JP3237513B2 - Connector transmission characteristics analysis method - Google Patents

Connector transmission characteristics analysis method

Info

Publication number
JP3237513B2
JP3237513B2 JP10022096A JP10022096A JP3237513B2 JP 3237513 B2 JP3237513 B2 JP 3237513B2 JP 10022096 A JP10022096 A JP 10022096A JP 10022096 A JP10022096 A JP 10022096A JP 3237513 B2 JP3237513 B2 JP 3237513B2
Authority
JP
Japan
Prior art keywords
connector
information
transmission
section
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10022096A
Other languages
Japanese (ja)
Other versions
JPH09289479A (en
Inventor
宏規 岡
伸明 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10022096A priority Critical patent/JP3237513B2/en
Publication of JPH09289479A publication Critical patent/JPH09289479A/en
Application granted granted Critical
Publication of JP3237513B2 publication Critical patent/JP3237513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号伝送回路間の
接続に用いるコネクタを含む伝送回路の伝送特性解析等
を行う方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing transmission characteristics of a transmission circuit including a connector used for connection between signal transmission circuits.

【0002】[0002]

【従来の技術】コネクタを含む伝送回路の伝送特性解析
は、高速信号伝送と高密度な実装を必要とする装置を実
現する場合に、設計段階で必要である。従来のコネクタ
の伝送特性の評価は、測定評価基板を作成し、実測によ
りコネクタごとの反射雑音量や誘導雑音量等を求め、結
果を外挿及び内挿し予想する事が主であった。解析によ
り伝送特性評価をする場合もあるが、その場合は、コネ
クタの特性解析評価回路は、信号端子を特性インピーダ
ンスの均一な並行線路が一個もしくは数個接続したもの
を用いて行っていた。
2. Description of the Related Art A transmission characteristic analysis of a transmission circuit including a connector is necessary at a design stage when an apparatus requiring high-speed signal transmission and high-density mounting is realized. In the evaluation of the transmission characteristics of a conventional connector, it has mainly been to prepare a measurement and evaluation board, obtain the amount of reflected noise and the amount of induced noise for each connector by actual measurement, and extrapolate and interpolate the results. In some cases, transmission characteristics are evaluated by analysis. In such a case, the characteristic analysis and evaluation circuit of the connector uses a signal terminal connected to one or several parallel lines having uniform characteristic impedance.

【0003】[0003]

【発明が解決しようとする課題】従来のコネクタの伝送
特性解析は、コネクタのアース端子と信号端子の位置を
前もって固定し、端子の位置をそれ以後任意に選択でき
ない方法であった。また、アース端子のインピーダンス
を無視し、ゼロオームと仮定する解析方法であった。さ
らに、コネクタの端子数が数端子の解析方法であった。
In the conventional transmission characteristic analysis of a connector, the positions of the ground terminal and the signal terminal of the connector are fixed in advance, and the positions of the terminals cannot be arbitrarily selected thereafter. In addition, the analysis method ignores the impedance of the ground terminal and assumes zero ohm. Further, the method of analyzing the number of terminals of the connector is several.

【0004】本発明は上記の事情に鑑みてなされたもの
で、コネクタのアース端子と信号端子の位置を意識せ
ず、また必要な端子数規模に合わせて各端子の線路定数
すべてを求め、コネクタを含む伝送回路の伝送特性解析
等を行うコネクタの伝送特性解析方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and does not consider the positions of the ground terminal and the signal terminal of the connector, and obtains all the line constants of each terminal according to the required number of terminals. It is an object of the present invention to provide a connector transmission characteristic analysis method for performing transmission characteristic analysis and the like of a transmission circuit including the above.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明のコネクタ伝送特性解析方法は、信号伝送回路
間の接続に用いるコネクタを含む伝送特性の解析方法で
あって、コネクタの構造寸法を抽出する工程1と、コネ
クタを信号伝送方向に垂直な断面で区分し、コネクタ構
造入力情報を作成する工程2と、前記作成したコネクタ
構造入力情報の断面構造情報を基に、区分ごとの電磁界
解析を行い、導出した線路定数または実測を行い導出を
した線路定数を、コネクタ構造入力情報のコネクタ端子
間距離情報を変数にしてまとめ、その結果を内挿、外挿
し、相関を求めることにより、線路定数決定のための関
係式もしくは表を作成する工程3と、コネクタ構造入力
情報のコネクタ端子間距離情報を、前記作成した関係式
に入力し、区分ごとの線路定数を決定し、決定された線
路定数と端子数情報および区分間長さ情報を基に、各区
分ごとの伝送回路を作成する工程4と、さらに区分され
た伝送回路の接続情報を使い、区分ごとの伝送回路を接
続する工程5と、コネクタの伝送特性を解析するための
簡易回路を作成する工程6とからなることを特徴とす
る。
In order to achieve the above object, a connector transmission characteristic analysis method according to the present invention is a method for analyzing transmission characteristics including a connector used for connection between signal transmission circuits. Extracting the connector, dividing the connector in a section perpendicular to the signal transmission direction, and creating connector structure input information, and extracting electromagnetic information for each section based on the created sectional structure information of the connector input information. By performing field analysis and deriving the line constant or actual measurement and deriving the line constant, the distance between connector terminals of the connector structure input information is summarized as a variable, the result is interpolated, extrapolated, and the correlation is calculated. Step 3 of creating a relational expression or table for determining line constants, and inputting the distance information between connector terminals of the connector structure input information into the above-described relational expression, and Step 4 of creating transmission circuits for each section based on the determined line constants, information on the number of terminals, and information on the length between sections, and using connection information on the divided transmission circuits. , A step 5 of connecting transmission circuits for each section, and a step 6 of creating a simple circuit for analyzing the transmission characteristics of the connector.

【0006】[0006]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。図1は本発明の一実施形態
例を示すフローチャートである。即ち、信号伝送回路間
の接続に用いるコネクタを含む伝送特性の解析方法であ
って、コネクタの構造寸法を抽出する工程1と、コネク
タを信号伝送方向に垂直な断面で区分する工程2によ
り、コネクタ構造入力情報10を作成し、線路定数解析
と線路定数決定のための関係式もしくは表を作成する工
程3により、前記作成したコネクタ構造入力情報10の
断面構造情報11を基に、区分ごとの電磁界解析を行
い、導出した線路定数または実測を行い導出をした線路
定数を、コネクタ構造入力情報10のコネクタ端子間距
離情報12を変数にしてまとめ、その結果を内挿、外挿
し、相関を求めることにより、線路定数決定のための関
係式もしくは表を作成し、コネクタ構造入力情報10の
コネクタ端子間距離情報12を、前記作成した関係式に
入力し、区分ごとの線路定数を決定し、各区分ごとの伝
送回路を作成する工程4により、決定された線路定数と
端子数情報13および区分間長さ情報14を基に、各区
分ごとの伝送回路を作成し、さらに区分された伝送回路
の接続情報15を使い、区分ごとの伝送回路を接続する
工程5により、区分ごとの伝送回路を接続し、コネクタ
の伝送特性を解析するための簡易回路を出力する工程6
とからなることを特徴とするコネクタ伝送特性解析方法
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of the present invention. That is, a method for analyzing transmission characteristics including a connector used for connection between signal transmission circuits, wherein a step 1 of extracting a structural dimension of the connector and a step 2 of dividing the connector by a cross section perpendicular to the signal transmission direction. In step 3 of creating the structure input information 10 and creating a relational expression or table for line constant analysis and line constant determination, the electromagnetic information for each section is obtained based on the sectional structure information 11 of the connector input information 10 created above. Field analysis is performed, and the derived line constants or actual measured and derived line constants are summarized using the connector terminal distance information 12 of the connector structure input information 10 as a variable, and the results are interpolated and extrapolated to obtain correlation. In this way, a relational expression or table for determining the line constant is created, and the connector terminal distance information 12 of the connector structure input information 10 is added to the relational expression created above. Step 4 of determining line constants for each section and creating a transmission circuit for each section, based on the determined line constants, terminal number information 13 and section length information 14, A transmission circuit is created, and further, by using the connection information 15 of the divided transmission circuits, a step 5 of connecting the transmission circuits of each division is performed, thereby connecting the transmission circuits of each division and analyzing the transmission characteristics of the connector. Step 6 of outputting a circuit
This is a connector transmission characteristic analysis method characterized by comprising:

【0007】即ち、前記コネクタ構造入力情報10は、
コネクタの構造寸法を抽出する工程1とコネクタを信号
伝送方向に垂直な断面で区分する工程2の中で作成す
る。コネクタ構造入力情報10は、断面構造情報11と
コネクタ端子間距離情報12および、端子数情報13、
区分間長さ情報14、区分された伝送回路の接続情報1
5である。断面構造情報11の区分方法は、誘電率の均
一な部分や構造の均一な部分等で区切ることを特徴とし
ている。
That is, the connector structure input information 10 includes:
It is created in a step 1 for extracting the structural dimensions of the connector and a step 2 for dividing the connector in a section perpendicular to the signal transmission direction. The connector structure input information 10 includes cross-sectional structure information 11, connector terminal distance information 12, terminal number information 13,
Section length information 14, Connection information 1 of sectioned transmission circuit
5 The method of dividing the cross-sectional structure information 11 is characterized in that the section is divided by a portion having a uniform dielectric constant or a portion having a uniform structure.

【0008】上記したコネクタ構造入力情報10の断面
構造情報11を基に区分ごとの線路定数を解析する工程
3では、解析を行うに当たって必要な基準である理想的
なゼロ電位点をコネクタのアース端子にするのではな
く、無限遠点にあるとすることで、各端子間および端子
ごとの線路定数を求めることを特徴としている。さら
に、この工程3により作成した区分ごとの線路定数決定
関係式は、コネクタ構造入力情報10のコネクタ端子間
距離情報12を変数としているため、解析に必要である
端子数情報13に対して、それぞれのコネクタ端子間距
離情報12等を代入することで線路定数を求めることを
特徴としている。
In the step 3 of analyzing line constants for each section based on the cross-sectional structure information 11 of the connector structure input information 10 described above, an ideal zero potential point, which is a reference required for the analysis, is set to the ground terminal of the connector. Instead, the line constant is determined at the point at infinity, and the line constant between terminals and for each terminal is obtained. Further, since the line constant determination relational expression for each section created in the step 3 uses the connector terminal distance information 12 of the connector structure input information 10 as a variable, the line number determination relational expression The line constant is obtained by substituting the connector terminal distance information 12 described above.

【0009】コネクタの特性解析評価回路は、コネクタ
構造入力情報10である断面構造情報11とコネクタ端
子間距離情報12で決定しているため、3次元の解析に
比べて、比較的簡易に解析できる。
Since the connector characteristic analysis and evaluation circuit is determined by the cross-sectional structure information 11 which is the connector structure input information 10 and the connector terminal distance information 12, the analysis can be performed relatively easily as compared with the three-dimensional analysis. .

【0010】区分ごとの線路定数決定関係式を用いてい
るため、伝送特性解析に必要なコネクタの端子数と位置
を自由に設定でき、その端子数規模に応じて線路定数を
求めることができる。
Since the line constant determining relational expression for each section is used, the number and positions of the connectors required for the transmission characteristic analysis can be freely set, and the line constant can be obtained according to the scale of the number of terminals.

【0011】また、区分ごとの伝送回路を接続する工程
5を用いて作成したコネクタの伝送特性を解析する簡易
回路は、コネクタの端子収容を作成段階で決定していな
い。従って、伝送特性を解析する伝送回路系に組み込む
際に端子収容を任意に決定することができる。同様に、
コネクタの特性解析に必要なすべての端子の特性インピ
ーダンスを考慮しているため、アース端子から受ける信
号伝送特性を解析できる。
Further, in the simplified circuit for analyzing the transmission characteristics of the connector created by using the process 5 for connecting the transmission circuits for each section, the terminal accommodation of the connector is not determined at the stage of creation. Therefore, the terminal accommodation can be arbitrarily determined when incorporated into a transmission circuit system for analyzing transmission characteristics. Similarly,
Since the characteristic impedance of all the terminals necessary for the characteristic analysis of the connector is taken into account, the signal transmission characteristics received from the ground terminal can be analyzed.

【0012】図2(a)、(b)は、本発明に係るコネ
クタを含む伝送特性評価のための伝送回路測定系の一例
を示す構成図である。即ち、パルスジェネレータ30か
ら出力された信号は、50Ω系同軸ケーブル26を通
り、プリント基板21内の配線(50Ω)22を伝搬
し、コネクタ20に入力される。さらに、信号はコネク
タ20から出力され配線(50Ω)23を通り、50Ω
の終端器27で終端され、プリント基板21のアース層
に流れ込む。信号が伝送される信号線24に隣接する誘
導線25には、コネクタ20の伝送特性に含まれるコネ
クタ20内で誘導された誘導雑音及びアース雑音等が現
れる。その結果は、誘導線25に接続したオシロスコー
プ31により観測できる。この結果の例が、図3の測定
点の実測波形である。この結果は、コネクタ20の端子
収容や入力信号の波形形状、信号線の動作数等の違いで
異なる。28は出力抵抗(50Ω)、29は入力抵抗
(50Ω)、32は測定点である。
FIGS. 2A and 2B are configuration diagrams showing an example of a transmission circuit measurement system for evaluating transmission characteristics including the connector according to the present invention. That is, the signal output from the pulse generator 30 passes through the 50Ω coaxial cable 26, propagates through the wiring (50Ω) 22 in the printed circuit board 21, and is input to the connector 20. Further, the signal is output from the connector 20, passes through the wiring (50Ω) 23,
And flows into the ground layer of the printed circuit board 21. Induction lines 25 adjacent to the signal lines 24 through which signals are transmitted include induction noise and ground noise induced in the connector 20 included in the transmission characteristics of the connector 20. The result can be observed by the oscilloscope 31 connected to the guide wire 25. An example of this result is the measured waveform at the measurement point in FIG. This result differs depending on the terminal accommodation of the connector 20, the waveform shape of the input signal, the number of signal line operations, and the like. 28 is an output resistance (50Ω), 29 is an input resistance (50Ω), and 32 is a measurement point.

【0013】図4及び図5は、図1の作成したコネクタ
構造入力情報10の一例であり、図4はコネクタを信号
伝送方向に平行な断面で表したコネクタ構造例、図5は
コネクタを信号伝送方向に垂直な断面で表した例であ
る。40はケーブルコネクタピン部であり、図5(a)
に対応する。41は打ち込みピン部であり、図5(b)
に対応する。43はリード部であり、図5(e)に対応
する。44は半田づけ部のPTHであり、図5(f)に
対応する。45はプリント基板(バックプレーン)のパ
ッケージである。46はプリント基板のパッケージであ
る。47はモールドである。48はコネクタモールド部
であり、図5(c)、(d)に対応する。これを基に、
抽出した垂直断面の構造寸法である断面構造情報11
と、コネクタ端子の中心間距離であるコネクタ端子間距
離情報12、端子数情報13、区分した垂直断面間の距
離である区分間長さ情報14、および区分された伝送回
路の接続情報15を求める。
4 and 5 show an example of the connector structure input information 10 created in FIG. 1. FIG. 4 shows an example of the connector structure in which the connector is shown in a cross section parallel to the signal transmission direction. FIG. This is an example represented by a cross section perpendicular to the transmission direction. Reference numeral 40 denotes a cable connector pin, which is shown in FIG.
Corresponding to Reference numeral 41 denotes a driving pin portion, which is shown in FIG.
Corresponding to Reference numeral 43 denotes a lead portion, which corresponds to FIG. Reference numeral 44 denotes a PTH of the soldering portion, which corresponds to FIG. Reference numeral 45 denotes a printed circuit board (backplane) package. 46 is a package of a printed circuit board. 47 is a mold. Reference numeral 48 denotes a connector mold portion, which corresponds to FIGS. 5C and 5D. Based on this,
Sectional structure information 11 which is the extracted vertical section structure size
And connector terminal distance information 12, which is the center-to-center distance of the connector terminals, terminal number information 13, inter-section length information 14, which is the distance between the divided vertical sections, and connection information 15 of the divided transmission circuits. .

【0014】図6は、本発明に係る線路定数決定のため
の関係式もしくは表の一例である。即ち、コネクタ構造
入力情報10を基に電磁界解析を行い、それぞれ端子ご
との線路定数を求め、端子ごとの導出した線路定数の結
果の相関を取り求めた線路定数決定のための関係式であ
る。実測により関係式や表を求める場合には、図2の測
定系中のパルスジェネレータ30を、インパルス波形を
入力し透過波の振幅に対する反射波の振幅の比である反
射係数を測定するTDR測定器に置き換えて、区分ごと
に端子の線路定数を実測で求め、それぞれ端子ごとの線
路定数の相関を取り、関係式を作成する。この関係式か
ら断面構造情報11と端子数情報13により各端子及び
端子間の線路定数である単位長さ当たりの抵抗、インダ
クタンス、キャパシタンス、コンダクタンス等を求め
る。また、区分ごとの伝送回路を作成する際、さらに精
度を向上させる場合には、端子ごとの区分間長さと、各
端子及び端子間の線路定数との相関関数を求め、定数に
重み付けをし、区分ごとの伝送回路の抵抗、インダクタ
ンス、キャパシタンス、コンダクタンスを決定する。
FIG. 6 is an example of a relational expression or table for determining a line constant according to the present invention. That is, it is a relational expression for determining a line constant by performing an electromagnetic field analysis based on the connector structure input information 10, obtaining a line constant for each terminal, and obtaining a correlation between the derived line constant results for each terminal. . When a relational expression or a table is obtained by actual measurement, the pulse generator 30 in the measurement system shown in FIG. 2 is provided with a TDR measuring device for inputting an impulse waveform and measuring a reflection coefficient which is a ratio of the amplitude of the reflected wave to the amplitude of the transmitted wave. Then, the line constant of the terminal is obtained by actual measurement for each section, and the line constant of each terminal is correlated to create a relational expression. From this relational expression, resistance, inductance, capacitance, conductance and the like per unit length, which are line constants between the terminals, are obtained from the cross-sectional structure information 11 and the number-of-terminals information 13. In addition, when creating a transmission circuit for each section, in order to further improve the accuracy, a correlation function between the section length for each terminal and a line constant between each terminal and the terminal is obtained, and the constant is weighted. Determine the resistance, inductance, capacitance, and conductance of the transmission circuit for each category.

【0015】図7〜図9は本発明に係るコネクタ伝送特
性を解析する簡易回路の一例を示し、図7はコネクタの
構造例、図8はコネクタ簡易回路、図9は解析のための
伝送回路例を示す。図中、図4および図5と同一部分は
同一符号を付してその説明を省略する。即ち、決定した
線路定数を基に、区分ごとの伝送回路56を作成し、そ
れぞれの伝送回路を区分伝送回路接続情報15を基に接
続することにより出力したコネクタ簡易回路例(図8)
である。図8のコネクタ簡易回路は、区分した伝送回路
の一例であり、ケーブルコネクタピン部40、打ち込み
ピン部41、コネクタモールド部48、リード部43、
半田付け部のPTH44で区分した。区分した伝送回路
56の入出力端子は、決定した端子数分ある。解析精度
向上のためには、区分した伝送回路内でもさらにいくつ
かの区分を行う。区分された一つの伝送回路56は、図
9の解析のための伝送回路例に示すとおり、一つは、線
路定数R,L,Cを用いたラダー回路で表すことができ
る。また、端子位置や区間長さ当たりのR,L,G,C
のマトリックスで表すこともできる。その他にも、散乱
マトリックスで表す方法もある。
7 to 9 show an example of a simplified circuit for analyzing the transmission characteristics of the connector according to the present invention. FIG. 7 shows an example of the structure of the connector, FIG. 8 shows a simplified circuit of the connector, and FIG. 9 shows a transmission circuit for analysis. Here is an example. In the figure, the same parts as those in FIGS. 4 and 5 are denoted by the same reference numerals, and description thereof will be omitted. That is, based on the determined line constants, a transmission circuit 56 for each section is created, and each transmission circuit is connected based on the section transmission circuit connection information 15 to output a simple connector circuit example (FIG. 8).
It is. The simple connector circuit of FIG. 8 is an example of a divided transmission circuit, and includes a cable connector pin portion 40, a driving pin portion 41, a connector mold portion 48, a lead portion 43,
It was divided by the PTH44 of the soldering part. The number of input / output terminals of the divided transmission circuit 56 is equal to the determined number of terminals. In order to improve the analysis accuracy, some further divisions are made even within the divided transmission circuit. One of the divided transmission circuits 56 can be represented by a ladder circuit using line constants R, L, and C, as shown in the transmission circuit example for analysis in FIG. Also, R, L, G, C per terminal position and section length
Can also be represented by a matrix. In addition, there is a method of expressing by a scattering matrix.

【0016】図10は、図8のコネクタの伝送特性を解
析する簡易回路を用いて伝送系の特性評価を行うために
必要な伝送回路評価系を作成した例である。即ち、コネ
クタ60のアース端子64は、バックプレーン61及び
パッケージ62のプリント基板のアース層の特性を表す
アース基板モデル72に接続し、理想グランドへ接続す
る。信号端子63は、両プリント基板上の配線である伝
送線路65および66にそれぞれ接続し、伝送線路65
および66のもう一方の端に終端抵抗67、69や信号
源等を接続し、アース基板モデル72に接続する。端子
の開放端は、高抵抗70や容量等を接続する。68は出
力抵抗(50Ω)であり、71は測定点である。
FIG. 10 shows an example in which a transmission circuit evaluation system necessary for evaluating the characteristics of the transmission system is created using a simple circuit for analyzing the transmission characteristics of the connector shown in FIG. That is, the ground terminal 64 of the connector 60 is connected to an earth board model 72 representing the characteristics of the earth layer of the printed board of the backplane 61 and the package 62, and is connected to an ideal ground. The signal terminals 63 are connected to transmission lines 65 and 66, which are wirings on both printed circuit boards, respectively.
The other ends of the terminals 66 and 66 are connected to terminating resistors 67 and 69, a signal source, and the like, and are connected to the ground board model 72. The open end of the terminal connects a high resistance 70, a capacitor, and the like. 68 is an output resistance (50Ω), and 71 is a measurement point.

【0017】図11及び図12は、コネクタ伝送特性評
価結果を比較した図である。即ち、図11の誘導雑音波
形の解析結果の比較例は、(a)の従来の解析方法で得
られた誘導線の雑音波形と、(b)の本発明によって得
られた解析波形の比較である。(a)の従来の解析方法
で得られた結果に比べて、(b)の本発明によって得ら
れた結果は、アース端子のインピーダンスの影響で波形
の不安定な特性を表すことができる。また、図12の誘
導雑音量の実測結果と解析結果の比較例の傾向からも判
る通り、端子収容比に対する誘導雑音量は、測定結果8
4の傾向と本発明によって得られた解析結果85の傾向
が一致している。
FIGS. 11 and 12 are diagrams comparing the results of evaluating the connector transmission characteristics. That is, the comparative example of the analysis result of the induced noise waveform in FIG. 11 is a comparison between the noise waveform of the induction wire obtained by the conventional analysis method of (a) and the analysis waveform obtained by the present invention of (b). is there. Compared with the result obtained by the conventional analysis method of (a), the result obtained by the present invention of (b) can show unstable characteristics of the waveform under the influence of the impedance of the ground terminal. Further, as can be seen from the tendency of the comparative example of the measurement result and the analysis result of the induced noise amount in FIG.
The tendency of No. 4 is consistent with the tendency of the analysis result 85 obtained by the present invention.

【0018】以上の結果から明らかなように、従来の方
法に比べて、本発明によって得られたコネクタの伝送特
性を解析する簡易回路を用いることで、コネクタを含む
伝送回路の高精度な特性を解析できるという効果が得ら
れる。
As is apparent from the above results, by using a simplified circuit for analyzing the transmission characteristics of the connector obtained by the present invention, the high-precision characteristics of the transmission circuit including the connector can be improved as compared with the conventional method. The effect of being able to analyze is obtained.

【0019】なお、本実施形態例では、端子構造が、ピ
ン型のコネクタを用いているが、エッジ型、ナイフ型等
あらゆる構造のコネクタについても同様の効果が得られ
る。さらに、光コネクタについても同様である。
In this embodiment, a pin-type connector is used as the terminal structure. However, the same effect can be obtained with connectors having any structure such as an edge type and a knife type. Further, the same applies to the optical connector.

【0020】以上説明したように、本発明によって得ら
れたコネクタの伝送特性を解析する簡易回路を用いて伝
送特性を解析し、評価すればコネクタ解析回路作成時に
信号端子とアース端子の区別をすることなく、すべての
端子のインピーダンスを考慮し、さらに、線路定数決定
のための関係式もしくは表を用いることで任意に端子数
を設定できるため、装置の規模を問わず、また、シリア
ル伝送から任意のパラレル伝送までの伝送特性解析がで
きる。したがって、装置を設計する段階で必要な伝送回
路の雑音余裕条件を精度良く決定できるという効果があ
る。
As described above, the transmission characteristics are analyzed and evaluated using the simple circuit for analyzing the transmission characteristics of the connector obtained by the present invention. Without considering the impedance of all terminals and using a relational expression or table for determining line constants, the number of terminals can be set arbitrarily. The transmission characteristics can be analyzed up to parallel transmission. Therefore, there is an effect that the noise margin condition of the transmission circuit required at the stage of designing the device can be accurately determined.

【0021】[0021]

【発明の効果】以上述べたように本発明によれば、コネ
クタのアース端子と信号端子の位置を意識せず、また必
要な端子数規模に合わせて各端子の線路定数すべてを求
め、コネクタを含む伝送回路の伝送特性解析等を行うコ
ネクタの伝送特性解析方法を提供することができる。
As described above, according to the present invention, all the line constants of each terminal are determined according to the required number of terminals without considering the positions of the ground terminal and the signal terminal of the connector. It is possible to provide a connector transmission characteristic analysis method for performing transmission characteristic analysis of a transmission circuit including the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例を示すフローチャートで
ある。
FIG. 1 is a flowchart illustrating an embodiment of the present invention.

【図2】本発明に係るコネクタを含む伝送特性評価のた
めの伝送回路測定系の一例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a transmission circuit measurement system for evaluating transmission characteristics including the connector according to the present invention.

【図3】図2の測定点の実測波形である。FIG. 3 is an actually measured waveform at a measurement point in FIG. 2;

【図4】本発明に係るコネクタを信号伝送方向に平行な
断面で表したコネクタ構造例を示す構成図である。
FIG. 4 is a configuration diagram showing an example of a connector structure in which a connector according to the present invention is represented by a cross section parallel to a signal transmission direction.

【図5】本発明に係るコネクタを信号伝送方向に垂直な
断面で表した例の断面図である。
FIG. 5 is a sectional view of an example in which the connector according to the present invention is represented by a section perpendicular to the signal transmission direction.

【図6】本発明に係る線路定数決定のための関係式もし
くは表の一例を示す特性図である。
FIG. 6 is a characteristic diagram showing an example of a relational expression or table for determining a line constant according to the present invention.

【図7】本発明に係るコネクタの構造例を示す構成図で
ある。
FIG. 7 is a configuration diagram showing a structural example of a connector according to the present invention.

【図8】本発明に係るコネクタ簡易回路例を示す構成図
である。
FIG. 8 is a configuration diagram showing an example of a simplified connector circuit according to the present invention.

【図9】本発明に係る解析のための伝送回路例を示す構
成図である。
FIG. 9 is a configuration diagram showing an example of a transmission circuit for analysis according to the present invention.

【図10】本発明に係るコネクタ伝送特性解析評価系の
一例を示す構成図である。
FIG. 10 is a configuration diagram showing an example of a connector transmission characteristic analysis evaluation system according to the present invention.

【図11】本発明に係る誘導雑音波形の解析結果の比較
例を示す特性図である。
FIG. 11 is a characteristic diagram showing a comparative example of an analysis result of an induced noise waveform according to the present invention.

【図12】本発明に係る誘導雑音量の実測結果と解析結
果の比較例を示す特性図である。
FIG. 12 is a characteristic diagram showing a comparative example of an actual measurement result and an analysis result of an induced noise amount according to the present invention.

【符号の説明】[Explanation of symbols]

1:コネクタの構造寸法抽出工程 2:コネクタの垂直断面区分工程 3:線路定数解析と線路定数決定関係式及び表作成工程 4:伝送回路作成工程 5:伝送回路接続工程 6:コネクタ伝送特性解析回路出力工程 10:コネクタ構造入力情報 11:断面構造情報 12:コネクタ端子間距離情報 13:端子数情報 14:区分間長さ情報 15:区分伝送回路接続情報 20:コネクタ 21:プリント基板 22:配線(50Ω) 23:配線(50Ω) 24:信号線 25:誘導線 26:同軸ケーブル(50Ω) 27:終端器(50Ω) 28:出力抵抗(50Ω) 29:入力抵抗(50Ω) 30:パルスジェネレータ 31:オシロスコープ 32:測定点 40:ケーブルコネクタピン部 41:打ち込みピン部 43:リード部 44:半田付け部のPTH 45:プリント基板(バックプレーン) 46:プリント基板(パッケージ) 48:コネクタモールド部 56:伝送回路 60:コネクタ 61:バックプレーン 62:パッケージ 63:信号端子 64:アース端子 65:伝送線路 66:伝送線路 67:終端抵抗(50Ω) 68:出力抵抗(50Ω) 69:終端抵抗(50Ω) 70:開放状態相当の高抵抗 71:測定点 72:アース基板のモデル 84:測定結果 85:解析結果 1: Connector structural dimension extraction process 2: Connector vertical cross section classification process 3: Line constant analysis and line constant determination relational expression and table creation process 4: Transmission circuit creation process 5: Transmission circuit connection process 6: Connector transmission characteristic analysis circuit Output process 10: Connector structure input information 11: Cross-sectional structure information 12: Connector terminal distance information 13: Terminal number information 14: Section length information 15: Section transmission circuit connection information 20: Connector 21: Printed circuit board 22: Wiring ( 23: Wiring (50Ω) 24: Signal line 25: Induction wire 26: Coaxial cable (50Ω) 27: Terminator (50Ω) 28: Output resistance (50Ω) 29: Input resistance (50Ω) 30: Pulse generator 31: Oscilloscope 32: Measurement point 40: Cable connector pin part 41: Driving pin part 43: Lead part 44: P of soldering part TH 45: Printed circuit board (back plane) 46: Printed circuit board (package) 48: Connector mold section 56: Transmission circuit 60: Connector 61: Back plane 62: Package 63: Signal terminal 64: Ground terminal 65: Transmission line 66: Transmission Line 67: Terminating resistance (50Ω) 68: Output resistance (50Ω) 69: Terminating resistance (50Ω) 70: High resistance equivalent to open state 71: Measurement point 72: Model of earth substrate 84: Measurement result 85: Analysis result

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−243193(JP,A) 岡宏規、三日月哲郎「高速・高密度な コネクタの電気特性解析モデルの検 討」、電子情報通信学会技術研究報告 (EMD93−21)、p.13−18、1993 Heike Wolter et a l.”Field−Based Ana lysis of a High Pi ncount Board Conne ctor”,IEEE TRANSAC TIONS ON COMPONENT S,PACKAGING,AND MA NUFACTURING TECHNO LOGY,PART−B,VOL.19, NO.1,Feb 1996 (58)調査した分野(Int.Cl.7,DB名) H04B 3/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-243193 (JP, A) Hironori Oka, Tetsuro Mikazuki "Study of electrical characteristics analysis model for high-speed and high-density connectors", IEICE Technology Research report (EMD93-21), p. 13-18, 1993 Heike Wolter et al. "Field-Based Analysis of a High Pin Board Board Connector", IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MA NUFACTURING TECHNOLOGY TECHNOLOGY TECH. 19, NO. 1, Feb 1996 (58) Field surveyed (Int. Cl. 7 , DB name) H04B 3/46

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 信号伝送回路間の接続に用いるコネクタ
を含む伝送特性の解析方法であって、 コネクタの構造寸法を抽出する工程1と、 コネクタを信号伝送方向に垂直な断面で区分し、誘電率
の均一な部分や構造の均一な部分で区切る断面構造情報
とコネクタ端子間距離情報および、端子数情報、区分間
長さ情報、区分された伝送回路の接続情報よりなるコネ
クタ構造入力情報を作成する工程2と、 前記作成したコネクタ構造入力情報の断面構造情報を基
に、区分ごとの電磁界解析を行い、導出した線路定数ま
たは実測を行い導出をした線路定数を、コネクタ構造入
力情報のコネクタ端子間距離情報を変数にしてまとめ、
その結果を内挿、外挿し、相関を求めることにより、線
路定数決定のための関係式もしくは表を作成する工程3
と、 コネクタ構造入力情報のコネクタ端子間距離情報を、前
記作成した関係式に入力し、区分ごとの線路定数を決定
し、決定された線路定数とコネクタ構造入力情報の端子
数情報および区分間長さ情報を基に、各区分ごとの伝送
回路を作成する工程4と、 さらにコネクタ構造入力情報の区分された伝送回路の接
続情報を使い、区分ごとの伝送回路を接続する工程5
と、 コネクタの伝送特性を解析するための簡易回路を作成す
る工程6とからなることを特徴とするコネクタ伝送特性
解析方法。
1. A method for analyzing transmission characteristics include a connector used for connection between the signal transmission circuit, a step 1 for extracting a feature size of the connector, divided in a cross section perpendicular to the connector in the signal transmission direction, the dielectric rate
Sectional structure information divided by uniform parts of the structure and uniform parts of the structure
And connector terminal distance information, terminal number information,
A step 2 of creating connector structure input information including length information and connection information of the divided transmission circuits; and an electromagnetic field for each section based on the sectional structure information of the created connector structure input information. Analyze and derive the derived line constants or the measured and derived line constants and summarize the connector-to-terminal distance information of the connector structure input information as a variable,
Step 3 of creating a relational expression or table for determining line constants by interpolating and extrapolating the results and calculating the correlation.
And the distance information between the connector terminals of the connector structure input information is input to the created relational expression, the line constant for each section is determined, and the determined line constant and the number of terminals of the connector structure input information and the length between sections are determined. Step 4 of creating a transmission circuit for each section based on the transmission information, and Step 5 of connecting the transmission circuits for each section using the connection information of the transmission circuit that has been classified in the connector structure input information.
And a step 6 of creating a simple circuit for analyzing the transmission characteristics of the connector.
JP10022096A 1996-04-22 1996-04-22 Connector transmission characteristics analysis method Expired - Fee Related JP3237513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022096A JP3237513B2 (en) 1996-04-22 1996-04-22 Connector transmission characteristics analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022096A JP3237513B2 (en) 1996-04-22 1996-04-22 Connector transmission characteristics analysis method

Publications (2)

Publication Number Publication Date
JPH09289479A JPH09289479A (en) 1997-11-04
JP3237513B2 true JP3237513B2 (en) 2001-12-10

Family

ID=14268224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022096A Expired - Fee Related JP3237513B2 (en) 1996-04-22 1996-04-22 Connector transmission characteristics analysis method

Country Status (1)

Country Link
JP (1) JP3237513B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Heike Wolter et al."Field−Based Analysis of a High Pincount Board Connector",IEEE TRANSACTIONS ON COMPONENTS,PACKAGING,AND MANUFACTURING TECHNOLOGY,PART−B,VOL.19,NO.1,Feb 1996
岡宏規、三日月哲郎「高速・高密度なコネクタの電気特性解析モデルの検討」、電子情報通信学会技術研究報告(EMD93−21)、p.13−18、1993

Also Published As

Publication number Publication date
JPH09289479A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
Paul Solution of the transmission-line equations under the weak-coupling assumption
US20040232919A1 (en) Fault detection system and method
Dascher Measuring parasitic capacitance and inductance using TDR
JP2009238130A (en) Printed circuit board designing apparatus and printed circuit board designing method
CN109684706B (en) Design method and system for improving crosstalk measurement between signal lines on PCB
Stanghan et al. Electrical characterization of packages for high-speed integrated circuits
JP3237513B2 (en) Connector transmission characteristics analysis method
US5321365A (en) Reduced noise sensitivity in inverse scattering through filtering
JP2005134399A (en) Modeling method and modeling device for modeling uniform transmission line
US6512377B1 (en) Method and apparatus for extraction of via parasitics
US7043704B2 (en) Methods and apparatus for verifying circuit board design
Pannala et al. Parameter extraction and electrical characterization of high density connector using time domain measurements
US3500204A (en) Equivalent circuit determination by pulse reflectometry with compensation for particular impedances
Tiedemann Current flow in coaxial braided cable shields
Li et al. Analysis of crosstalk of coupled transmission lines by inserting additional traces grounded with vias on printed circuit boards
Caniggia et al. Common-mode radiated emissions from UTP/STP cables with differential high-speed drivers/receivers
Katzier et al. SPICE-models for high-pincount board connectors
Pecht Signal Connector Selection
Deutsch et al. Electrical characteristics of high-performance pin-in-socket and pad-on-pad connectors
Pannala et al. Extraction of electrical parameters of high density connectors using time domain measurements
Pannala Development of time domain characterization methods for packaging structures
Gazizov Evaluation of the electrostatic discharge impact on the printed circuit board: A case study
Khodadadian Extraction of a SPICE Model for Investigating the Cable Discharge Event in Flat Ribbon Cables Based on Transmission Line Theory
De Geest et al. Electrical modeling of high speed interconnection links
Tolescu et al. Characterization of differential interconnects from time domain reflectometry measurements

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees