JP3238270U - Tandem type CVD diamond semiconductor thin film battery device that converts ionizing radiation into electric power - Google Patents

Tandem type CVD diamond semiconductor thin film battery device that converts ionizing radiation into electric power Download PDF

Info

Publication number
JP3238270U
JP3238270U JP2022000756U JP2022000756U JP3238270U JP 3238270 U JP3238270 U JP 3238270U JP 2022000756 U JP2022000756 U JP 2022000756U JP 2022000756 U JP2022000756 U JP 2022000756U JP 3238270 U JP3238270 U JP 3238270U
Authority
JP
Japan
Prior art keywords
cvd diamond
thin film
semiconductor thin
diamond semiconductor
type cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022000756U
Other languages
Japanese (ja)
Other versions
JP3238270U6 (en
Inventor
五郎 五十嵐
Original Assignee
五郎 五十嵐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五郎 五十嵐 filed Critical 五郎 五十嵐
Priority to JP2022000756U priority Critical patent/JP3238270U6/en
Priority claimed from JP2022000756U external-priority patent/JP3238270U6/en
Application granted granted Critical
Publication of JP3238270U publication Critical patent/JP3238270U/en
Publication of JP3238270U6 publication Critical patent/JP3238270U6/en
Active legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】放射性物質から出る電離放射線を電力に変換する高効率のタンデム型CVDダイヤモンド半導体薄膜電池装置を提供する。【解決手段】電離放射線を遮蔽する鉛またはタリウム2および絶縁性のCVDダイヤモンド薄膜層3を設けて、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層をCVDダイヤモンド薄膜層3で覆い、電離放射線を遮蔽する金属製容器1に、放射性廃棄物を封入した半導体薄膜電池装置であって、耐放射線性等のCVDダイヤモンドに、放射線に強いヒ素またはガリウムドープのnp型CVDダイヤモンド半導体薄膜変換層6、7接合部に、i型真性CVDダイヤモンド半導体薄膜層8を伴うヘテロ接合の、リンまたはインジウムドープnp型CVDダイヤモンド半導体薄膜変換層9、10接合の耐久性を持ったタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6、7、8、9、10を、金属製容器1に設けた。【選択図】図2A highly efficient tandem-type CVD diamond semiconductor thin-film battery device for converting ionizing radiation emitted from a radioactive substance into electric power is provided. A tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer is covered with the CVD diamond thin film layer 3 to shield the ionizing radiation. A semiconductor thin-film battery device in which radioactive waste is enclosed in a metal container 1, and CVD diamond having radiation resistance, etc. is joined to np-type CVD diamond semiconductor thin-film conversion layers 6 and 7 doped with radiation-resistant arsenic or gallium. a heterojunction phosphorus- or indium-doped np-type CVD diamond semiconductor thin film conversion layer 9 with an i-type intrinsic CVD diamond semiconductor thin film layer 8; , 7, 8, 9, 10 were provided in the metal container 1. [Selection drawing] Fig. 2

Description

本考案は、電離放射線の荷電粒子線「α線、β線」電磁波「γ線、X線」を遮蔽する金属製容器に、放射性廃棄物を封入し、放射性物質から出る電離放射線を受けて電力を生み出す高効率のタンデム型CVDダイヤモンド半導体薄膜電池装置に関する。 The present invention encloses radioactive waste in a metal container that shields charged particle rays "α rays, β rays" and electromagnetic waves "γ rays, X-rays" of ionizing radiation, and receives ionizing radiation emitted from radioactive substances to generate electric power. The present invention relates to a highly efficient tandem type CVD diamond semiconductor thin film battery device that produces.

放射性廃棄物の種類は、高レベル放射性廃棄物、低レベル放射性廃棄物、クリアランスレベル以下の放射性廃棄物に分類される。原子力発電所の放射性廃棄物は、ドラム缶かキャニスターに入れ、セメントを充填して固化し、固化したドラム缶を積み重ね固化体の隙間にモルタルを充填し、青森県六ヶ所村大石平地区の低レベル放射性廃棄物埋設センターに、1992年から埋設されている。返還廃棄物貯蔵容量ガラス固体化体は、青森県六ヶ所村弥栄平地区の高レベル放射性廃棄物貯蔵管理センターに、1995年から貯蔵されている。2011年 3月11日に発生した東日本大震災は、福島県にある東京電力福島第一原子力発電所の事故による放射性廃棄物の処理及び処分が問題となっている。
諸外国の地層処分の先行国であるスウェーデンとフィンランドの「高レベル放射性廃棄物の最終処分」に向けて。
スウェーデンでは、放射性廃棄物容器に、銅を用いたキャニスターに放射性廃棄物を封入した埋設施設が予定され、地下300メートル以深での地層処分が予定されている。
フィンランドでは、オルキルオトの岩盤に「オンカロ」と呼ばれる調査施設が建設された。オンカロの中心部、地下450メートルまで孔を掘り、放射性廃棄物を設置して調査を行い、2020年代には操業を開始する予定とされる。
The types of radioactive waste are classified into high-level radioactive waste, low-level radioactive waste, and radioactive waste below the clearance level. Radioactive waste from nuclear power plants is placed in drum cans or canisters, filled with cement and solidified, and solidified drum cans are stacked and mortar is filled in the gaps between the solidified bodies. It has been buried in the waste burial center since 1992. Returned waste storage capacity The solidified glass has been stored at the High Level Radioactive Waste Storage and Management Center in the Yaeihei district of Rokkasho Village, Aomori Prefecture since 1995. The Great East Japan Earthquake that occurred on March 11, 2011 has become a problem with the treatment and disposal of radioactive waste caused by the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company in Fukushima Prefecture.
Toward the "final disposal of high-level radioactive waste" in Sweden and Finland, which are the predecessors of geological disposal in other countries.
In Sweden, a burial facility is planned in which radioactive waste is enclosed in a canister made of copper in a radioactive waste container, and geological disposal is planned at a depth of 300 meters or more underground.
In Finland, a research facility called "Onkaro" was built on the bedrock of Olkiluoto. A hole will be dug up to 450 meters underground in the center of Oncaro, radioactive waste will be installed and investigated, and operations are scheduled to begin in the 2020s.

特願2020-136026号Japanese Patent Application No. 2020-136026 特願2020-112115号Japanese Patent Application No. 2020-112115 特願2020-077761号Japanese Patent Application No. 2020-077761

実用新案文献1Utility Model Document 1

実用新案登録第3234179号Utility model registration No. 3234179

非特許文献Non-patent literature

引用非特許文献1Citation Non-Patent Document 1

編集「原子力のすべて」編集委員会、 原子力のすべて 資料編 2.放射線の人間との関わり ▲2▼放射線とはどのようなものか p306、 (6)放射性廃棄物 ▲1▼放射性廃棄物とはどのようなものか p341、 ▲3▼高レベル放射性廃棄物、低レベル放射性廃棄物の発生量・管理量・処分量 p343、 (7)その他 ▲1▼青森県六ヶ所村の核燃料サイクル施設の概要 p347、 原子力関係用語集 アルファ線(α線)p424、ガンマ線(γ線)p427、ベータ線(β線)p437、 放射性廃棄物、放射線 p437、 放射能p438、 平成15年版、 独立行政法人 国立印刷局。 Editing "All about Nuclear Power" Editorial Committee, All about Nuclear Power Material 2. Relationship of radiation with humans ▲ 2 ▼ What is radiation p306, (6) Radioactive waste ▲ 1 ▼ What is radioactive waste p341, ▲ 3 ▼ High-level radioactive waste, low Level Radioactive waste generation / management / disposal amount p343, (7) Others ▲ 1 ▼ Overview of nuclear fuel cycle facility in Rokusho-mura, Aomori Prefecture p347, Nuclear-related glossary Alpha ray (α ray) p424, Gamma ray (γ) Line) p427, beta line (β line) p437, radioactive waste, radiation p437, radioactivity p438, 2003 edition, National Printing Bureau.

引用非特許文献2Citation Non-Patent Document 2

監修 藤森直治・鹿田真一、 ダイヤモンドエレクトロニクスの最前線《普及版》 第4章 ナノ結晶ダイヤモンド薄膜 p36~44、 第6章 半導体特性 p63~71、 第7章 p型ホモエピタキシャルダイヤモンド薄膜の半導体特性 p75~84、 第8章 n型ドーピングと半導体特性 p86~98、 2014年版、 株式会社 シーエムシー出版。 Supervised by Naoji Fujimori and Shinichi Shikada, Forefront of Diamond Electronics << Popular Edition >> Chapter 4 Nano-Crystal Diamond Thin Films p36-44, Chapter 6 Semiconductor Characteristics p63-71, Chapter 7 Semiconductor Characteristics of p-type Homoepitaxial Diamond Thin Films p75- 84, Chapter 8 n-type doping and semiconductor characteristics p86-98, 2014 edition, CMC Publishing Co., Ltd.

引用非特許文献3Citation Non-Patent Document 3

監修者 太陽光発電技術研究組合、 「太陽光発電」 太陽光発電の用途▲8▼人工衛星の電力をまかなう p66~67、 いろいろな太陽電池▲5▼宇宙空間でも使われる化合物系太陽電池 p104、 2011年版、 株式会社 ナツメ社。 Supervisor Solar Power Technology Research Association, "Solar Power Generation" Applications for photovoltaic power generation ▲ 8 ▼ P66-67 to supply power for artificial satellites, various solar cells ▲ 5 ▼ Compound solar cells used in space p104, 2011 edition, Natsume Co., Ltd.

引用非特許文献4Citation Non-Patent Document 4

著者 稲垣道夫、 「カーボン」古くて新しい材料 第1章 身近なカーボン 4・キーボードの中のグラファイトフィルム(グラファイトのトピックス)●フレキシンブルグラファイトシートの著しい異方性 p71~72、 2009年版、株式会社 工業調査会。 Author Michio Inagaki, "Carbon" Old and New Material Chapter 1 Familiar Carbon 4. Graphite Film in Keyboard (Topics of Graphite) ● Remarkable Anisotropy of Flexin Bull Graphite Sheet p71-72, 2009 Edition, Kogyo Chosakai Co., Ltd. Investigation committee.

2011年 3月11日に発生した東日本大震災は、東北地方を中心に甚大な被害をもたらした。福島県にある東京電力福島第一原子力発電所の事故による放射性廃棄物の処理及び処分が課題となっている。放射性廃棄物をエネルギー源として、放射性物質から出る電離放射線の荷電粒子線「α線、β線」電磁波「γ線、X線」を、CVDダイヤモンド半導体を用いて電力に変換する再利用を設けた貯蔵または埋設や地層処分方法はなかった。
したがって、金属製容器の内側に、鉛またはタリウムおよびCVDダイヤモンド薄膜を設け、放射性廃棄物から出る電離放射線を遮蔽する金属製容器(特願2020-112115号)に至り、特願2020-136026号では、電離放射線を遮蔽する金属製容器に、CVDダイヤモンド半導体薄膜層接合のpn型またはpin型電離放射線変換層を用いて電力に変換する装置に至った。実用新案登録第3234179号では、金属製容器の内側に、鉛またはタリウムおよびCVDダイヤモンド薄膜を設け、pn型またはpin型CVDダイヤモンド半導体薄膜電離放射線変換層を設けて電力に変換し、電離放射線を遮蔽する安全性の半導体薄膜発電装置に至った。しかし、電離放射線を電力に変換するCVDダイヤモンド半導体薄膜電離放射線変換層の変換効率を向上することに、課題があった。
本考案では、放射線に強いドープを設けたnp型CVDダイヤモンド半導体薄膜変換層をタンデム型設けて、高効率のCVDダイヤモンド半導体薄膜電離放射線変換層の構成である。
The Great East Japan Earthquake that occurred on March 11, 2011 caused enormous damage mainly in the Tohoku region. Disposal and disposal of radioactive waste caused by the accident at TEPCO's Fukushima Daiichi Nuclear Power Station in Fukushima Prefecture has become an issue. Using radioactive waste as an energy source, we provided reuse to convert charged particle rays "α rays, β rays" and electromagnetic waves "γ rays, X-rays" of ionizing radiation emitted from radioactive substances into electric power using CVD diamond semiconductors. There was no storage or burial or geological disposal method.
Therefore, a metal container (Japanese Patent Application No. 2020-112115) is provided by providing a lead or thalium and a CVD diamond thin film inside the metal container to shield the ionizing radiation emitted from the radioactive waste. We have reached a device for converting metal containers that shield ionizing radiation into electric power using a pn-type or pin-type ionizing radiation conversion layer of CVD diamond semiconductor thin film layer bonding. In Practical Proposal Registration No. 3234179, a lead or tallium and a CVD diamond thin film is provided inside a metal container, and a pn type or pin type CVD diamond semiconductor thin film ionizing radiation conversion layer is provided to convert it into electric power and shield the ionizing radiation. It has led to a safety semiconductor thin film power generation device. However, there is a problem in improving the conversion efficiency of the CVD diamond semiconductor thin film ionizing radiation conversion layer that converts ionizing radiation into electric power.
In the present invention, the np type CVD diamond semiconductor thin film conversion layer provided with a strong dope against radiation is provided in a tandem type to form a highly efficient CVD diamond semiconductor thin film ionizing radiation conversion layer.

電離放射線を遮蔽する鉛またはタリウム2および絶縁性のCVDダイヤモンド薄膜層3を金属製容器1内側に設けて、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を絶縁性のCVDダイヤモンド薄膜層3で覆った金属製容器1に、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を受けて電力を生み出すタンデム型CVDダイヤモンド半導体薄膜電池装置において、
ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層6およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層7接合のnp型CVDダイヤモンド半導体薄膜変換層6・7接合部に、i型真性CVDダイヤモンド半導体薄膜層8を伴うヘテロ接合の、リン(P)ドープn型CVDダイヤモンド半導体薄膜層9およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層10接合のnp型CVDダイヤモンド半導体薄膜変換層9・10を設けたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・8・9・10を設けて、荷電粒子線「α線・β線」電磁波「γ線・X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。
A lead or thalium 2 that shields ionizing radiation and an insulating CVD diamond thin film layer 3 are provided inside the metal container 1, and the tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 is covered with the insulating CVD diamond thin film layer 3. A tandem-type CVD diamond semiconductor that generates electric power by enclosing radioactive waste in a metal container 1 and receiving ionizing radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" emitted from radioactive substances. In thin film battery equipment
I-type intrinsic CVD diamond semiconductor at the arsenic (As) -doped n-type CVD diamond thin film thin film layer 6 and gallium (Ga) -doped p-type CVD diamond semiconductor thin film layer 7 junction np-type CVD diamond semiconductor thin film conversion layer 6.7 junction. Heterojunctioned np-type CVD diamond semiconductor thin film conversion layers 9 and 10 with phosphorus (P) -doped n-type CVD diamond thin film layer 9 and indium (In) -doped p-type CVD diamond thin film layer 10 bonded with thin film layer 8. A tandem-type CVD diamond semiconductor thin-film ionized radiation conversion layer 6, 7, 8, 9, and 10 is provided to convert the ionized radiation of charged particle rays "α-rays / β-rays" and electromagnetic waves "γ-rays / X-rays" into electric power. Tandem type CVD diamond semiconductor thin film battery device.

ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層6およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層7接合のnp型CVDダイヤモンド半導体薄膜光電変換層6・7に、リン(P)ドープn型CVDダイヤモンド半導体薄膜層9およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層10接合のnp型CVDダイヤモンド半導体薄膜変換層9・10接合のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・9・10を設けて、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 Lin (P) -doped n-type on arsenic (As) -doped n-type CVD diamond semiconductor thin film layer 6 and gallium (Ga) -doped p-type CVD diamond semiconductor thin-film layer 7 junction np-type CVD diamond semiconductor thin film photoelectric conversion layer 6.7. CVD diamond semiconductor thin film layer 9 and indium (In) -doped p-type CVD diamond semiconductor thin film layer 10-junction np-type CVD diamond semiconductor thin-film conversion layer 9/10 junction tandem-type CVD diamond semiconductor thin-film ionized radiation conversion layer 6/7/9 A tandem-type CVD diamond semiconductor thin-film battery device that is provided with 10 to convert ionized radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" into electric power.

耐放射線性等のCVDダイヤモンドに、放射線に強いヒ素(As)またはガリウム(Ga)ドープのnp型CVDダイヤモンド半導体薄膜変換層6・7に、リン(P)またはインジウム(I)ドープのnp型CVDダイヤモンド半導体薄膜変換層9・10接合の耐久性を持たせたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・8・9・10、または、6・7・9・10を、電離放射線を遮蔽する金属製容器1に設けて、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 Radiation-resistant CVD diamonds, radiation-resistant arsenic (As) or gallium (Ga) -doped np-type CVD diamond semiconductor thin film conversion layers 6.7, phosphorus (P) or indium (I) -doped np-type CVD The tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 6/7/8/9/10 or 6/7/9/10, which has the durability of the diamond semiconductor thin film conversion layer 9/10 junction, is used for ionizing radiation. A tandem-type CVD that is provided in a shielded metal container 1 to enclose radioactive waste and convert the ionizing radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" emitted from radioactive substances into electric power. Diamond semiconductor thin film battery device.

本考案の効果は、電離放射線を遮蔽する金属製容器に放射性廃棄物を封入し、放射性物質から出る電離放射線を受けて、電力を生み出す100年以上の耐久性を持たせたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を設け、電離放射線を遮蔽する安全性の金属製容器に、放射性廃棄物を封入し、放射性物質から出る電離放射線を再生エネルギーとして、電力に変換する高効率のタンデム型CVDダイヤモンド半導体薄膜電池装置。 The effect of the present invention is a tandem type CVD diamond semiconductor that has a durability of 100 years or more to generate electric power by enclosing radioactive waste in a metal container that shields ionizing radiation and receiving ionizing radiation emitted from radioactive substances. High-efficiency tandem CVD diamond that is provided with a thin-film ionizing radiation conversion layer, encloses radioactive waste in a safe metal container that shields ionizing radiation, and converts the ionizing radiation emitted from radioactive substances into electric energy. Semiconductor thin film battery device.

本考案に係る、鉛またはタリウム2およびCVDダイヤモンド薄膜層3を設けた金属製容器1に、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を設けた参考側面及び断面図。 A reference side view and a cross-sectional view in which a tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 is provided in a metal container 1 provided with lead or thallium 2 and a CVD diamond thin film layer 3 according to the present invention. 本考案に係る、鉛またはタリウム2およびCVDダイヤモンド薄膜層3を設けて、電離放射線を遮蔽する金属製容器1に、i型真性CVDダイヤモンド半導体薄膜層8を伴うヘテロ接合のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を設けた参考断面図。 A heterojunction tandem-type CVD diamond semiconductor thin film with an i-type intrinsic CVD diamond semiconductor thin film layer 8 in a metal container 1 provided with a lead or tarium 2 and a CVD diamond thin film layer 3 according to the present invention to shield ionized radiation. A reference cross-sectional view provided with an ionized radiation conversion layer 4. 本考案に係る、鉛またはタリウム2およびCVDダイヤモンド薄膜層3を設けて、電離放射線を遮蔽する金属製容器1に、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4設けた参考断面図。 FIG. 3 is a reference cross-sectional view in which a tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 is provided in a metal container 1 provided with lead or tarium 2 and a CVD diamond thin film layer 3 according to the present invention to shield ionizing radiation.

荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線は、鉛またはタリウムを設けて遮蔽することができる。放射性核種の崩壊系列は、「トリウム系列」「ウラン系列」「アクチニウム系列」であり、鉛を用いて電離放射線を遮蔽することができる。人工放射性元素の崩壊系列である「ネプツニウム系列」は、タリウムを用いて電離放射線を遮蔽することができる。したがって、鉛またはタリウムおよびCVDダイヤモンド薄膜層を設け、CVDダイヤモンド半導体薄膜電離放射線変換層を設けた金属製容器に、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換し、電離放射線を遮蔽する金属製容器が実用新案登録第3234179号に記載している。
本考案では、電離放射線の変換効率を高効率にするため、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を、電離放射線を遮蔽する安全性の金属製容器に設けた構成である。
Ionizing radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" can be shielded by providing lead or tallium. The decay chain of radionuclides is "thorium series", "uranium series", and "actinium series", and lead can be used to shield ionizing radiation. The "neptunium series", which is a decay chain of artificial radioactive elements, can shield ionizing radiation using thallium. Therefore, charged particle beams "α-rays, β-rays" emitted from radioactive substances by encapsulating radioactive waste in a metal container provided with lead or tarium and a CVD diamond thin film layer and provided with a CVD diamond semiconductor thin-film ionizing radiation conversion layer. A metal container that converts ionizing radiation of electromagnetic waves "γ-rays and X-rays" into electric power and shields the ionizing radiation is described in Practical New Design Registration No. 3234179.
In the present invention, in order to increase the conversion efficiency of ionizing radiation, a tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer is provided in a safe metal container that shields ionizing radiation.

CVDダイヤモンド半導体はシリコン(Si)と同じ第14族元素に属している。n型CVDダイヤモンド半導体薄膜層へのドープは、第15族元素の窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)などをドープすることができる。p型CVDダイヤモンド半導体薄膜層へのドープは、13族元素のホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などをドープすることができる。
本考案では、放射線に強いヒ素(As)またはリン(P)ドープn型CVDダイヤモンド半導体薄膜層、およびガリウム(Ga)またはインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層接合のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を設けた構成。
The CVD diamond semiconductor belongs to the same Group 14 element as silicon (Si). The n-type CVD diamond semiconductor thin film layer can be doped with group 15 elements such as nitrogen (N), phosphorus (P), arsenic (As), and antimony (Sb). The p-type CVD diamond semiconductor thin film layer can be doped with Group 13 elements such as boron (B), aluminum (Al), gallium (Ga), and indium (In).
In the present invention, a tandem-type CVD diamond semiconductor with a radiation-resistant arsenic (As) or phosphorus (P) -doped n-type CVD diamond semiconductor thin film layer and a gallium (Ga) or indium (In) -doped p-type CVD diamond semiconductor thin film layer junction. A configuration provided with a thin-film ionized radiation conversion layer.

CVDダイヤモンドのバンドギャップは、5.48eVの半導体としての特性を有している。CVDダイヤモンド半導体薄膜は、高出力型マイクロ波プラズマCVD法、またはマイクロ波プラズマCVD法、表面波プラズマCVD法によるナノ結晶ダイヤモンド薄膜が用いられる。CVDダイヤモンドは、耐放射線性、耐熱性、絶縁性、絶縁破壊、耐化学薬品性など物質中で最高もしくは準最高値を有する材料とされる。
タンデム型CVDダイヤモンド半導体薄膜層にドープする、放射線に強いとされるヒ素ガリウム(AsGa)のバンドギャップは、1.43eVであり、リンインジウム(PIn)のバンドギャップは、1.35eVとされる。
The bandgap of CVD diamond has the characteristics of a 5.48 eV semiconductor. As the CVD diamond semiconductor thin film, a nanocrystal diamond thin film obtained by a high-power microwave plasma CVD method, a microwave plasma CVD method, or a surface wave plasma CVD method is used. CVD diamond is a material having the highest or quasi-highest value among substances such as radiation resistance, heat resistance, insulating property, dielectric breakdown, and chemical resistance.
The bandgap of gallium arsenide (AsGa), which is said to be resistant to radiation and is doped in the tandem-type CVD diamond semiconductor thin film layer, is 1.43 eV, and the bandgap of lindium (PIn) is 1.35 eV.

図1の参考側面及び断面図に示す。金属製容器1の内側に、鉛またはタリウム2および絶縁性のCVDダイヤモンド薄膜層3を設けて、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を、絶縁性のCVDダイヤモンド薄膜層3で覆い、電離放射線を遮蔽する金属製容器1に、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を設けて電力に変換する。鉛またはタリウム2を設けた金属製容器1は、電離放射線を遮蔽する安全性の金属製容器1であり、電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 It is shown in the reference side surface and the sectional view of FIG. A lead or tallium 2 and an insulating CVD diamond thin film layer 3 are provided inside the metal container 1, and the tandem type CVD diamond semiconductor thin film ionization radiation conversion layer 4 is covered with the insulating CVD diamond thin film layer 3 for ionization. Radioactive waste is sealed in a metal container 1 that shields radiation, and ionized radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" emitted from radioactive substances is emitted from a tandem-type CVD diamond semiconductor thin film. An ionization radiation conversion layer 4 is provided to convert the ionized radiation into electric power. The metal container 1 provided with lead or thallium 2 is a safety metal container 1 that shields ionizing radiation, and is a tandem type CVD diamond semiconductor thin film battery device that converts ionizing radiation into electric power.

図2の参考断面図に示す。金属製容器1の内側に、電離放射線を遮蔽する鉛またはタリウム2および絶縁性のCVDダイヤモンド薄膜層3を設け、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を絶縁性のCVDダイヤモンド薄膜層3で覆った金属製容器1に、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を受けて電力を生み出すタンデム型CVDダイヤモンド半導体薄膜電池装置において、
ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層6およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層7接合のnp型CVDダイヤモンド半導体薄膜変換層6・7接合部に、i型真性CVDダイヤモンド半導体薄膜層8を伴うヘテロ接合の、リン(P)ドープn型CVDダイヤモンド半導体薄膜層9およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層10接合のnp型CVDダイヤモンド半導体薄膜変換層9・10を設けたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・8・9・10を設けて、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線入射面、または後部に、グラファイトシート電極5・11および絶縁性のCVDダイヤモンド薄膜層3を設けたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・8・9・10を、鉛またはタリウム2を設けた金属製容器1に設ける。金属製容器1に放射性廃棄物を封入し、放射性物質から出る電離放射線を電力に変換する高効率のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4。
i型真性CVDダイヤモンド半導体薄膜層8を伴うヘテロ接合のnp型タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層は、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を、絶縁性のCVDダイヤモンド薄膜層3で覆った金属製容器1に、放射性廃棄物を封入し、放射性物質から出る電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。
It is shown in the reference sectional view of FIG. A lead or tallium 2 that shields ionizing radiation and an insulating CVD diamond thin film layer 3 are provided inside the metal container 1, and a tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 is formed by an insulating CVD diamond thin film layer 3. A tandem-type CVD diamond that encloses radioactive waste in a covered metal container 1 and receives ionizing radiation from charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" emitted from radioactive substances to generate electric power. In semiconductor thin film battery equipment
I-type intrinsic CVD diamond semiconductor at the arsenic (As) -doped n-type CVD diamond thin film thin film layer 6 and gallium (Ga) -doped p-type CVD diamond semiconductor thin film layer 7 junction np-type CVD diamond semiconductor thin film conversion layer 6.7 junction. Heterojunctioned np-type CVD diamond semiconductor thin film conversion layers 9 and 10 with phosphorus (P) -doped n-type CVD diamond thin film layer 9 and indium (In) -doped p-type CVD diamond thin film layer 10 bonded with thin film layer 8. The provided tandem type CVD diamond semiconductor thin film ionization radiation conversion layer 6, 7, 8, 9, 10 is provided, and the ionized radiation incident surface of the charged particle beam "α ray, β ray" electromagnetic wave "γ ray, X ray", or A tandem type CVD diamond semiconductor thin film ionized radiation conversion layer 6/7/8/9/10 provided with a graphite sheet electrode 5/11 and an insulating CVD diamond thin film layer 3 at the rear, and a metal provided with lead or tallium 2. Provided in the manufacturing container 1. A highly efficient tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 in which radioactive waste is enclosed in a metal container 1 and ionizing radiation emitted from a radioactive substance is converted into electric power.
The heterojunction np-type tandem-type CVD diamond semiconductor thin-film ionized radiation conversion layer with the i-type intrinsic CVD diamond semiconductor thin film layer 8 emits ionized radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays". Radioactive waste is sealed in a metal container 1 in which a tandem-type CVD diamond semiconductor thin film ionization radiation conversion layer 4 that converts into electric power is covered with an insulating CVD diamond thin film layer 3, and ionized radiation emitted from a radioactive substance is converted into electric power. Tandem type CVD diamond semiconductor thin film battery device to convert.

図3の参考断面図に示す。ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層6およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層7接合のnp型CVDダイヤモンド半導体薄膜変換層6・7に、リン(P)ドープn型CVDダイヤモンド半導体薄膜層9およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層10接合のnp型CVDダイヤモンド半導体薄膜変換層9・10接合のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6・7・9・10を設けて、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線入射面、または後部に、グラファイトシート電極5・11および絶縁性のCVDダイヤモンド薄膜層3を設けたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層6.7・9・10を、鉛またはタリウム2を設けた金属製容器1に設ける。金属製容器1に放射性廃棄物を封入し、放射性物質から出る電離放射線を電力に変換する高効率のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4。
np型タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層は、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を、絶縁性のCVDダイヤモンド薄膜層3で覆った金属製容器1に、放射性廃棄物を封入し、放射性物質から出る電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。
It is shown in the reference sectional view of FIG. Phosphorus (P) -doped n-type CVD diamond thin film conversion layer 6 and 7 bonded with arsenic (As) -doped n-type CVD diamond semiconductor thin film layer 6 and gallium (Ga) -doped p-type CVD diamond semiconductor thin film layer 7 Diamond semiconductor thin film layer 9 and indium (In) -doped p-type CVD diamond semiconductor thin film layer 10-junction np-type CVD diamond semiconductor thin film conversion layer 9/10 junction tandem type CVD diamond semiconductor thin film ionization radiation conversion layer 6/7/9. 10 is provided, and a graphite sheet electrode 5/11 and an insulating CVD diamond thin film layer 3 are provided on the ionized radiation incident surface of the charged particle beam “α-ray, β-ray” electromagnetic wave “γ-ray, X-ray” or at the rear. The tandem type CVD diamond semiconductor thin film ionization radiation conversion layer 6.7, 9 and 10 is provided in the metal container 1 provided with lead or tallium 2. A highly efficient tandem type CVD diamond semiconductor thin film ionizing radiation conversion layer 4 in which radioactive waste is enclosed in a metal container 1 and ionizing radiation emitted from a radioactive substance is converted into electric power.
The np-type tandem-type CVD diamond semiconductor thin-film ionizing radiation conversion layer is a tandem-type CVD diamond semiconductor thin-film ionizing radiation conversion layer that converts the ionizing radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" into electric power. A tandem-type CVD diamond semiconductor thin film battery device that encloses radioactive waste in a metal container 1 covered with an insulating CVD diamond thin film layer 3 and converts ionizing radiation emitted from a radioactive substance into electric power.

耐放射線性または耐熱性等のCVDダイヤモンドに、放射線に強いヒ素(As)またはガリウム(Ga)ドープのnp型CVDダイヤモンド半導体薄膜変換層6・7に、リン(P)またはインジウム(In)ドープのnp型CVDダイヤモンド半導体薄膜変換層9・10接合による100年以上の耐久性を持たせた高効率のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層4を、絶縁性のCVDダイヤモンド薄膜層3で覆い、鉛またはタリウム2を設けて電離放射線を遮蔽する金属製容器1に、放射性廃棄物を封入し、放射性物質から出る電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 A phosphorus (P) or indium (In) -doped arsenic (As) or gallium (Ga) -doped np-type CVD diamond semiconductor thin film conversion layer 6.7 on a radiation-resistant or heat-resistant CVD diamond. The np-type CVD diamond semiconductor thin-film conversion layer 9/10 bonding has a high-efficiency tandem-type CVD diamond semiconductor thin-film ionized radiation conversion layer 4 that has a durability of 100 years or more, and is covered with an insulating CVD diamond thin-film layer 3. A tandem-type CVD diamond semiconductor thin-film battery device that encloses radioactive waste in a metal container 1 provided with lead or tarium 2 to shield ionized radiation and converts ionized radiation emitted from a radioactive substance into electric power.

1 金属製容器
2 鉛またはタリウム
3 CVDダイヤモンド薄膜層
4 タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層
5 グラファイトシート電極
6 ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層
7 ガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層
8 i型真性CVDダイヤモンド半導体薄膜層
9 リン(P)ドープn型CVDダイヤモンド半導体薄膜層
10 インジウム(In)ドープp型CVDダイヤモンド半導体薄膜層
11 グラファイトシート電極
1 Metal container 2 Lead or Tallium 3 CVD diamond thin film layer 4 Tandem type CVD diamond semiconductor thin film ionized radiation conversion layer 5 Graphite sheet electrode 6 Arsenic (As) -doped n-type CVD diamond semiconductor thin film layer 7 Gallium (Ga) -doped p-type CVD Diamond semiconductor thin film layer 8 i-type intrinsic CVD diamond semiconductor thin film layer 9 Lin (P) -doped n-type CVD diamond semiconductor thin film layer 10 Indium (In) -doped p-type CVD diamond semiconductor thin film layer 11 Graphite sheet electrode

Claims (3)

電離放射線を遮蔽する鉛またはタリウムおよび絶縁性のCVDダイヤモンド薄膜層を金属製容器の内側に設けて、タンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を絶縁性のCVDダイヤモンド薄膜層で覆った金属製容器に、放射性廃棄物を封入し、放射性物質から出る荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を受けて電力を生み出すタンデム型CVDダイヤモンド半導体薄膜電池装置において、
ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層接合のnp型CVDダイヤモンド半導体薄膜変換層接合部に、i型真性CVDダイヤモンド半導体薄膜層を伴うヘテロ接合の、リン(P)ドープn型CVDダイヤモンド半導体薄膜層およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層接合のnp型CVDダイヤモンド半導体薄膜変換層を設けたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を設けて、荷電粒子線「α線、β線」電磁波「γ線、X線」の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。
A metal container in which a lead or thalium that shields ionizing radiation and an insulating CVD diamond thin film layer are provided inside the metal container, and the tandem-type CVD diamond semiconductor thin film ionizing radiation conversion layer is covered with an insulating CVD diamond thin film layer. In a tandem type CVD diamond semiconductor thin film battery device that encloses radioactive waste and generates power by receiving ionizing radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" emitted from radioactive substances.
Heterogeneous (As) -doped n-type CVD diamond semiconductor thin film layer and gallium (Ga) -doped p-type CVD diamond semiconductor thin film layer junction with an i-type intrinsic CVD diamond semiconductor thin film layer at the np-type CVD diamond semiconductor thin film conversion layer junction. Tandem type CVD diamond semiconductor thin film ionization radiation conversion provided with phosphorus (P) -doped n-type CVD diamond semiconductor thin film layer and indium (In) -doped p-type CVD diamond semiconductor thin film layer bonding np-type CVD diamond semiconductor thin film conversion layer. A tandem-type CVD diamond semiconductor thin-film battery device that provides a layer to convert ionized radiation of charged particle rays "α-rays, β-rays" and electromagnetic waves "γ-rays, X-rays" into electric power.
ヒ素(As)ドープn型CVDダイヤモンド半導体薄膜層およびガリウム(Ga)ドープp型CVDダイヤモンド半導体薄膜層接合のnp型CVDダイヤモンド半導体薄膜変換層に、リン(P)ドープn型CVDダイヤモンド半導体薄膜層およびインジウム(In)ドープp型CVDダイヤモンド半導体薄膜層接合のnp型CVDダイヤモンド半導体薄膜変換層接合のタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を設けて、電離放射線を電力に変換する請求項1に記載の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 An arsenic (As) -doped n-type CVD diamond semiconductor thin film layer and a gallium (Ga) -doped p-type CVD diamond semiconductor thin film layer-bonded np-type CVD diamond semiconductor thin film conversion layer, a phosphorus (P) -doped n-type CVD diamond semiconductor thin film layer and The first aspect of claim 1 is that an indium (In) -doped p-type CVD diamond semiconductor thin film layer-bonded np-type CVD diamond semiconductor thin-film conversion layer-bonded tandem-type CVD diamond semiconductor thin-film ionized radiation conversion layer is provided to convert ionized radiation into electric power. Tandem type CVD diamond semiconductor thin film battery device that converts ionized radiation into electric power. 耐放射線性等のCVDダイヤモンドに、放射線に強いヒ素(As)またはガリウム(Ga)ドープのnp型CVDダイヤモンド半導体薄膜変換層に、リン(P)またはインジウム(In)ドープのnp型CVDダイヤモンド半導体薄膜変換層接合による耐久性を持たせたタンデム型CVDダイヤモンド半導体薄膜電離放射線変換層を、電離放射線を遮蔽する金属製容器に設けて、放射性廃棄物封入し、放射性物質から出る電離放射線を電力に変換する請求項1から請求項2に記載の電離放射線を電力に変換するタンデム型CVDダイヤモンド半導体薄膜電池装置。 Radiation-resistant CVD diamond, radiation-resistant arsenic (As) or gallium (Ga) -doped np-type CVD diamond semiconductor thin film conversion layer, phosphorus (P) or indium (In) -doped np-type CVD diamond semiconductor thin film A tandem-type CVD diamond semiconductor thin-film ionizing radiation conversion layer that has durability due to conversion layer bonding is provided in a metal container that shields ionizing radiation, encloses radioactive waste, and converts ionizing radiation emitted from radioactive substances into electric power. The tandem type CVD diamond semiconductor thin film battery apparatus for converting the ionizing radiation according to claim 1 to 2.
JP2022000756U 2022-02-21 Tandem-type CVD diamond semiconductor thin-film battery device that converts ionizing radiation into electric power Active JP3238270U6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022000756U JP3238270U6 (en) 2022-02-21 Tandem-type CVD diamond semiconductor thin-film battery device that converts ionizing radiation into electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022000756U JP3238270U6 (en) 2022-02-21 Tandem-type CVD diamond semiconductor thin-film battery device that converts ionizing radiation into electric power

Publications (2)

Publication Number Publication Date
JP3238270U true JP3238270U (en) 2022-07-13
JP3238270U6 JP3238270U6 (en) 2022-07-13

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434615B1 (en) * 2023-01-11 2024-02-20 東芝エレベータ株式会社 elevator control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434615B1 (en) * 2023-01-11 2024-02-20 東芝エレベータ株式会社 elevator control device

Similar Documents

Publication Publication Date Title
CN111261311B (en) Radiant photovoltaic nuclear battery based on perovskite crystal
Spencer et al. High power direct energy conversion by nuclear batteries
US6479919B1 (en) Beta cell device using icosahedral boride compounds
EP3622539B1 (en) Radiation powered devices comprising diamond material and electrical power sources for radiation powered devices
US8294023B2 (en) Radioisotope power source
US20130154438A1 (en) Power-Scalable Betavoltaic Battery
JP5906088B2 (en) Generator excited by ionizing radiation
CN202677861U (en) Polysilicon beta-radiation voltaic-effect isotope battery
US9638813B2 (en) Thermal neutron detector and gamma-ray spectrometer utilizing a single material
JP3238270U (en) Tandem type CVD diamond semiconductor thin film battery device that converts ionizing radiation into electric power
Katiyar et al. Recent progress and perspective on batteries made from nuclear waste
JP3238270U6 (en) Tandem-type CVD diamond semiconductor thin-film battery device that converts ionizing radiation into electric power
JP3238365U (en) A tandem type CVD diamond semiconductor thin film battery device used for green hydrogen production by the water electrolysis method.
US10373723B2 (en) Isotope energy conversion and spent nuclear fuel storage systems
US20150075593A1 (en) Solar light-radioisotope hybrid battery
JP3238830U (en) A safe metal container device with a tandem-type diamond semiconductor thin film conversion layer that converts ionizing radiation into electric power
JP3233214U (en) CVD diamond power generator installed in a metal container that shields radiation
JP3239423U (en) A metal container device for power generation, shielding, and absorption installed in a metal container containing radioactive waste
US9837564B1 (en) Actinide oxide photodiode and nuclear battery
JP3243275U (en) A safety metal container device with a tandem CVD diamond semiconductor nuclear battery.
JP3245277U (en) A safe metal container device equipped with heat dissipation for CVD diamond semiconductor thin film nuclear power cells using radioactive waste.
US5607519A (en) Photon and/or electron generating power cell
JP3245038U (en) A nuclear battery in a safe metal container device that converts ionizing radiation into electricity.
RU2756478C1 (en) Method for converting the energy of ionizing radiation from a radioactively contaminated area into electricity by radiation shields
JP3242297U (en) A safety metal container device with a CVD diamond semiconductor nuclear battery.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 3238270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250