JP3237310B2 - Reagent composition for zinc sulfate turbidity test - Google Patents

Reagent composition for zinc sulfate turbidity test

Info

Publication number
JP3237310B2
JP3237310B2 JP13998393A JP13998393A JP3237310B2 JP 3237310 B2 JP3237310 B2 JP 3237310B2 JP 13998393 A JP13998393 A JP 13998393A JP 13998393 A JP13998393 A JP 13998393A JP 3237310 B2 JP3237310 B2 JP 3237310B2
Authority
JP
Japan
Prior art keywords
reagent
acid
zinc sulfate
standard method
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13998393A
Other languages
Japanese (ja)
Other versions
JPH06331624A (en
Inventor
恵子 濱田
邦明 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP13998393A priority Critical patent/JP3237310B2/en
Publication of JPH06331624A publication Critical patent/JPH06331624A/en
Application granted granted Critical
Publication of JP3237310B2 publication Critical patent/JP3237310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は血清膠質反応を利用した硫
酸亜鉛混濁試験に用いる試薬組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reagent composition used for a zinc sulfate turbidity test utilizing a serum colloid reaction.

【0002】[0002]

【発明の背景】硫酸亜鉛混濁試験(Zinc sulf
ate turbidity test、以下、ZTT
と略記する。)、チモール混濁試験等の血清膠質反応
は、各種肝疾患、慢性感染症、膠原病、骨髄腫等の診断
に於て有効であり、今日でも重要な検査項目である。特
にZTTは、血清と硫酸亜鉛溶液を混合し、生じた混濁
を比濁測定するもので、血清中のγ−グロブリンの量と
よく相関し、臨床的意義も高い。ZTTについては、1
962年に日本消化器病学会肝機能研究班により標準操
作法が提示され(以下、標準法と略記する。)、現在市
販されているZTT試薬はほぼこの標準法に基づいて調
製されている。この標準法は、例えば臨床検査法提要、
第29版第5刷、710〜711頁、昭和60年11月
20日発行、金原出版株式会社発行、等に記載されてい
るが、用手法の場合、概略下記の通りである。
BACKGROUND OF THE INVENTION Zinc sulfate opacity test (Zinc sulf)
ate turbine test, ZTT
Abbreviated. ), Serum colloid reaction such as thymol opacity test is effective in diagnosis of various liver diseases, chronic infectious diseases, collagen diseases, myeloma, etc., and is an important test item even today. In particular, ZTT is a method in which serum and a zinc sulfate solution are mixed, and the resulting turbidity is measured turbidimetrically. The ZTT correlates well with the amount of γ-globulin in the serum and has high clinical significance. For ZTT, 1
In 962, the standard procedure was presented by the Japanese Society of Gastroenterology Liver Function Research Group (hereinafter abbreviated as the standard method), and currently commercially available ZTT reagents are almost prepared based on this standard method. This standard method includes, for example,
It is described in the 29th edition, 5th printing, pp. 710-711, published on November 20, 1985, published by Kanbara Publishing Co., Ltd., etc.

【0003】即ち、まず煮沸してCO2を除去した水にバ
ルビタール302mg、バルビタールナトリウム190mgを溶解
し、これに0.480g/dl硫酸亜鉛・7水和物(ZnSO4・7H
2O)水溶液5.0mlを加え、更に水を加えて全量1リット
ルとする(バルビタール2.6mM)。このとき、試薬のpH
は7.60±0.05に厳密に調整されていなくてはならない。
実際の測定は、血清0.1mlと調整した試薬6.0mlを試験管
にとり良く混和し、25±3℃で正確に30分間放置後、66
0nmに於ける吸光度を測定する。一方、塩化バリウムと
硫酸を混合して得られた懸濁液(硫酸バリウム混濁標準
液)を標準液として用い、660nmの吸光度を読み、これ
をクンケル20単位として検量線を作成する。この検量線
から、血清試料のZTT値を求める。
[0003] First, 302 mg of barbital and 190 mg of sodium barbital are dissolved in water from which CO 2 has been removed by boiling, and 0.480 g / dl of zinc sulfate heptahydrate (ZnSO 4 .7H
2 O) Add 5.0 ml of an aqueous solution and further add water to make the total volume 1 liter (barbital 2.6 mM). At this time, the pH of the reagent
Must be strictly adjusted to 7.60 ± 0.05.
For the actual measurement, 0.1 ml of serum and 6.0 ml of the prepared reagent were placed in a test tube, mixed well, and left at 25 ± 3 ° C for exactly 30 minutes.
Measure the absorbance at 0 nm. On the other hand, using a suspension obtained by mixing barium chloride and sulfuric acid (a barium sulfate turbid standard solution) as a standard solution, read the absorbance at 660 nm, and prepare a calibration curve using this as 20 units of Kunkel. From this calibration curve, the ZTT value of the serum sample is determined.

【0004】上記の方法では、試薬及び標準液の調製、
反応条件及び測定方法は厳密に規定されている。特に本
測定法に係る反応はpHの影響を大きく受け、pH7〜
8の間ではpHが低い方が濁度が高くなるので、試液を
調整する際には厳密なpH管理を必要とする。しかしな
がら、そのために試液のイオン強度をあげると正常値付
近の濁度が高くなり、一方異常域では逆に濁度が低下し
て診断効率の低下を招く。そこで標準法では、pHの保
持に2.6mMバルビタール緩衝液を使用しているが、
この緩衝剤濃度ではpH維持能力は極めて低く、開栓状
態では空気中の炭酸ガスを吸収して試薬のpHが低下し
てしまうばかりか、バルビタール自体不安定で、特に硫
酸亜鉛共存下、室温以上で保存すると、経日的にpHの
低下を招き測定値が高値になってしまう。一方、pH安
定性を改善した方法として例えば両性電解質を使用する
方法が提案されている(特開昭62−153759
号)。しかし、この方法も高温下、長期間保存した場合
に於ける安定化効果は未だ十分では無く、従来の標準法
と相関性が良好でしかも経日安定性により優れたZTT
用試薬組成物の開発が長年渇望されてきた。
In the above method, preparation of reagents and standard solutions,
Reaction conditions and measurement methods are strictly defined. In particular, the reaction according to the present measurement method is greatly affected by pH,
Since the turbidity increases when the pH is low between 8 and 8, the pH control requires strict pH control when preparing the test solution. However, if the ionic strength of the test solution is increased, the turbidity near the normal value increases. On the other hand, in the abnormal region, the turbidity decreases, leading to a decrease in diagnostic efficiency. Therefore, in the standard method, 2.6 mM barbital buffer is used to maintain the pH.
At this buffer concentration, the pH maintenance ability is extremely low. In the open state, not only does the reagent absorb the carbon dioxide gas in the air and the pH of the reagent decreases, but also the barbital itself is unstable, especially in the presence of zinc sulfate, at room temperature or higher. , The pH decreases over time and the measured value becomes high. On the other hand, as a method for improving the pH stability, for example, a method using an amphoteric electrolyte has been proposed (Japanese Patent Laid-Open No. 62-153759).
issue). However, this method is still insufficient in stabilizing effect when stored at high temperature for a long period of time, and has a good correlation with the conventional standard method and a more excellent aging stability.
There has been a long-felt desire for the development of reagent compositions for use.

【0005】[0005]

【発明の目的】本発明は上記した如き状況に鑑みなされ
たもので、標準法(2.6mM バルビタール緩衝液を用いる
方法)と良好な相関性を維持し、再現性、経日安定性に
より優れたZTT用試薬組成物を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above situation, and maintains good correlation with a standard method (a method using a 2.6 mM barbital buffer), and is excellent in reproducibility and aging stability. An object of the present invention is to provide a reagent composition for ZTT.

【0006】[0006]

【発明の構成】本発明は、硫酸亜鉛と、緩衝剤としての
ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキ
シメチル)メタンと、目的のpHに調整するための酸性
化剤とを含んで成ることを特徴とするZTT用試薬組成
物の発明である。即ち、本発明者らは標準法と良く相関
しながらも、pHによる影響を受けず、経日安定性に優
れたZTT用試薬組成物を得るべく鋭意研究の結果、緩
衝剤としてビス(2−ヒドロキシエチル)イミノトリス
(ヒドロキシメチル)メタン(以下、ビストリスと略記
する。)を用いると、pHの変動が少なく、しかも経日
安定性に優れたZTT用試薬組成物が得られることを見
い出し、本発明を完成した。
The present invention comprises zinc sulfate, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane as a buffer, and an acidifying agent for adjusting to a desired pH. It is an invention of a ZTT reagent composition characterized by the following. That is, the present inventors have conducted extensive studies to obtain a reagent composition for ZTT which is not influenced by pH and has excellent stability over time, although it correlates well with the standard method. It has been found that the use of (hydroxyethyl) iminotris (hydroxymethyl) methane (hereinafter abbreviated as bistris) can provide a reagent composition for ZTT which has a small fluctuation in pH and is excellent in stability over time. Was completed.

【0007】本発明に於て用いられるビストリスの使用
濃度は、試薬組成物のpHを安定化でき、測定値に影響
を与えない濃度であればよいわけであるが、通常は5〜
30mM、好ましくは7〜15mMである。また本測定法に係る
反応はpH7.4〜7.7で行うのが最も好ましいが、目的のp
Hに調整する為の酸性化剤としては、亜鉛とキレートを
生成しない、例えば塩酸,硫酸,硝酸、硼酸等の無機酸
や、酢酸,琥珀酸,乳酸等の有機酸、或はN-2-ヒドロキ
シエチルピペラジン-N'-2-ヒドロキシプロパン-3-スル
ホン酸(HEPPSO),N-2-ヒドロキシエチルピペラ
ジン-N'-3-プロパンスルホン酸(EPPS)等のグット
緩衝剤等が挙げられるが、緩衝力のある硼酸を使用する
とpH維持の面から特に有利である。これら酸性化剤の
使用量は、使用する酸性化剤の種類により異なり、一定
ではないが、要は試薬溶液のpHを7.4〜7.7に調整でき
る量を加えればよい。尚、硫酸亜鉛は通常硫酸亜鉛7水
塩として1リットル当たり20〜30mg程度用いられる。
The concentration of bistris used in the present invention may be any concentration which can stabilize the pH of the reagent composition and does not affect the measured value.
30 mM, preferably 7-15 mM. The reaction according to the present assay is most preferably performed at a pH of 7.4 to 7.7.
Examples of the acidifying agent for adjusting to H include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and boric acid, organic acids such as acetic acid, succinic acid, and lactic acid; Good buffer agents such as hydroxyethylpiperazine-N'-2-hydroxypropane-3-sulfonic acid (HEPPSO) and N-2-hydroxyethylpiperazine-N'-3-propanesulfonic acid (EPPS), and the like, The use of buffering boric acid is particularly advantageous in terms of maintaining pH. The amount of the acidifying agent used varies depending on the type of the acidifying agent used, and is not constant, but it is only necessary to add an amount capable of adjusting the pH of the reagent solution to 7.4 to 7.7. Incidentally, zinc sulfate is usually used as zinc sulfate heptahydrate in an amount of about 20 to 30 mg per liter.

【0008】ZTTは用手法に限らず、自動分析装置に
よる測定も広く行われている。一般にZTTを自動分析
装置を用いて測定する場合、測定条件は装置により異な
るが、例えば検体と試薬組成物を混合後、通常37℃で、
反応時間2〜15分、測定波長600〜660nmで吸光度の測定
を行う。また自動分析装置を用いる場合、予めクンケル
単位の判っている血清を標準として用いるのが一般的で
ある。本発明に係る試薬組成物も、用手法に限らず、自
動分析装置に応用することももちろん可能であり、測定
条件等は従来法に従えばよい。標準法等の従来のZTT
法では、試薬組成物中のイオン強度が測定値に大きな影
響を与えるため、厳密なpH調整が必要であるにもかか
わらず、緩衝剤濃度を増やすと標準法との相関性が悪化
し、正常異常の差が減少して診断効率の低下を招いた。
しかしながら、ビストリスを用いた本発明によれば、緩
衝剤濃度を増加させてもイオン強度の増加は僅かで、そ
のため標準法との相関性を維持しながら緩衝力を増強で
きる。この事実はトリエタノールアミンやトリス(ヒド
ロキシメチル)アミノメタン等ではモル濃度の増加で相
関性が著しく悪化するのと比較すると実に意外であっ
た。以下に実施例を挙げて本発明を更に詳細に説明する
が、本発明はこれら実施例によって何等制約を受けるも
のではない。
[0008] ZTT is not limited to the method used, but measurement by an automatic analyzer is also widely performed. In general, when ZTT is measured using an automatic analyzer, measurement conditions differ depending on the device. For example, after mixing a sample and a reagent composition, usually at 37 ° C,
The absorbance is measured at a measurement wavelength of 600 to 660 nm for a reaction time of 2 to 15 minutes. When an automatic analyzer is used, it is common to use serum whose kunkel unit is known in advance as a standard. The reagent composition according to the present invention is not limited to the use method, but can be applied to an automatic analyzer. Measurement conditions and the like may be in accordance with conventional methods. Conventional ZTT such as standard method
In the method, the ionic strength in the reagent composition has a large effect on the measured value. Therefore, although strict pH adjustment is required, increasing the concentration of the buffer deteriorates the correlation with the standard method, The difference in abnormalities decreased, leading to a decrease in diagnostic efficiency.
However, according to the present invention using bistris, even if the concentration of the buffer is increased, the increase in ionic strength is slight, so that the buffering power can be enhanced while maintaining the correlation with the standard method. This fact was surprising when compared with triethanolamine, tris (hydroxymethyl) aminomethane, and the like, in which the correlation was significantly deteriorated by an increase in the molar concentration. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these Examples.

【0009】[0009]

【実施例】実施例1 [試薬の調製] 試薬1(ビストリス−硼酸緩衝液) ビストリス 2.092g 硼酸 587mg 硫酸亜鉛7水塩 28mg 精製水1リットルに上記試薬類を溶解し、pHを7.50に調整した。 試薬2(ビストリス−塩酸緩衝液) ビストリス 2.092g 1N塩酸 0.9ml 硫酸亜鉛7水塩 24mg 精製水1リットルに上記試薬類を溶解し、pHを7.50に調整した。 試薬3(ビストリス−EPPS緩衝液) ビストリス 2.092g EPPS 782mg 硫酸亜鉛7水塩 28mg 精製水1リットルに上記試薬類を溶解し、pHを7.6
0に調整した。 [測定方法] 日立7050形自動分析装置により、以下の方法で測定
した。ヒト血清10μlを反応セルにとり、調製した試
薬1、試薬2又は試薬3を500μl加えて37℃で1
0分間加温した後、主波長600nm、側波長700n
mに於ける吸光度を測定した。16クンケル単位のヒト
血清を標準として用い、検体の吸光度をクンケル単位に
換算した。該測定は、各試薬毎に同じ検体について各1
0回測定を行い、得られたクンケル単位の最大値及び最
小値、測定値の幅、平均値、標準偏差及び変動係数を求
めた。結果を表1に示す。
EXAMPLES Example 1 [Preparation of reagents] Reagent 1 (bistris-borate buffer) Vistris 2.092 g Boric acid 587 mg Zinc sulfate heptahydrate 28 mg The above reagents were dissolved in 1 liter of purified water, and the pH was 7.50. Was adjusted. Reagent 2 (Bistris-HCl buffer solution) Vistris 2.092 g 1N hydrochloric acid 0.9 ml Zinc sulfate heptahydrate 24 mg The above reagents were dissolved in 1 liter of purified water to adjust the pH to 7.50. Reagent 3 (Bistris-EPPS buffer) Vistris 2.092 g EPPS 782 mg Zinc sulfate heptahydrate 28 mg Dissolve the above reagents in 1 liter of purified water, and adjust the pH to 7.6.
Adjusted to zero. [Measurement Method] The measurement was performed by the following method using a Hitachi 7050 automatic analyzer. Take 10 µl of human serum into a reaction cell, add 500 µl of prepared reagent 1, reagent 2 or reagent 3 and add 1 µl at 37 ° C.
After heating for 0 minutes, main wavelength 600nm, side wavelength 700n
The absorbance at m was measured. Using 16 Kunkel units of human serum as a standard, the absorbance of the sample was converted to Kunkel units. The measurement is performed for each reagent for the same sample for each reagent.
The measurement was performed 0 times, and the obtained maximum value and minimum value in Kunkel units, the width of the measured value, the average value, the standard deviation, and the coefficient of variation were determined. Table 1 shows the results.

【0010】[0010]

【表1】 [Table 1]

【0011】比較例1(標準法) [試薬の調製] 試薬A(標準法処方) バルビタール 302mg バルビタールナトリウム 190mg 硫酸亜鉛7水塩 24mg 煮沸してCO2を除去した精製水1リットルに上記試薬類
を溶解し、pHを7.60に調整した。 [測定方法]試薬Aを用い、実施例1と同じヒト血清に
ついて、実施例1と同様の方法でクンケル値測定を10回
行い、得られたクンケル単位の最大値及び最小値、測定
値の幅、平均値、標準偏差及び変動係数を求めた。結果
を表1に併せて示す。表1から明らかなように、ビスト
リスを緩衝剤として用いた本発明による方法は、標準法
と同等の同時再現性を示した。
Comparative Example 1 (Standard method) [Preparation of reagents] Reagent A (prescription of standard method) Barbital 302 mg Barbital sodium 190 mg Zinc sulfate heptahydrate 24 mg The above reagents were added to 1 liter of purified water boiled to remove CO 2. Dissolve and adjust the pH to 7.60. [Measurement method] Using the same human serum as in Example 1 using reagent A, the Kunkel value was measured 10 times in the same manner as in Example 1, and the maximum and minimum values of the obtained Kunkel unit and the width of the measured values were obtained. , Average, standard deviation and coefficient of variation were determined. The results are shown in Table 1. As is apparent from Table 1, the method according to the present invention using bistris as a buffer showed simultaneous reproducibility equivalent to the standard method.

【0012】実施例2 表2に記載のビストリス緩衝剤(試薬1〜8)を用い、
ヒト血清20〜30検体について実施例1と同様にして
クンケル値の測定を行った。得られた測定結果[Y]
と、標準法(試薬Aを用いた方法)[X]との相関関係
を表わす回帰式及び相関係数を表2に示す。標準法
[X]は、16クンケル単位の血清を標準にたててお
り、検討法[Y]は測定吸光度を標準法[X]で得られ
た標準血清の吸光度を用いてクンケル単位に換算した。
Example 2 Using the bistris buffers (reagents 1 to 8) shown in Table 2,
The Kunkel value of 20 to 30 human serum samples was measured in the same manner as in Example 1. Obtained measurement result [Y]
Table 2 shows a regression equation and a correlation coefficient representing a correlation between the standard method (method using reagent A) [X]. In the standard method [X], serum of 16 Kunkel units is set as a standard, and in the examination method [Y], the measured absorbance is converted into Kunkel units using the absorbance of the standard serum obtained by the standard method [X]. .

【0013】[0013]

【表2】 [Table 2]

【0014】更に、標準法(試薬Aを用いた方法)と試
薬1を用いた結果との相関図を図1(300検体)に、標
準法と試薬2を用いた結果との相関図を図2に(300検
体)、標準法と試薬3を用いた結果との相関図を図3に
(300検体)夫々示す。
FIG. 1 (300 samples) shows the correlation between the standard method (method using reagent A) and the results obtained using reagent 1, and FIG. 1 (300 samples) shows the correlation between the standard method and results obtained using reagent 2. Figure 2 shows the correlation between the standard method and the results obtained using Reagent 3 (300 samples).
(300 samples) are shown.

【0015】比較例2 [試液の調製] 試薬B(高濃度バルビタール緩衝液:15mM) バルビタール 1.17g バルビタールナトリウム 1.11g 硫酸亜鉛7水塩 24mg 煮沸して(COを除去した精製水1リットルに上記試薬類を溶解し、pHを 7.60に調整した。 試薬C N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸(B ES) 213mg トリス(ヒドロキシメチル)アミノメタン 133mg 硫酸亜鉛7水塩 24mg 精製水1リットルに上記試薬類を溶解し、pHを7.6
0に調整した。 [測定方法] 試薬B、又は試薬Cを用い、ヒト血清10検体につい
て、実施例1と同様の方法でクンケル値の測定を行っ
た。得られた測定結果[Y]と、標準法(試薬Aを用い
た方法)[X]との相関関係を表わす回帰式及び相関係
数を表2に併せて示す。また、同じく比較例として表2
に記載の各緩衝液(試薬D〜O)を用いて同様に測定を
行った結果も表2に併せて示す。更に、標準法(試薬A
を用いた方法)と試薬Bを用いた結果との相関図を図4
に(10検体)、標準法と試薬Cを用いた結果との相関
図を図5に(10検体)夫々示す。
Comparative Example 2 [Preparation of test solution] Reagent B (high-concentration barbital buffer: 15 mM) 1.17 g of barbital 1.11 g of sodium barbital 24 mg of zinc sulfate heptahydrate 24 mg 1 liter of purified water boiled (to remove CO 2) And the pH was adjusted to 7.60 Reagent C N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES) 213 mg Tris (hydroxymethyl) aminomethane 133 mg 24 mg of zinc sulfate heptahydrate Dissolve the above reagents in 1 liter of purified water, and adjust the pH to 7.6.
Adjusted to zero. [Measurement Method] Using the reagent B or the reagent C, the Kunkel value of 10 human serum samples was measured in the same manner as in Example 1. Table 2 also shows a regression equation and a correlation coefficient representing a correlation between the obtained measurement result [Y] and a standard method (method using reagent A) [X]. Table 2 also shows a comparative example.
Table 2 also shows the results of the same measurements performed using the buffers (reagents D to O) described in Table 2. Furthermore, the standard method (Reagent A
FIG. 4 shows a correlation diagram between the method using the
(10 samples), and a correlation diagram between the standard method and the results obtained using the reagent C are shown in FIG. 5 (10 samples).

【0016】表2から明らかな如く、本発明に係る試薬
組成物を用いた場合は、何れも標準法処方試薬を用いた
場合と、よい相関を示した。一方、他の緩衝剤を用いた
場合、回帰式から明らかなように、相関性が悪く、ZT
T測定用に好ましくないことが判る。また、図1、図
2、図3からも、本発明に係る試薬を用いた場合は、測
定値が標準法処方試薬を用いた場合と高い相関関係にあ
ることが判るが、一方、図4から明らかな如く、標準法
処方試薬に更にバルビタールの濃度を上げると、濁度が
低くなり、標準法処方試薬を用いた場合よりも測定値が
低値となる傾向が見られる。また、図5から明らかな如
く、緩衝剤にBESを用いると、濁度が高くなり、測定
値が高値となる傾向がある。これらのことから、バルビ
タール,BES共に、ZTTの測定には好ましくないこ
とが判る。
As is evident from Table 2, when the reagent composition according to the present invention was used, a good correlation was shown with the case where the standard method prescription reagent was used. On the other hand, when another buffer was used, the correlation was poor, as is clear from the regression equation.
It turns out that it is not preferable for T measurement. Also, from FIGS. 1, 2 and 3, it can be seen that when the reagent according to the present invention is used, the measured value has a high correlation with the case where the standard method prescription reagent is used, while FIG. As is clear from the above, when the concentration of barbital is further increased in the standard method prescription reagent, the turbidity decreases, and the measured value tends to be lower than when the standard method prescription reagent is used. Further, as is apparent from FIG. 5, when BES is used as the buffer, the turbidity increases and the measured value tends to be high. From these facts, it can be seen that both barbital and BES are not preferable for the measurement of ZTT.

【0017】実施例3(経日安定性試験) 実施例1で用いたと同じ試薬1、試薬2、試薬3の夫々
を密封状態で10℃、25℃、40℃で1ヵ月、2ヵ月及び5
ヵ月保存した。一定期間保存後、夫々の試薬のpHを測
定した。また、一定期間保存後の夫々の試薬を用いて、
実施例1と同様の方法でヒト血清検体について吸光度の
測定を行った。得られたpH値、及び吸光度の値を表3
に示す。
Example 3 (Day-to-day stability test) The same reagents 1, 2 and 3 used in Example 1 were sealed at 10 ° C., 25 ° C., 40 ° C. for 1 month, 2 months and 5 days, respectively.
Stored for months. After storage for a certain period, the pH of each reagent was measured. Also, using each reagent after storage for a certain period,
The absorbance of a human serum specimen was measured in the same manner as in Example 1. Table 3 shows the obtained pH value and absorbance value.
Shown in

【0018】[0018]

【表3】 [Table 3]

【0019】比較例3 比較例1で用いたと同じ試薬A(標準法処方)を密封状
態で、10℃、25℃、40℃で1ヵ月、2ヵ月及び5ヵ月保
存した。一定期間保存後、夫々の試薬のpHを測定し
た。また、一定期間保存後の夫々の試薬を用いて、実施
例1と同様の方法でヒト血清検体について吸光度の測定
を行った。得られたpH値、及び吸光度の値を表3に併
せて示す。表3から明らかなように、標準法処方試薬を
長期保存した場合、経日的にpHが低下し、吸光度が高
値に出る傾向が顕著であったが、本発明に係る試薬組成
物を用いて測定を行った場合は、pH値も吸光度値も変
化がなく、良好な経日安定性を示した。
Comparative Example 3 The same reagent A (standard method formulation) as used in Comparative Example 1 was stored in a sealed state at 10, 25 and 40 ° C. for 1 month, 2 months and 5 months. After storage for a certain period, the pH of each reagent was measured. Further, the absorbance of a human serum sample was measured in the same manner as in Example 1 using each of the reagents stored for a certain period of time. The obtained pH value and absorbance value are also shown in Table 3. As is clear from Table 3, when the standard method prescription reagent was stored for a long period of time, the pH tended to decrease over time and the absorbance tended to reach a high value, but the reagent composition according to the present invention was used. When the measurement was carried out, there was no change in the pH value and the absorbance value, indicating good chronological stability.

【0020】[0020]

【発明の効果】以上述べた通り、本発明の硫酸亜鉛混濁
試験(ZTT)用試薬組成物は、経日安定性に著しく優
れ、長期間安定保存が可能であり、40℃の高温下でも5
ヵ月間以上安定に保存し得る点に顕著な効果を奏するも
のであり、斯業に貢献するところ極めて大なる発明であ
る。
As described above, the reagent composition for zinc sulfate turbidity test (ZTT) of the present invention has remarkably excellent day-to-day stability, can be stored stably for a long period of time, and has a high storage stability even at a high temperature of 40 ° C.
The present invention has a remarkable effect in that it can be stably stored for more than a month, and is an extremely large invention that contributes to the industry.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例2に於ける相関図(1)を示し、横
軸は標準法処方試薬を用いた測定結果を、縦軸は本発明
の試薬1(ビストリス−硼酸緩衝液)を用いた測定結果
を夫々表わす。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a correlation diagram (1) in Example 2, wherein the horizontal axis represents measurement results using a standard prescription reagent, and the vertical axis represents reagent 1 of the present invention (bistris-borate buffer). Respectively represent the measurement results.

【図2】図2は実施例2に於ける相関図(2)を示し、横
軸は標準法処方試薬を用いた測定結果を、縦軸は本発明
の試薬2(ビストリス−塩酸緩衝液)を用いた測定結果
を夫々表わす。
FIG. 2 shows a correlation diagram (2) in Example 2, wherein the horizontal axis represents the measurement results using the standard method prescription reagent, and the vertical axis represents the reagent 2 of the present invention (bistris-hydrochloric acid buffer). Respectively represent the measurement results.

【図3】図3は実施例2に於ける相関図(3)を示し、横
軸は標準法処方試薬を用いた測定結果を、縦軸は本発明
の試薬3(ビストリス−EPPS緩衝液)を用いた測定
結果を夫々表わす。
FIG. 3 shows a correlation diagram (3) in Example 2, wherein the horizontal axis represents measurement results using a standard method prescription reagent, and the vertical axis represents reagent 3 of the present invention (bistris-EPPS buffer). Respectively represent the measurement results.

【図4】図4は比較例2に於ける相関図(1)を示し、横
軸は標準法処方試薬を用いた測定結果を、縦軸は試薬A
(高濃度バルビタール緩衝液)を用いた測定結果を夫々
表わす。
FIG. 4 shows a correlation diagram (1) in Comparative Example 2, in which the horizontal axis represents measurement results using a standard method prescription reagent, and the vertical axis represents reagent A.
(High concentration barbital buffer) are shown.

【図5】図5は比較例2に於ける相関図(2)を示し、横
軸は標準法処方試薬を用いた測定結果を、縦軸は試薬C
(BES−トリス緩衝液)を用いた測定結果を夫々表わ
す。
FIG. 5 shows a correlation diagram (2) in Comparative Example 2, in which the horizontal axis represents measurement results using a standard method prescription reagent, and the vertical axis represents reagent C.
(BES-Tris buffer) shows the measurement results.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】硫酸亜鉛と、緩衝剤としてのビス(2-ヒド
ロキシエチル)イミノトリス(ヒドロキシメチル)メタ
ンと、目的のpHに調整するための酸性化剤とを含んで
成ることを特徴とする硫酸亜鉛混濁試験用試薬組成物。
1. A sulfuric acid comprising zinc sulfate, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane as a buffer, and an acidifying agent for adjusting the pH to a target. A reagent composition for a zinc turbidity test.
【請求項2】硫酸亜鉛が硫酸亜鉛7水塩である、請求項
1に記載の組成物。
2. The composition according to claim 1, wherein the zinc sulfate is zinc sulfate heptahydrate.
【請求項3】目的のpHに調整するための酸性化剤が硼
酸、塩酸、硫酸又は硝酸である、請求項1に記載の組成
物。
3. The composition according to claim 1, wherein the acidifying agent for adjusting the desired pH is boric acid, hydrochloric acid, sulfuric acid or nitric acid.
【請求項4】目的のpHに調整するための酸性化剤が硼
酸である、請求項1に記載の組成物。
4. The composition according to claim 1, wherein the acidifying agent for adjusting the target pH is boric acid.
【請求項5】目的のpHに調整するための酸性化剤が酢
酸、琥珀酸又は乳酸である、請求項1に記載の組成物。
5. The composition according to claim 1, wherein the acidifying agent for adjusting the target pH is acetic acid, succinic acid or lactic acid.
【請求項6】目的のpHに調整するための酸性化剤がN-2
-ヒドロキシエチルピペラジン-N'-2-ヒドロキシプロパ
ン-3-スルホン酸(HEPPSO)又はN-2-ヒドロキシ
エチルピペラジン-N'-3-プロパンスルホン酸(EPP
S)である、請求項1に記載の組成物。
6. An acidifying agent for adjusting to a desired pH is N-2.
-Hydroxyethylpiperazine-N'-2-hydroxypropane-3-sulfonic acid (HEPPSO) or N-2-hydroxyethylpiperazine-N'-3-propanesulfonic acid (EPP
The composition according to claim 1, which is S).
JP13998393A 1993-05-19 1993-05-19 Reagent composition for zinc sulfate turbidity test Expired - Lifetime JP3237310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13998393A JP3237310B2 (en) 1993-05-19 1993-05-19 Reagent composition for zinc sulfate turbidity test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13998393A JP3237310B2 (en) 1993-05-19 1993-05-19 Reagent composition for zinc sulfate turbidity test

Publications (2)

Publication Number Publication Date
JPH06331624A JPH06331624A (en) 1994-12-02
JP3237310B2 true JP3237310B2 (en) 2001-12-10

Family

ID=15258214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13998393A Expired - Lifetime JP3237310B2 (en) 1993-05-19 1993-05-19 Reagent composition for zinc sulfate turbidity test

Country Status (1)

Country Link
JP (1) JP3237310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611595B2 (en) * 1992-01-27 1997-05-21 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH06331624A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
Gilfix et al. A physical chemical approach to the analysis of acid-base balance in the clinical setting
Doumas et al. Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions
Schwartz et al. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents
US4001142A (en) Blood gas control
Robertson et al. Calcium measurements in serum and plasma—total and ionized
JP2938566B2 (en) Stable hemoglobin reference solution
Gordeladze et al. A simple procedure for the determination of hydroxyproline in urine and bone
White et al. Determination of aluminum by photometric fluorescence measurement
Delanghe et al. Quantitative nephelometric assay for determining myoglobin evaluated
Morin et al. New and rapid procedure for serum phosphorus using o-phenylenediamine as reductant
JP3237310B2 (en) Reagent composition for zinc sulfate turbidity test
Skogerboe et al. Chemiluminescent measurement of total urinary nitrogen for accurate calculation of nitrogen balance
US4393142A (en) Assay method and reagent for the determination of chloride
CN112285359A (en) Saliva liquefaction sugar chain antigen determination kit and detection method thereof
Haesen et al. An automated method for the determination of serum γ-glutamyltranspeptidase
JPH06308129A (en) Reagent and calibration system for fructosamine
US5866352A (en) Kit for fructosamine determination
JPH09505142A (en) Glucose calibrator for test pieces and control substance
US5518929A (en) Method of making a blood gas/electrolyte control
SUTOR et al. Urinary inhibitors of calcium phosphate formation: the inhibitory activity of normal and artificial urines
Hoch et al. The Determination of Iodine in Biologic Material
US6696297B2 (en) Non-oxidizable bilirubin substitutes and uses therefor
White et al. Photometric studies on the diazo reaction for serum bilirubin
Roy et al. Buffer Standards for the Physiological pH of Zwitterionic Compounds, MOBS and TABS from 5 to 55° C
Roy et al. Standard electromotive force of the H2-AgCl; Ag cell in 30, 40, and 50 mass% glycerol/water from− 20 to 25° C: pK2 and pH values for a standard “Mops” buffer in 50 mass% glycerol/water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

EXPY Cancellation because of completion of term