurs between the masks, in addition to the light emission from the regular light emitting portion painted black, or FIG. As shown in (b), the projected light was irradiated to the bonding line 4-2, and the reflected light sometimes leaked as irregular light emission.

【0022】図5の(a)、(b)に示すように、発光
部4Cに隣接して正規外発光部4CCがある場合、図5
の(a)に示すように、発光部4Cからの投光Eは受光
素子5Cに受光され、また正規外発光部4CCからの漏
光Fは受光素子5Rに受光されることになる。
As shown in FIGS. 5A and 5B, when there is a non-regular light emitting unit 4CC adjacent to the light emitting unit 4C, FIG.
As shown in (a), the light projection E from the light emitting unit 4C is received by the light receiving element 5C, and the light leakage F from the irregular light emitting unit 4CC is received by the light receiving element 5R.

【0023】すなわち、受光素子5の受光素子5Cと5
Rで受光した場合は、図7のフローチャートで説明した
ように、ガラス越し撮影モードであるから、通常の撮影
距離でもガラス越し撮影と誤判定することになる。
That is, the light receiving elements 5C and 5 of the light receiving element 5
When light is received at R, as described with reference to the flowchart of FIG. 7, since the mode is the through-glass shooting mode, it is erroneously determined to be through-glass shooting even at a normal shooting distance.

【0024】本発明の目的は、このような従来の問題を
解決し、誤判定なく所望する被写体を測距することがで
きる測距装置を提供することにある。
An object of the present invention is to solve such a conventional problem and to provide a distance measuring apparatus capable of measuring a desired object without erroneous determination.

【0025】[0025]

【課題を解決するための手段】本発明の目的を実現する
第1の構成は、複数の光軸方向へそれぞれ投光を行う
投光手段と、各投光軸に対応してそれぞれ設けられた受
光部を有し、各投光軸での投光による各投光軸に対応し
て設けられた受光部の出力にて各投光軸における被写
体の距離を求めるとともに、前記複数の投光軸の内所定
の1つの投光軸での投光を行った際に該投光軸に対応し
ていない受光部における出力を評価して所定距離を設定
する測距装置において、前記所定の1つの投光軸での投
光を行った際における該投光軸に対応する受光部での出
力と前記投光軸に対応していない受光部での出力とを比
較し、前記所定の1つの投光軸での投光を行った際にお
ける該投光軸に対応する受光部での出力が前記投光軸に
対応していない受光部での出力よりも大きいと判定され
た時、前記投光軸に対応していない受光部での出力が存
在していても前記所定距離の設定を禁止し、前記投光軸
に対応する受光部での出力により被写体の距離を求める
ことを特徴とする。本発明の目的を実現する第2の構成
は、複数の投光軸方向へそれぞれ投光を行う投光手段
と、各投光軸に対応してそれぞれ設けられた受光部を有
し、各投光軸での投光による各投光軸に対応して設けら
れた受光部の出力にて各投光軸における被写体の距離を
求めるとともに、前記複数の投光軸の内所定の1つの投
光軸での投光を行った際に該投光軸に対応していない受
光部における出力を評価して投光光の一部を反射する光
透過性物体が近接して存在すると判定する測距装置にお
いて、前記所定の1つの投光軸での投光を行った際にお
ける該投光軸に対応する受光部での出力と前記投光軸に
対応していない受光部での出力とを比較し、前記所定の
1つの投光軸での投光を行った際における該投光軸に対
応する受光部での出力が前記投光軸に対応していない受
光部での出力よりも大きいと判定された時、前記投光軸
に対応していない受光部での出力が存在していても光透
過性物体が近接して存在するとの判定を禁止したことを
特徴とする。
According to a first aspect of the present invention, there is provided a light projecting means for projecting light in a plurality of light projecting axis directions, and a light projecting means provided for each of the light projecting axes. The distance of the subject in each light-projection axis is determined by the output of each light-receiver provided corresponding to each light-projection axis by the light projection in each light-projection axis. In a distance measuring device for setting a predetermined distance by evaluating an output at a light receiving unit that does not correspond to the light projecting axis when projecting light at a predetermined light projecting axis of the light axes, Compare the output of the light receiving unit corresponding to the light projecting axis and the output of the light receiving unit that does not correspond to the light projecting axis when light is projected on one light projecting axis. A light receiving unit whose output at the light receiving unit corresponding to the light projecting axis when light is projected on two light projecting axes does not correspond to the light projecting axis When it is determined to be greater than the output of the light receiving unit output by the light receiving portion that does not correspond to the light projecting axes be present prohibits setting of the predetermined distance, corresponding to the light projection axis The distance of the subject is obtained by the output of (1). A second configuration for realizing the object of the present invention includes a light projecting means for performing each of the light projecting into a plurality of light projection axis, the light receiving portion provided corresponding to each of the light projecting axes, each projection The distance of the subject in each light-projection axis is determined by the output of the light-receiving unit provided corresponding to each light-projection axis by the light-projection in the light axis, and a predetermined one of the plurality of light-projection axes is projected. Distance measurement that evaluates the output of a light receiving unit that does not correspond to the light projection axis when light is projected on the axis and determines that a light-transmitting object that reflects a part of the light is present in the vicinity In the device, when the light is projected on the predetermined one light projecting axis, the output of the light receiving unit corresponding to the light projecting axis is compared with the output of the light receiving unit not corresponding to the light projecting axis. And the predetermined
When it is determined that the output at the light receiving unit corresponding to the light projecting axis when performing light projection at one light projecting axis is larger than the output at the light receiving unit not corresponding to the light projecting axis, It is characterized in that the determination that a light-transmitting object is present in the vicinity is prohibited even if an output from a light receiving unit that does not correspond to the light projecting axis exists.

【0026】[0026]

【実施例】図1及び図2は本発明による測距装置の一実
施例を示す。
1 and 2 show an embodiment of a distance measuring apparatus according to the present invention.

【0027】本実施例の測距装置は、図6で示したアク
ティブ型の3点測距方式と同様の構成で、投光素子4に
は3つの発光部4R、4C、4Lを有し、逐次これら各
発光部からの光が投光レンズ2を介して被写体に向け投
光され、被写体あるいはガラスからの拡散反射光が受光
素子5の各受光部5R、5C、5Lに受光される。
The distance measuring apparatus of this embodiment has the same configuration as the active three-point distance measuring method shown in FIG. 6, and the light projecting element 4 has three light emitting parts 4R, 4C, 4L. The light from each of the light emitting units is sequentially projected toward the subject via the light projecting lens 2, and the diffusely reflected light from the subject or the glass is received by the light receiving units 5 R, 5 C, and 5 L of the light receiving element 5.

【0028】6は公知の二重積分回路等から構成される
距離演算回路で、受光素子5からの情報が入力される。
7は制御装置で、距離演算回路6の制御及び距離演算回
路6からの出力情報に基づきAF駆動制御等を行う。
Reference numeral 6 denotes a distance calculation circuit including a known double integration circuit and the like, to which information from the light receiving element 5 is input.
A control device 7 controls the distance calculation circuit 6 and performs AF drive control and the like based on output information from the distance calculation circuit 6.

【0029】図2は制御装置7にて制御される本実施例
の動作を説明するフローチャートを示している。
FIG. 2 is a flowchart for explaining the operation of this embodiment controlled by the control device 7.

【0030】[#1]投光素子4Cを発光させ被写体に
向けて投光し、受光素子5Lの出力信号レベルNを記憶
し、#2に進む。この記憶した信号レベルNは、後で行
う至近警告、ガラス越し遠景判定のデーターとして用い
る。
[# 1] The light emitting element 4C emits light and emits light toward the subject, stores the output signal level N of the light receiving element 5L, and proceeds to # 2. The stored signal level N is used as data for a close warning to be performed later and distant view through glass.

【0031】[#2]投光素子4Rを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Rのデー
タに基づき、ファインダー内右側の測距を行い、測距デ
ータRを記憶し、#3に進む。
[# 2] Based on the data of the light receiving element 5R which receives the reflected light by emitting the light from the light projecting element 4R, the right distance in the finder is measured, and the distance measurement data R is stored. Then, proceed to # 3.

【0032】[#3]投光素子4Lを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Lのデー
タに基づき、ファインダー内左側の測距を行い、測距デ
ータLを記憶し、#4に進む。
[# 3] Based on the data of the light receiving element 5L that receives the reflected light by emitting the light from the light projecting element 4L and measuring the distance to the left side in the finder, the distance measuring data L is stored. Then, proceed to # 4.

【0033】[#4]投光素子4Cを発光させ被写体に
向け投光し、その反射光を受光する受光素子5Cのデー
タに基づき、ファインダー内中央の測距を行い、測距デ
ータCを記憶し、#5に進む。
[# 4] Based on the data of the light receiving element 5C which receives the reflected light by emitting the light from the light projecting element 4C, the distance in the center of the viewfinder is measured, and the distance measuring data C is stored. Then, proceed to # 5.

【0034】[#5]至近警告の判定を行う。#1で記
憶した信号Nの大きさを閾値と比較し、信号Nが閾値よ
りも大きければ至近警告と判定され、#11に進み、至
近警告を行うと共に、測距データを至近あるいは超至近
とする。また信号Nが閾値よりも小さければ#6に進
む。
[# 5] A close warning is determined. The magnitude of the signal N stored in # 1 is compared with a threshold value. If the signal N is larger than the threshold value, it is determined that a close warning has been issued. I do. If the signal N is smaller than the threshold, the process proceeds to # 6.

【0035】[#6]ショーウインドウ越し被写体判定
を行う。#4で測定した信号Cを閾値と比較し、信号C
が閾値よりも大きければ、ショーウインドウ越しに被写
体があると判定し、#10に進み、得られた測距データ
を選ぶ。また、信号Cが閾値よりも小さければ、#7に
進む。
[# 6] Judgment of the subject through the show window is performed. The signal C measured in # 4 is compared with a threshold, and the signal C
Is larger than the threshold value, it is determined that there is a subject over the show window, and the process proceeds to # 10, where the obtained distance measurement data is selected. If the signal C is smaller than the threshold, the process proceeds to # 7.

【0036】[#7]ガラス越し遠景判定1を行う。#
1で測定した信号Nの有無を判定し、信号Nがなければ
#10に進み、得られた測距データを選ぶ。また、信号
Nが有ればガラス越し遠景と判定し、#8に進む。
[# 7] A distant view determination 1 through glass is performed. #
The presence or absence of the signal N measured in step 1 is determined. If there is no signal N, the process proceeds to step # 10, and the obtained distance measurement data is selected. If the signal N is present, it is determined that the view is a distant view through the glass, and the process proceeds to # 8.

【0037】すなわち、#1において、信号Nが存在し
ていないということは、ここで判定されるガラス越し遠
景でもなければ、投光素子4に漏光も発生していないこ
とになる。
That is, in the step # 1, the absence of the signal N means that the light is not leaked to the light projecting element 4 unless it is the distant view through the glass determined here.

【0038】しかし、信号Nが存在するということは、
ガラス越し遠景の場合もあれば、漏光により信号Nを測
定するという可能性もある。図7に示す従来の場合で
は、信号Nの存在は一様にガラス越し遠景と判定してい
たが本発明の実施例では、#8においてガラス越し遠景
か漏光かを判定するガラス越し遠景判定2を行う。
However, the presence of signal N means that
In some cases, the signal N is measured due to light leakage. In the conventional case shown in FIG. 7, the presence of the signal N is uniformly determined to be a distant view through the glass. However, in the embodiment of the present invention, in # 8, a distant view through the glass determination 2 for determining whether a distant view through the glass or a leaked light. I do.

【0039】[#8]ガラス越し遠景判定2を行う。#
1で測定した信号Nのレベルと、#4で測定した信号C
のレベルとを比較し、N≧Cの場合はガラス越し遠景被
写体と判定し、#9に進む。また、C>Nの場合は#1
0に進む。
[# 8] The distant view judgment 2 through the glass is performed. #
1 and the signal C measured at # 4
And if N ≧ C, it is determined that the subject is a distant view through glass, and the flow proceeds to # 9. When C> N, # 1
Go to 0.

【0040】すなわち、#4においてフルパワーで正規
に発光する発光部4Cからの投光が被写体で反射し受光
素子5Cで受光した場合、受光素子5からの出力は非常
に大きいのに対し、#1において受光素子5Lが発光部
4Cの漏光を受光した場合、その出力は小さい。
That is, in the case where the light emitted from the light emitting section 4C, which emits light at full power in # 4, is reflected by the object and received by the light receiving element 5C, the output from the light receiving element 5 is very large. In 1, when the light receiving element 5 </ b> L receives light leaked from the light emitting unit 4 </ b> C, the output is small.

【0041】したがって、C>Nの場合、信号Nは漏光
による受光信号であると判定することができる。
Therefore, when C> N, it can be determined that the signal N is a light receiving signal due to light leakage.

【0042】一方、ガラス越し遠景撮影であると、ガラ
ス面から反射し受光素子5Rに入射する#1における信
号Nは非常に大きいのに対し、#4において受光素子5
Cで受光する投光素子4Cの被写体からの反射光は小さ
い。
On the other hand, if it is over glass Long Distance, the signal N in the # 1 you enter the light receiving element 5R is reflected from the glass surface whereas very large, the light receiving element in the # 4 5
The reflected light from the subject of the light projecting element 4C received at C is small.

【0043】よって、N≧Cの場合はガラス越し遠景被
写体と判定する。
Therefore, when N ≧ C, it is determined that the subject is a distant view object through glass.

【0044】[#9]ガラス越し遠景と判定されたの
で、測距データを無限とする。
[# 9] Since it is determined that the view is a distant view through the glass, the distance measurement data is set to infinity.

【0045】[0045]

【発明の効果】以上説明したように、本発明による測距
装置によれば、投光素子に光漏れがあっても、遠景撮影
用の距離を選択せずに測定された距離を選択するので、
投光素子側の漏光対策を機械的に行うといったコストの
上がる手段を用いずに解決することができる。
As described above, according to the distance measuring apparatus of the present invention, even if there is light leakage in the light emitting element, the measured distance is selected without selecting the distance for distant view photographing. ,
The problem can be solved without using a costly means such as mechanically taking measures against light leakage on the light emitting element side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による測距装置の一実施例を示すブロッ
ク図。
FIG. 1 is a block diagram showing an embodiment of a distance measuring apparatus according to the present invention.

【図2】図1の動作を説明するフローチャート。FIG. 2 is a flowchart illustrating the operation of FIG.

【図3】被写体が至近の場合、ガラス越し遠景の場合、
ショーウインドウ越しの場合の光線追跡図。
FIG. 3 shows a case where the subject is close, and a distant view through glass,
Ray tracing diagram over a show window.

【図4】投光素子の拡大図。FIG. 4 is an enlarged view of a light emitting element.

【図5】投光素子の不具合を説明する図。FIG. 5 is a diagram illustrating a defect of the light emitting element.

【図6】従来例の光線追跡図。FIG. 6 is a ray tracing diagram of a conventional example.

【図7】従来例の動作を説明するフローチャート。FIG. 7 is a flowchart illustrating the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1 測距装置の外装 2 投光レンズ 3 受光レンズ 4 投光素子 5 受光素子 6 距離演算手段 7 制御装置 8 ガラス REFERENCE SIGNS LIST 1 exterior of distance measuring device 2 light emitting lens 3 light receiving lens 4 light emitting element 5 light receiving element 6 distance calculating means 7 control device 8 glass

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 7/28 - 7/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 7/ 28-7/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の光軸方向へそれぞれ投光を行
う投光手段と、各投光軸に対応してそれぞれ設けられた
受光部を有し、各投光軸での投光による各投光軸に対応
して設けられた受光部の出力にて各投光軸における被
写体の距離を求めるとともに、前記複数の投光軸の内所
定の1つの投光軸での投光を行った際に該投光軸に対応
していない受光部における出力を評価して所定距離を設
定する測距装置において、 前記所定の1つの投光軸での投光を行った際における該
投光軸に対応する受光部での出力と前記投光軸に対応し
ていない受光部での出力とを比較し、前記所定の1つの
投光軸での投光を行った際における該投光軸に対応する
受光部での出力が前記投光軸に対応していない受光部で
の出力よりも大きいと判定された時、前記投光軸に対応
していない受光部での出力が存在していても前記所定距
の設定を禁止し、前記投光軸に対応する受光部での出
力により被写体の距離を求めることを特徴とする測距装
置。
[Claim 1 further comprising a plurality of the light emitting means, respectively to the light projection axis performs light projection, the light receiving portion provided corresponding to each of the light projecting axes, each by projection of each projection axis The output of each light receiving unit provided corresponding to the light projecting axis determines the distance of the subject in each light projecting axis, and performs light projecting on a predetermined one of the plurality of light projecting axes. A distance measuring device that evaluates an output of a light receiving unit that does not correspond to the light projecting axis and sets a predetermined distance. The output at the light receiving unit corresponding to the axis is compared with the output at the light receiving unit not corresponding to the light emitting axis, and the light emitting axis when the light is emitted at the predetermined one light emitting axis When it is determined that the output of the light receiving unit corresponding to the light emitting axis is larger than the output of the light receiving unit not corresponding to the light emitting axis, Also output in have not received part is be present said predetermined distance
Prohibits setting of the release, the distance measuring apparatus and obtaining the distance of the object by the output of the light receiving unit corresponding to the light projection axis.
【請求項2】 複数の投光軸方向へそれぞれ投光を行う
投光手段と、各投光軸に対応してそれぞれ設けられた受
光部を有し、各投光軸での投光による各投光軸に対応し
て設けられた受光部の出力にて各投光軸における被写体
の距離を求めるとともに、前記複数の投光軸の内所定の
1つの投光軸での投光を行った際に該投光軸に対応して
いない受光部における出力を評価して投光光の一部を反
射する光透過性物体が近接して存在すると判定する測距
装置において、 前記所定の1つの投光軸での投光を行った際における該
投光軸に対応する受光部での出力と前記投光軸に対応し
ていない受光部での出力とを比較し、前記所定の1つの
投光軸での投光を行った際における該投光軸に対応する
受光部での出力が前記投光軸に対応していない受光部で
の出力よりも大きいと判定された時、前記投光軸に対応
していない受光部での出力が存在していても光透過性物
体が近接して存在するとの判定を禁止したことを特徴と
する測距装置。
Wherein a plurality of the light emitting means, respectively to the light projection axis performs light projection, the light receiving portion provided corresponding to each of the light projecting axes, each by projection of each projection axis The distance of the subject in each light-projection axis is determined by the output of the light-receiving unit provided corresponding to the light-projection axis, and a predetermined distance among the plurality of light-projection axes is determined.
When light is projected on one light axis, the output of the light receiving unit that does not correspond to the light axis is evaluated and a light-transmitting object that reflects a part of the light is present in the vicinity. In the distance measuring device to be determined, the output at the light receiving unit corresponding to the light projecting axis when the light is projected at the predetermined one light projecting axis and the output at the light receiving unit not corresponding to the light projecting axis. The output of the light receiving unit corresponding to the light emitting axis when the light is emitted in the predetermined one light emitting axis is compared with the output of the light receiving unit not corresponding to the light emitting axis. When it is determined that the light-transmitting object does not correspond to the light-projecting axis, the determination that the light-transmitting object is present in the vicinity is prohibited. Distance device.
JP20100592A 1992-07-28 1992-07-28 Distance measuring device Expired - Fee Related JP3238484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20100592A JP3238484B2 (en) 1992-07-28 1992-07-28 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20100592A JP3238484B2 (en) 1992-07-28 1992-07-28 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH0651191A JPH0651191A (en) 1994-02-25
JP3238484B2 true JP3238484B2 (en) 2001-12-17

Family

ID=16433920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20100592A Expired - Fee Related JP3238484B2 (en) 1992-07-28 1992-07-28 Distance measuring device

Country Status (1)

Country Link
JP (1) JP3238484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666870B2 (en) * 2009-11-09 2015-02-12 シャープ株式会社 Optical distance measuring device, electronic apparatus, and optical distance measuring device calibration method

Also Published As

Publication number Publication date
JPH0651191A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
JP2763041B2 (en) Auto focus camera
JP3382739B2 (en) Underwater camera
JP3238484B2 (en) Distance measuring device
US5870637A (en) Auxiliary light emitting device and focusing condition detecting device
JPH0731297B2 (en) Autofocus camera
US6442344B1 (en) Focusing apparatus
US6744982B2 (en) Distance-measuring device of camera and focusing method of camera
JP2889102B2 (en) Distance measuring device
US5634151A (en) Autofocusing operation display apparatus and method
JPH0225487B2 (en)
JP2002072065A (en) Range finder
JP3354638B2 (en) Ranging device with pyroelectric infrared sensor
JPH1096851A (en) Range finder for camera
JP3083977B2 (en) Distance measuring device
JP2526968B2 (en) Auto focus camera
JP3379834B2 (en) Camera ranging device
JP2950654B2 (en) camera
JP3199969B2 (en) Multi-point distance measuring device
KR100205983B1 (en) Passive type auto-focusing control device
KR100244951B1 (en) Passive auto-focus control apparatus and method having variableness to area of distance measuring
JPS62280726A (en) Distance measuring instrument for camera
JP2568457Y2 (en) Camera ranging device
JP3109951B2 (en) Focus adjustment device and camera
JP3080862B2 (en) Distance measuring device
JPH095617A (en) Auto-focusing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees