JP3238331U - Electrolyzed ozone water generator composed of titanium coated anode - Google Patents

Electrolyzed ozone water generator composed of titanium coated anode Download PDF

Info

Publication number
JP3238331U
JP3238331U JP2022001648U JP2022001648U JP3238331U JP 3238331 U JP3238331 U JP 3238331U JP 2022001648 U JP2022001648 U JP 2022001648U JP 2022001648 U JP2022001648 U JP 2022001648U JP 3238331 U JP3238331 U JP 3238331U
Authority
JP
Japan
Prior art keywords
generator
titanium
anode
ruthenium
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022001648U
Other languages
Japanese (ja)
Inventor
徐名勇
徐偉鈞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai United Ozonetec Corp
Original Assignee
Yantai United Ozonetec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai United Ozonetec Corp filed Critical Yantai United Ozonetec Corp
Priority to JP2022001648U priority Critical patent/JP3238331U/en
Application granted granted Critical
Publication of JP3238331U publication Critical patent/JP3238331U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】チタンコーティング陽極が構成する電解オゾン水発生器を提供する。【解決手段】電解オゾン水発生器はn個の発生器陽極1-4とn+1個の発生器陰極1-3を有し、発生器陽極1-4はチタンコーティング陽極で、発生器陰極1-3はチタン陰極或いはステンレス陰極で、チタンコーティング陽極は、チタン基板とルテニウム、ニッケルを混合した酸化スズコーティング層を有し、サンドブラストによりラフ化したチタン基板をエッチング、乾燥後に、ルテニウム、ニッケルを混合した酸化スズコーティングを均一にコーティングし、乾燥させ、コーティング層材料を熱分解して製造し、陽極と陰極を電導率が30μs/cmより大きい水中に浸し、定電流電力を供給し、電力供給電圧範囲は3.5~12Vで、電界の作用により水は電気分解され、酸素イオンは陽極触媒の作用により、オゾンマイクロバブルを生成し、オゾンマイクロバブルは迅速に水中に溶け、直接オゾン水を生成する。【選択図】図1An electrolytic ozone water generator comprising a titanium-coated anode is provided. The electrolytic ozone water generator has n generator anodes 1-4 and n+1 generator cathodes 1-3, the generator anodes 1-4 are titanium coated anodes, and the generator cathodes 1- 3 is a titanium cathode or a stainless steel cathode, and a titanium coated anode has a tin oxide coating layer in which a titanium substrate, ruthenium, and nickel are mixed, and the titanium substrate roughened by sandblasting is etched, dried, and mixed with ruthenium and nickel. The tin oxide coating is uniformly coated and dried, the coating layer material is pyrolyzed to produce, the anode and cathode are immersed in water with a conductivity greater than 30 μs/cm, constant current power is supplied, and the power supply voltage range is 3.5~12V, the water is electrolyzed by the action of the electric field, the oxygen ions produce ozone microbubbles through the action of the anode catalyst, and the ozone microbubbles quickly dissolve in the water, directly producing ozonated water. . [Selection drawing] Fig. 1

Description

本考案は電解オゾン水発生器技術領域に関し、チタンコーティング陽極が構成する電解オゾン水発生器に関する。 The present invention relates to an electrolytic ozone water generator technical area, and relates to an electrolytic ozone water generator composed of a titanium-coated anode.

現在、電解水によりオゾンを生成する電解オゾン発生器の陽極材料には、多くが、二酸化鉛が採用されている。
しかし、二酸化鉛は、中毒を起こしやすく、これにより触媒活性が低下する。
そのため、水道水を電気分解用水として直接利用することはできず、超純水を電解用水として使用することでしか、発生器の性能を安定させることはできない。
At present, lead dioxide is mostly used as the anode material of the electrolytic ozone generator that generates ozone by electrolyzed water.
However, lead dioxide is prone to poisoning, which reduces catalytic activity.
Therefore, tap water cannot be directly used as water for electrolysis, and the performance of the generator can be stabilized only by using ultrapure water as water for electrolysis.

多くの応用においては、純水を電気分解しオゾンガスを生成した後に、混合技術を通して、普通水と混合し、オゾン水を生成しているが、これはオゾン設備の複雑性を拡大している。
しかも、二酸化鉛を陽極材料として採用する電解オゾン発生器は、頻繁にオン/オフを行う使用条件下では、水素イオンが反対方向に移動することで、二酸化鉛表面が変性し、触媒活性を失ってしまう。
そのため、水道水を電気分解用水として直接利用するオゾン水生成方式が求められている。
In many applications, pure water is electrolyzed to produce ozone gas and then mixed with ordinary water to produce ozone water through a mixing technique, which increases the complexity of ozone equipment.
Moreover, the electrolytic ozone generator, which uses lead dioxide as the anode material, loses its catalytic activity due to the modification of the lead dioxide surface due to the movement of hydrogen ions in the opposite direction under the conditions of frequent on / off use. It ends up.
Therefore, there is a demand for an ozone water generation method that directly uses tap water as water for electrolysis.

前記先行技術の陽極材料には二酸化鉛が採用されているが、二酸化鉛は中毒を起こしやすく触媒活性が低下するため、超純水を電解用水として使用することでしか、発生器の性能を安定させることはできず、純水を電気分解しオゾンガスを生成した後に普通水と混合しオゾン水を生成しているため、オゾン設備の複雑性を拡大しており、しかも二酸化鉛を陽極材料として採用する電解オゾン発生器は、頻繁にオン/オフを行う使用条件下では、水素イオンが反対方向に移動することで、二酸化鉛表面が変性し、触媒活性を失ってしまうという欠点がある。 Lead dioxide is used as the anode material of the prior art, but since lead dioxide is prone to poisoning and its catalytic activity is reduced, the performance of the generator can be stabilized only by using ultrapure water as water for electrolysis. Since pure water is electrolyzed to generate ozone gas and then mixed with ordinary water to generate ozone water, the complexity of ozone equipment is expanded, and lead dioxide is used as the anode material. The electrolytic ozone generator has the disadvantage that the surface of lead dioxide is denatured and the catalytic activity is lost due to the movement of hydrogen ions in the opposite direction under the conditions of frequent on / off use.

本考案は従来のオゾン設備の多くの欠点を解決でき、既存技術の不足を克服できるチタンコーティング陽極が構成する電解オゾン水発生器に関する。 The present invention relates to an electrolytic ozone water generator composed of a titanium-coated anode that can solve many shortcomings of conventional ozone equipment and overcome the shortage of existing techniques.

本考案によるチタンコーティング陽極が構成する電解オゾン水発生器は、水道水を電気分解用水として直接利用することで、直接オゾン水を生成でき、二酸化鉛触媒は中毒を起こし触媒活性を失いやすいという問題と鉛の環境汚染問題を解決でき、しかもコストが低廉で、技術操作が簡単で、大規模生産が容易で、発生器は交換が容易で、操作と使用の利便性が高い。 The electrolytic ozone water generator composed of the titanium-coated anode according to the present invention can directly generate ozone water by directly using tap water as water for electrolysis, and the lead dioxide catalyst easily causes poisoning and loses catalytic activity. The problem of environmental pollution of lead can be solved, the cost is low, the technical operation is easy, the large-scale production is easy, the generator is easy to replace, and the operation and use are convenient.

本考案によるチタンコーティング陽極が構成する電解オゾン水発生器は、以下の効果を備える。
1.本考案は、酸化スズコーティング層を陽極として採用し、二酸化鉛触媒は中毒を起こし触媒活性を失いやすいという問題と鉛の環境汚染問題を解決でき、しかも酸化スズコーティング層はコストが低廉である。
2.本考案の電解オゾン水発生器に直流の定電流を通し、電界の作用により水を電気分解し、酸素イオンは陽極触媒の作用により、オゾンマイクロバブルを生成し、オゾンマイクロバブルは迅速に水中に溶け、直接オゾン水を生成し、現在一般に採用されているオゾンガスを生成し水と混合してオゾン水を生成するプロセスを省くことができ、本考案が構成する製品は構造が簡単で、コストが低い。
3.本考案は技術操作が簡単で、大規模生産が容易である。
4.本考案により構成される電解オゾン水発生器は交換が容易で、操作と使用の利便性が高い。
The electrolytic ozone water generator configured by the titanium-coated anode according to the present invention has the following effects.
1. 1. The present invention adopts a tin oxide coating layer as an anode, can solve the problem that lead dioxide catalyst causes poisoning and easily loses catalytic activity and the problem of environmental pollution of lead, and the tin oxide coating layer is inexpensive.
2. 2. A constant DC current is passed through the electrolytic ozone water generator of the present invention, water is electrolyzed by the action of an electric field, oxygen ions generate ozone microbubbles by the action of an anode catalyst, and ozone microbubbles are rapidly submerged in water. It is possible to omit the process of melting and directly producing ozone water, producing ozone gas, which is generally used at present, and mixing it with water to generate ozone water. low.
3. 3. The present invention is easy to operate and easy to produce on a large scale.
4. The electrolytic ozone water generator configured by the present invention is easy to replace and is highly convenient to operate and use.

上述の目的と効果を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、該オゾン水発生器の陽極はチタンコーティング陽極で、発生器陰極は陰極或いはステンレス陰極で、n個の発生器陽極とn+1個の発生器陰極を有し、nは≧1の自然数で、
チタンコーティング陽極は、チタン基板とルテニウム、ニッケルを混合した酸化スズコーティング層を有し、ルテニウム、ニッケルを混合した酸化スズコーティング層中の、スズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である。
Specific means adopted by the present invention in order to achieve the above-mentioned object and effect are as follows.
In the electrolytic ozone water generator, the anode of the ozone water generator is a titanium-coated anode, the generator cathode is a cathode or a stainless steel cathode, and has n generator anodes and n + 1 generator cathodes, where n is With a natural number of ≧ 1,
The titanium-coated anode has a tin oxide coating layer in which a titanium substrate is mixed with ruthenium and nickel, and the atomic weight ratio of tin and ruthenium in the tin oxide coating layer in which ruthenium and nickel are mixed is 6: 1 to 10: 1. , Ruthenium and nickel have an atomic weight ratio of 3: 1 to 10: 1.

上述の目的と効果を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、該発生器陽極と発生器陰極は、交互に配列し、
各発生器陽極の底部間は、相互に電気的に連接し、各発生器陰極の底部間は、相互に電気的に連接し、
発生器陽極と発生器陰極は共に発生器ハウジング容器バケツ上に固定し、発生器底蓋は、発生器ハウジング容器バケツの底部に設置され、
発生器陽極と発生器陰極の頂部には、隔絶板を設置し、ハウジング頂部には、上蓋を設置し、上蓋上には、発生器進水口と発生器出水口を設置し、
発生器陽極及び発生器陰極は、陽極導電ボルト、陰極導電ボルトを通して、発生器に電力を供給する正負極と相互に連接する。
Specific means adopted by the present invention in order to achieve the above-mentioned object and effect are as follows.
In the electrolytic ozone water generator, the generator anode and the generator cathode are arranged alternately.
The bottoms of each generator anode are electrically connected to each other, and the bottoms of each generator cathode are electrically connected to each other.
Both the generator anode and the generator cathode are fixed on the generator housing container bucket, and the generator bottom lid is installed at the bottom of the generator housing container bucket.
An isolation plate is installed on the top of the generator anode and the generator cathode, a top lid is installed on the top of the housing, and a generator launch port and a generator outlet are installed on the top lid.
The generator anode and the generator cathode are interconnected with the positive and negative electrodes that supply power to the generator through the anode conductive bolt and the cathode conductive bolt.

上述の目的を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、該チタンコーティング陽極は、チタン基板とルテニウム、ニッケルを混合した酸化スズコーティング層を有し、ルテニウム、ニッケルを混合した酸化スズコーティング層中の、スズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である。
Specific means adopted by the present invention in order to achieve the above object are as follows.
In the electrolytic ozone water generator, the titanium-coated anode has a tin oxide-coated layer in which a titanium substrate is mixed with ruthenium and nickel, and the atomic weight ratio of tin and ruthenium in the tin oxide-coated layer in which ruthenium and nickel are mixed. Is 6: 1 to 10: 1, and the atomic weight ratio of ruthenium and nickel is 3: 1 to 10: 1.

上述の目的を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、該チタンコーティング陽極は、以下のステップにより調製され、
a、チタン基板表面をサンドブラストによりラフ化し、
b、サンドブラストによりラフ化したチタン基板を体積パーセンテージ濃度が10~30%の塩酸水溶液中に入れエッチングし、
c、エッチング後のチタン基板を純水で洗い流し、体積パーセンテージ濃度が1~3%の塩酸水溶液中に入れ使用に備え、
d、チタン基板を乾燥後、ルテニウム、ニッケルを混合した酸化スズコーティング液をチタン基板上に均一にコーティングし、
e、赤外線オーブン中に入れ、90~130℃で3~10分間乾燥させ、
f、400℃~450℃の高温炉に入れ8~15分間、コーティング層材料を熱分解し、
g、上述のd~fのステップを5~12回繰り返し、最後の一回は炉の温度を480~520℃に調整し、1~3時間保持後に取り出す
Specific means adopted by the present invention in order to achieve the above object are as follows.
In the electrolytic ozone water generator, the titanium coated anode is prepared by the following steps.
a, The surface of the titanium substrate is roughened by sandblasting,
b. The titanium substrate roughened by sandblasting is placed in a hydrochloric acid aqueous solution having a volume percentage concentration of 10 to 30% and etched.
c. Rinse the etched titanium substrate with pure water and place it in a hydrochloric acid aqueous solution with a volume percentage concentration of 1 to 3% to prepare for use.
d. After the titanium substrate is dried, a tin oxide coating liquid containing ruthenium and nickel is uniformly coated on the titanium substrate.
e. Place in an infrared oven and dry at 90-130 ° C for 3-10 minutes.
f, Place in a high temperature furnace at 400 ° C to 450 ° C and thermally decompose the coating layer material for 8 to 15 minutes.
g, Repeat steps d to f above 5 to 12 times, adjust the temperature of the furnace to 480 to 520 ° C. for the last time, hold for 1 to 3 hours, and then remove.

上述の目的を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、ルテニウム、ニッケルを混合した酸化スズコーティング液は、以下のステップにより調製され、
体積パーセンテージ濃度が1~3%の硝酸を計り用意し、エタノール溶液中に溶解させ、硝酸塩溶液を製成し、
体積パーセンテージ濃度が3~10%のチタン酸ブチルを計り用意し、上述の硝酸塩溶液中に溶解させ、チタン酸ブチル硝酸塩溶液を製成し、
それぞれ酸化スズ、酸化ルテニウム、酸化ニッケルを計り用意し、チタン酸ブチル硝酸塩溶液中に溶解させ、
溶液中のスズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である。
Specific means adopted by the present invention in order to achieve the above object are as follows.
In the electrolytic ozone water generator, a tin oxide coating liquid in which ruthenium and nickel are mixed is prepared by the following steps.
Weigh and prepare nitric acid with a volume percentage concentration of 1 to 3%, dissolve it in an ethanol solution, and prepare a nitrate solution.
Weigh and prepare butyl titanate having a volume percentage concentration of 3 to 10% and dissolve it in the above-mentioned nitrate solution to prepare a butyl titanate nitrate solution.
Weigh tin oxide, ruthenium oxide, and nickel oxide, respectively, and dissolve them in a butyl nitrate nitrate solution.
The atomic weight ratio of tin and ruthenium in the solution is 6: 1 to 10: 1, and the atomic weight ratio of ruthenium and nickel is 3: 1 to 10: 1.

上述の目的を達成するため、本考案が採用する具体的な手段は以下の通りである。
該電解オゾン水発生器において、オゾン水生成の過程は以下を含み、
チタンコーティング陽極が構成する電解オゾン水発生器の発生器陽極と発生器陰極を、電導率が30μs/cmより大きい水中に浸し、
続いて、発生器陽極及び発生器陰極に定電流電力を供給し、電力供給電圧範囲は3.5~12Vで、電界の作用により水は電気分解され、
酸素イオンは陽極触媒の作用により、オゾンマイクロバブルを生成し、オゾンマイクロバブルは、迅速に水中に溶け、直接オゾン水を生成する。
Specific means adopted by the present invention in order to achieve the above object are as follows.
In the electrolytic ozone water generator, the process of ozone water generation includes the following:
The generator anode and the generator cathode of the electrolytic ozone water generator composed of the titanium-coated anode are immersed in water having a conductivity of more than 30 μs / cm.
Subsequently, constant current power is supplied to the generator anode and the generator cathode, the power supply voltage range is 3.5 to 12 V, and water is electrolyzed by the action of the electric field.
Oxygen ions generate ozone microbubbles by the action of the anode catalyst, and the ozone microbubbles rapidly dissolve in water and directly generate ozone water.

本考案のチタンコーティング陽極が構成する電解オゾン水発生器の構造模式図である。It is a structural schematic diagram of the electrolytic ozone water generator which comprises the titanium coating anode of this invention.

(一実施形態)
実施形態1:
孔径3mm、孔密度が一cmあたり1個、厚さ1mmのパンチングチタン板1000cmを用意し、パンチングチタン板表面をサンドブラストによりラフ化する。
続いて、サンドブラストによりラフ化したパンチングチタン板を、体積パーセンテージ濃度が30%の塩酸水溶液中に入れ、90℃まで加熱し、5分間エッチングする。
エッチング後のパンチングチタン板を純水で洗い流し、体積パーセンテージ濃度が3%の塩酸水溶液中に保管し使用に備える。
(One embodiment)
Embodiment 1:
A punching titanium plate 1000 cm 2 having a hole diameter of 3 mm, a hole density of 1 cm 2 and a thickness of 1 mm is prepared, and the surface of the punched titanium plate is roughened by sandblasting.
Subsequently, the punched titanium plate roughened by sandblasting is placed in an aqueous hydrochloric acid solution having a volume percentage concentration of 30%, heated to 90 ° C., and etched for 5 minutes.
The etched titanium plate is rinsed with pure water and stored in a hydrochloric acid aqueous solution having a volume percentage concentration of 3% to prepare for use.

塩化スズ五水和物30g、ルテニウム37%を含む酸化ルテニウム3.9g、塩化ニッケル六水和物1.13gを計って用意し、30.9mlのチタン酸ブチル、9mlの硝酸、300mlのエタノールを含む溶液中に溶解させ、ルテニウム、ニッケルを混合した酸化スズコーティング液を調製する。 Prepare 30 g of tin chloride pentahydrate, 3.9 g of ruthenium oxide containing 37% ruthenium, and 1.13 g of nickel chloride hexahydrate, and add 30.9 ml of butyl titanate, 9 ml of nitric acid, and 300 ml of ethanol. Dissolve in the containing solution to prepare a tin oxide coating solution in which ruthenium and nickel are mixed.

パンチングチタン板を取り出して乾燥させる。 Take out the punching titanium plate and dry it.

上述のルテニウム、ニッケルを混合した酸化スズコーティング液を、パンチングチタン板上に均一にコーティングし、赤外線オーブン中に入れ、120℃で6分間乾燥させ、420℃の高温炉中で10分間コーティング層材料を熱分解し、コーティング、乾燥及び高温熱分解ステップを8回繰り返す。
最後の一回は炉の温度を500℃に調整し、2時間保持した後に取り出し、酸化スズチタンコーティング陽極の製造を完成し、使用に備える。
The above-mentioned tin oxide coating liquid mixed with ruthenium and nickel is uniformly coated on a punching titanium plate, placed in an infrared oven, dried at 120 ° C. for 6 minutes, and coated layer material in a high temperature furnace at 420 ° C. for 10 minutes. Is thermally decomposed, and the coating, drying and high temperature thermal decomposition steps are repeated 8 times.
In the final round, the temperature of the furnace is adjusted to 500 ° C., held for 2 hours, and then taken out to complete the production of the tin oxide-coated titanium anode and prepare for use.

実施形態2:
0.6mm厚さのチタン板1000cmを用意し、チタン板表面をサンドブラストによりラフ化する。
続いて、サンドブラストによりラフ化したチタン板を体積パーセンテージ濃度が20%の塩酸水溶液中に入れ、90℃まで加熱し8分間エッチングし、純粋でチタン板を洗い流し、体積パーセンテージ濃度が2%の塩酸水溶液中に入れ使用に備える。
Embodiment 2:
Prepare a titanium plate 1000 cm 2 with a thickness of 0.6 mm, and roughen the surface of the titanium plate by sandblasting.
Subsequently, the titanium plate roughened by sandblasting was placed in a hydrochloric acid aqueous solution having a volume percentage concentration of 20%, heated to 90 ° C. and etched for 8 minutes, and the titanium plate was washed away with pure water. Put it inside and prepare for use.

塩化スズ五水和物30g、ルテニウム37%を含む酸化ルテニウム3g、塩化ニッケル六水和物0.5gを計り用意し、20mlのチタン酸ブチル、5mlの硝酸、300mlのエタノールを含む溶液中に溶解させる。 Weigh 30 g of tin pentahydrate, 3 g of ruthenium oxide containing 37% ruthenium, and 0.5 g of nickel chloride hexahydrate, and dissolve them in a solution containing 20 ml of butyl titanate, 5 ml of nitric acid, and 300 ml of ethanol. Let me.

チタン板を取り出して乾燥させる。 Take out the titanium plate and dry it.

上述のルテニウム、ニッケルを混合した酸化スズコーティング液を、チタン板上に均一にコーティングし、赤外線オーブン中に入れ、130℃で3分間乾燥させ、400℃の高温炉中に15分間入れ、コーティング層材料を熱分解し、コーティング、乾燥及び高温熱分解ステップを12回繰り返す。
最後の一回は炉の温度を480℃に調整し、3時間保持した後に取り出し、酸化スズチタンコーティング陽極の製造を完成し、使用に備える。
The above-mentioned tin oxide coating liquid mixed with ruthenium and nickel is uniformly coated on a titanium plate, placed in an infrared oven, dried at 130 ° C. for 3 minutes, placed in a high temperature furnace at 400 ° C. for 15 minutes, and coated layer. The material is pyrolyzed and the coating, drying and high temperature pyrolysis steps are repeated 12 times.
In the final round, the temperature of the furnace is adjusted to 480 ° C., held for 3 hours, and then taken out to complete the production of the tin oxide titanium coated anode and prepare for use.

実施形態3:
平坦化処理を行った4×6mmのストレッチチタンメッシュ板1000cmを用意する。
先ずチタンメッシュ板表面をサンドブラストによりラフ化し、続いて、サンドブラストによりラフ化したチタンメッシュ板を体積パーセンテージ濃度が10%の塩酸水溶液中に入れ、90℃まで加熱し、8分間エッチングし、チタンメッシュ板を純水で洗い流し、体積パーセンテージ濃度が1%の塩酸水溶液中に入れ、使用に備える。
Embodiment 3:
A 4 × 6 mm stretch titanium mesh plate 1000 cm 2 that has been flattened is prepared.
First, the surface of the titanium mesh plate was roughened by sandblasting, and then the titanium mesh plate roughened by sandblasting was placed in a hydrochloric acid aqueous solution having a volume percentage concentration of 10%, heated to 90 ° C., and etched for 8 minutes. Is rinsed with pure water and placed in a hydrochloric acid aqueous solution having a volume percentage concentration of 1% to prepare for use.

塩化スズ五水和物30g、ルテニウム37%を含む酸化ルテニウム2.34g、塩化ニッケル六水和物0.204gを計り用意し、9.09mlのチタン酸ブチル、3mlの硝酸、300mlのエタノールを含む溶液中に溶解させる。 30 g of tin chloride pentahydrate, 2.34 g of ruthenium oxide containing 37% ruthenium, 0.204 g of nickel chloride hexahydrate are weighed and prepared, and contains 9.09 ml of butyl titanate, 3 ml of nitric acid, and 300 ml of ethanol. Dissolve in solution.

チタンメッシュ板を取り出して乾燥させる。 Take out the titanium mesh plate and dry it.

上述のルテニウム、ニッケルを混合した酸化スズコーティング液を、チタン板上に均一にコーティングし、赤外線オーブン中に入れ、90℃で10分間乾燥させ、450℃の高温炉中でコーティング層材料を8分間熱分解し、コーティング、乾燥及び高温熱分解ステップを5回繰り返す。
最後の一回は炉の温度を520℃に調整し、1時間保持後に取り出し、酸化スズチタンコーティング陽極製造を完成し、使用に備える。
The tin oxide coating liquid, which is a mixture of ruthenium and nickel described above, is uniformly coated on a titanium plate, placed in an infrared oven, dried at 90 ° C. for 10 minutes, and the coating layer material is placed in a high temperature furnace at 450 ° C. for 8 minutes. Pyrolysis, coating, drying and high temperature pyrolysis steps are repeated 5 times.
In the final round, the temperature of the furnace is adjusted to 520 ° C., held for 1 hour, and then taken out to complete the tin oxide-titanium-coated anode production and prepare for use.

図1に示す通り、チタンコーティング陽極が構成する電解オゾン水発生器は、n個の発生器陽極1-4とn+1個の発生器陰極1-3を有する。
nは≧1の自然数で、発生器陽極1-4と発生器陰極1-3は、交互に配列し、最大の有効作用面積を保証する。
発生器陽極1-4はチタンコーティング陽極で、少なくとも1個であり、発生器陰極1-3はチタン陰極或いはステンレス陰極で、好ましくはチタン板陰極である。
各発生器陽極1-4底部は、電気的に連接し、各発生器陰極1-3底部は、電気的に連接する。
発生器陽極1-4と発生器陰極1-3は共に発生器ハウジング容器バケツ1-5上に固定され、陽極導電ボルト1-9、陰極導電ボルト1-8を通して、発生器に電気を供給する正負極とそれぞれ相互に連接し、発生器底蓋1-7は、発生器ハウジング容器バケツ1-5の底部に設置され、帯電部材を保護する。
発生器陽極1-4と発生器陰極1-3の頂部には、隔絶板1-2を設置し、陰陽極の短絡を回避する。
発生器ハウジング容器バケツ1-5の頂部には、上蓋1-1を設置し、上蓋1-1上には、発生器進水口1-1-1、発生器出水口1-1-2を設置する。
発生器陽極1-4と発生器陰極1-3は、陽極導電ボルト1-9、陰極導電ボルト1-8を通して、発生器連線挿入口2-5と相互に連接する。
As shown in FIG. 1, the electrolytic ozone water generator composed of the titanium-coated anode has n generator anodes 1-4 and n + 1 generator cathodes 1-3.
n is a natural number of ≧ 1, and the generator anodes 1-4 and the generator cathodes 1-3 are arranged alternately to guarantee the maximum effective working area.
The generator anodes 1-4 are titanium-coated anodes, at least one, and the generator cathodes 1-3 are titanium cathodes or stainless steel cathodes, preferably titanium plate cathodes.
The bottoms of the anodes 1-4 of each generator are electrically connected, and the bottoms of the cathodes 1-3 of each generator are electrically connected.
Both the generator anode 1-4 and the generator cathode 1-3 are fixed on the generator housing container bucket 1-5, and supply electricity to the generator through the anode conductive bolt 1-9 and the cathode conductive bolt 1-8. Each of the positive and negative electrodes is interconnected with each other, and the generator bottom lid 1-7 is installed at the bottom of the generator housing container bucket 1-5 to protect the charging member.
Isolation plates 1-2 are installed at the tops of the generator anodes 1-4 and the generator cathodes 1-3 to avoid short circuits of the anion anodes.
An upper lid 1-1 is installed on the top of the generator housing container bucket 1-5, and a generator launch port 1-1-1 and a generator outlet 1-1-2 are installed on the upper lid 1-1. do.
The generator anode 1-4 and the generator cathode 1-3 are interconnected with the generator connection insertion port 2-5 through the anode conductive bolt 1-9 and the cathode conductive bolt 1-8.

先ず、チタンコーティング陽極が構成するオゾン水発生器の陽極及び陰極を、電導率が30μs/cmより大きい水中に浸す。
続いて、陽極及び陰極に定電流電力を供給し、電力供給電圧範囲は3.5~12Vである。
電導率が30μs/cmより大きい水は、発生器進水口1-1-1を通って発生器内部に進入し、発生器に電力を供給する正負極は陰極導電ボルト1-8と陽極導電ボルト1-9を通して、発生器に、定電流を供給する。
供給電圧範囲は3.5~12Vである。
電界の作用により水は電気分解され、酸素イオンは陽極触媒の作用により、オゾンと酸素マイクロバブルを生成し、オゾンマイクロバブルは、迅速に水中に溶け、直接オゾン水を生成する
オゾン水は、発生器出水口1-1-2を通り流出し、管壁バイオフィルム清掃及び配管水の殺菌消毒に用いられる。
First, the anode and cathode of the ozone water generator composed of the titanium-coated anode are immersed in water having a conductivity of more than 30 μs / cm.
Subsequently, constant current power is supplied to the anode and cathode, and the power supply voltage range is 3.5 to 12 V.
Water with a conductivity greater than 30 μs / cm enters the inside of the generator through the generator launch port 1-1-1, and the positive and negative electrodes that supply power to the generator are the cathode conductive bolts 1-8 and the anode conductive bolts. A constant current is supplied to the generator through 1-9.
The supply voltage range is 3.5-12V.
Water is electrolyzed by the action of an electric field, oxygen ions generate ozone and oxygen microbubbles by the action of an anode catalyst, and the ozone microbubbles rapidly dissolve in water and directly generate ozone water. Ozone water is generated. It flows out through the water outlet 1-1-2 and is used for cleaning the pipe wall biofilm and sterilizing and disinfecting pipe water.

前述した本考案の実施形態は本考案を限定するものではなく、よって、本考案により保護される範囲は後述される実用新案登録請求の範囲を基準とする。 The embodiments of the present invention described above do not limit the present invention, and therefore, the scope protected by the present invention is based on the scope of the utility model registration claim described later.

1-1 上蓋、
1-2 隔絶板、
1-1-1 発生器進水口、
1-1-2 発生器出水口、
1-3 発生器陰極、
1-4 発生器陽極、
1-5 発生器ハウジング容器バケツ、
1-7 発生器底蓋、
1-8 陰極導電ボルト、
1-9 陽極導電ボルト。
1-1 Top lid,
1-2 Isolation board,
1-1-1 Generator launch port,
1-1-2 Generator outlet,
1-3 Generator cathode,
1-4 Generator anode,
1-5 Generator housing container bucket,
1-7 Generator bottom lid,
1-8 Cathodic conductive bolt,
1-9 Anode conductive bolt.

Claims (6)

チタンコーティング陽極が構成する電解オゾン水発生器であって、n個の発生器陽極とn+1個の発生器陰極を有し、nは≧1の自然数で、
前記発生器陽極はチタンコーティング陽極で、前記発生器陰極は陰極或いはステンレス陰極の内の一つで、
前記チタンコーティング陽極は、チタン基板とルテニウム、ニッケルを混合した酸化スズコーティング層を有し、
前記ルテニウム、ニッケルを混合した酸化スズコーティング層中の、スズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である
ことを特徴とする、
チタンコーティング陽極が構成する電解オゾン水発生器。
An electrolytic ozone water generator composed of a titanium-coated anode, having n generator anodes and n + 1 generator cathodes, where n is a natural number of ≧ 1.
The generator anode is a titanium-coated anode, and the generator cathode is one of a cathode or a stainless steel cathode.
The titanium-coated anode has a tin oxide-coated layer in which a titanium substrate, ruthenium, and nickel are mixed.
In the tin oxide coating layer in which ruthenium and nickel are mixed, the atomic weight ratio of tin and ruthenium is 6: 1 to 10: 1, and the atomic weight ratio of ruthenium and nickel is 3: 1 to 10: 1. do,
An electrolytic ozone water generator composed of a titanium-coated anode.
前記発生器陽極と前記発生器陰極は、交互に配列し、
前記各発生器陽極の底部間は、相互に電気的に連接し、前記各発生器陰極の底部間は、相互に電気的に連接し、
前記発生器陽極と前記発生器陰極は共に発生器ハウジング容器バケツ上に固定し、発生器底蓋は、前記発生器ハウジング容器バケツの底部に設置され、
前記発生器陽極と前記発生器陰極の頂部には、隔絶板を設置し、前記発生器ハウジング容器バケツの頂部には、上蓋を設置し、
前記上蓋上には、発生器進水口と発生器出水口を設置し、
前記発生器陽極及び前記発生器陰極は、陽極導電ボルト、陰極導電ボルトを通して、発生器に電力を供給する正負極と相互に連接する
ことを特徴とする、
請求項1に記載のチタンコーティング陽極が構成する電解オゾン水発生器。
The generator anode and the generator cathode are arranged alternately.
The bottoms of each generator anode are electrically connected to each other, and the bottoms of each generator cathode are electrically connected to each other.
Both the generator anode and the generator cathode are fixed on the generator housing container bucket, and the generator bottom lid is installed at the bottom of the generator housing container bucket.
An isolation plate was installed at the top of the generator anode and the generator cathode, and an upper lid was installed at the top of the generator housing container bucket.
A generator launch port and a generator outlet are installed on the upper lid.
The generator anode and the generator cathode are characterized in that they are interconnected with positive and negative electrodes that supply electric power to the generator through an anode conductive bolt and a cathode conductive bolt.
The electrolytic ozone water generator comprising the titanium-coated anode according to claim 1.
前記チタンコーティング陽極は、チタン基板とルテニウム、ニッケルを混合した酸化スズコーティング層を有し、
前記ルテニウム、ニッケルを混合した酸化スズコーティング層中の、スズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である
ことを特徴とする、
請求項1に記載のチタンコーティング陽極が構成する電解オゾン水発生器。
The titanium-coated anode has a tin oxide-coated layer in which a titanium substrate, ruthenium, and nickel are mixed.
In the tin oxide coating layer in which ruthenium and nickel are mixed, the atomic weight ratio of tin and ruthenium is 6: 1 to 10: 1, and the atomic weight ratio of ruthenium and nickel is 3: 1 to 10: 1. do,
The electrolytic ozone water generator comprising the titanium-coated anode according to claim 1.
前記チタンコーティング陽極は、以下のステップにより調製され、
a、チタン基板表面をサンドブラストによりラフ化し、
b、サンドブラストによりラフ化したチタン基板を体積パーセンテージ濃度が10~30%の塩酸水溶液中に入れエッチングし、
c、エッチング後のチタン基板を純水で洗い流し、体積パーセンテージ濃度が1~3%の塩酸水溶液中に入れ使用に備え、
d、チタン基板を乾燥後、ルテニウム、ニッケルを混合した酸化スズコーティング液をチタン基板上に均一にコーティングし、
e、赤外線オーブン中に入れ、90~130℃で3~10分間乾燥させ、
f、400℃~450℃の高温炉に入れ8~15分間、コーティング層材料を熱分解し、
g、上述のd~fのステップを5~12回繰り返し、最後の一回は炉の温度を480~520℃に調整し、1~3時間保持後に取り出す
ことを特徴とする、
請求項3に記載のチタンコーティング陽極が構成する電解オゾン水発生器。
The titanium coated anode is prepared by the following steps.
a, The surface of the titanium substrate is roughened by sandblasting,
b. The titanium substrate roughened by sandblasting is placed in a hydrochloric acid aqueous solution having a volume percentage concentration of 10 to 30% and etched.
c. Rinse the etched titanium substrate with pure water and place it in a hydrochloric acid aqueous solution with a volume percentage concentration of 1 to 3% to prepare for use.
d. After the titanium substrate is dried, a tin oxide coating liquid containing ruthenium and nickel is uniformly coated on the titanium substrate.
e. Place in an infrared oven and dry at 90-130 ° C for 3-10 minutes.
f, Place in a high temperature furnace at 400 ° C to 450 ° C and thermally decompose the coating layer material for 8 to 15 minutes.
g. The above steps d to f are repeated 5 to 12 times, and the final one is characterized in that the temperature of the furnace is adjusted to 480 to 520 ° C. and the mixture is taken out after being held for 1 to 3 hours.
The electrolytic ozone water generator comprising the titanium-coated anode according to claim 3.
前記ルテニウム、ニッケルを混合した酸化スズコーティング液は、以下のステップにより調製され、
体積パーセンテージ濃度が1~3%の硝酸を計り用意し、エタノール溶液中に溶解させ、硝酸塩溶液を製成し、
体積パーセンテージ濃度が3~10%のチタン酸ブチルを計り用意し、上述の硝酸塩溶液中に溶解させ、チタン酸ブチル硝酸塩溶液を製成し、
それぞれ酸化スズ、酸化ルテニウム、酸化ニッケルを計り用意し、チタン酸ブチル硝酸塩溶液中に溶解させ、
前記溶液中のスズ、ルテニウムの原子量比は6:1~10:1で、ルテニウム、ニッケルの原子量比は3:1~10:1である
ことを特徴とする、
請求項4に記載のチタンコーティング陽極が構成する電解オゾン水発生器。
The tin oxide coating liquid in which ruthenium and nickel are mixed is prepared by the following steps.
Weigh and prepare nitric acid with a volume percentage concentration of 1 to 3%, dissolve it in an ethanol solution, and prepare a nitrate solution.
Weigh and prepare butyl titanate having a volume percentage concentration of 3 to 10% and dissolve it in the above-mentioned nitrate solution to prepare a butyl titanate nitrate solution.
Weigh tin oxide, ruthenium oxide, and nickel oxide, respectively, and dissolve them in a butyl nitrate nitrate solution.
The atomic weight ratio of tin and ruthenium in the solution is 6: 1 to 10: 1, and the atomic weight ratio of ruthenium and nickel is 3: 1 to 10: 1.
The electrolytic ozone water generator comprising the titanium-coated anode according to claim 4.
前記オゾン水を産生する過程は以下を含み、
チタンコーティング陽極が構成する電解オゾン水発生器の発生器陽極と発生器陰極を、電導率が30μs/cmより大きい水中に浸し、
続いて、発生器陽極及び発生器陰極に定電流電力を供給し、電力供給電圧範囲は3.5~12Vで、電界の作用により水は電気分解され、
酸素イオンは陽極触媒の作用により、オゾンマイクロバブルを生成し、前記オゾンマイクロバブルは、迅速に水中に溶け、直接オゾン水を生成する
ことを特徴とする、
請求項1に記載のチタンコーティング陽極が構成する電解オゾン水発生器。
The process of producing ozone water includes:
The generator anode and the generator cathode of the electrolytic ozone water generator composed of the titanium-coated anode are immersed in water having a conductivity of more than 30 μs / cm.
Subsequently, constant current power is supplied to the generator anode and the generator cathode, the power supply voltage range is 3.5 to 12 V, and water is electrolyzed by the action of the electric field.
Oxygen ions generate ozone microbubbles by the action of an anode catalyst, and the ozone microbubbles are characterized by rapidly dissolving in water and directly producing ozone water.
The electrolytic ozone water generator comprising the titanium-coated anode according to claim 1.
JP2022001648U 2022-05-19 2022-05-19 Electrolyzed ozone water generator composed of titanium coated anode Active JP3238331U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022001648U JP3238331U (en) 2022-05-19 2022-05-19 Electrolyzed ozone water generator composed of titanium coated anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022001648U JP3238331U (en) 2022-05-19 2022-05-19 Electrolyzed ozone water generator composed of titanium coated anode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020195946 Continuation 2020-11-26

Publications (1)

Publication Number Publication Date
JP3238331U true JP3238331U (en) 2022-07-14

Family

ID=82358944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022001648U Active JP3238331U (en) 2022-05-19 2022-05-19 Electrolyzed ozone water generator composed of titanium coated anode

Country Status (1)

Country Link
JP (1) JP3238331U (en)

Similar Documents

Publication Publication Date Title
CN109289843B (en) Sea urchin-shaped rutile type titanium dioxide supported ruthenium oxide oxygen precipitation catalyst, and preparation method and application thereof
CN105002517B (en) The production technology and ozone generation device of a kind of ozone generation electrode and its anode
RU2505624C2 (en) Cathode for high-performance water decomposition electrolysis cells
CN107904614A (en) A kind of Ni3S2@Ni Fe LDH analysis oxygen electro catalytic electrodes and preparation method and application
Xue et al. Comparative study on the effects of different structural Ti substrates on the properties of SnO2 electrodes
CN108425144B (en) Preparation method of karst foam nickel for producing oxygen by electrocatalytic total decomposition of hydrogen in water
CN101525755A (en) Cathode for hydrogen generation
CN101514462A (en) Ultra-pure water membrane electrolyser
CN103173835A (en) Treating method of metallic titanium material
CN103014755A (en) Fabrication method of long-life titanium base electrode
CN110184624A (en) Coating titanium anode and preparation method and the method for constituting generator and generating Ozone Water
CN112551650A (en) Preparation method and application of foamed nickel loaded carbon nanotube/copper electrode for water treatment
CN102864464A (en) Preparation method of hydrogen evolution electrode with high catalytic activity and high stability
CN108707919A (en) It is a kind of directly to produce ozoniferous Portable membrane electrode aggregate and preparation method thereof in water
CN110318069A (en) Electrode for electrolysis and preparation method thereof and electrolytic cell
JP3238331U (en) Electrolyzed ozone water generator composed of titanium coated anode
Zhu et al. Energy‐Efficient Electrosynthesis of High Value‐Added Active Chlorine Coupled with H2 Generation from Direct Seawater Electrolysis through Decoupling Electrolytes
CN216837483U (en) Self-powered device based on metal ozone battery
JP3238330U (en) Disinfection system that produces ozone water directly in the water pipe
CN206244889U (en) The preparation facilities of lead dioxide electrode
CN2698812Y (en) Electrochemical reactor for in situ hydrogen peroxide generation by electrocatalysis
TWI747462B (en) Electrolytic ozone water generator composed of coated titanium anode
US20220098063A1 (en) Electrolyzed ozone water generator composed of coated titanium anodes
JP4660853B2 (en) Hydrogen gas generating apparatus and hydrogen gas generating method
CN108048895B (en) nickel-based active electrode material embedded with ruthenium-zirconium composite oxide and preparation method thereof

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3238331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150