JP3234218U - Micro bubble generation nozzle and generator - Google Patents

Micro bubble generation nozzle and generator Download PDF

Info

Publication number
JP3234218U
JP3234218U JP2021001611U JP2021001611U JP3234218U JP 3234218 U JP3234218 U JP 3234218U JP 2021001611 U JP2021001611 U JP 2021001611U JP 2021001611 U JP2021001611 U JP 2021001611U JP 3234218 U JP3234218 U JP 3234218U
Authority
JP
Japan
Prior art keywords
micro
air
valve
microbubbles
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001611U
Other languages
Japanese (ja)
Inventor
加藤 高司
高司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidoh Co Ltd
Original Assignee
Meidoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidoh Co Ltd filed Critical Meidoh Co Ltd
Priority to JP2021001611U priority Critical patent/JP3234218U/en
Application granted granted Critical
Publication of JP3234218U publication Critical patent/JP3234218U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】安価な設置スペースの少ないベンチュリ−方式を用いて、マイクロバブル発生量をより増加し、気泡の大きさも安定できる効率の良いマイクロバブル発生装置を提供する。【解決手段】ベンチュリ−方式のノズルを丸棒内に3〜6ヶ所円形方向に均等なテーパ多管を設け、丸棒中心に空気管を設け、丸棒外周からも空気管を設け、自吸エアーバルブ2から吸引し、テーパ多管に各独立して両方から自吸されマイクロバブルを発生させる。また吐出し側のスクリュー20で自然旋回流を発生させ大きな気泡も効率よくマイクロバブルとなり増量となる。およびポンプの吸込み側からも自吸バルブを設け、バルブ調整で微量な空気を自吸し、ポンプの回転旋回流で、圧力液内に空気を混合溶解させテーパ多管を通過することでマイクロバブルに析出させ、発生量がより多くなる。またマイクロバブル発生ノズルの圧力前室18から、圧力液をバルブ調整でポンプ吸引側にリターンさせ、ポンプの回転旋回流で更にマイクロバブル発生量を増量調整する。【選択図】図2PROBLEM TO BE SOLVED: To provide an efficient microbubble generator capable of increasing the amount of microbubble generation and stabilizing the size of bubbles by using an inexpensive Venturi method with a small installation space. SOLUTION: Venturi type nozzles are provided in 3 to 6 places in a round bar evenly tapered in a circular direction, an air tube is provided in the center of the round bar, an air tube is also provided from the outer periphery of the round bar, and self-priming. It is sucked from the air valve 2 and is independently sucked into the tapered multi-tube from both to generate microbubbles. Further, the screw 20 on the discharge side generates a naturally swirling flow, and large bubbles are efficiently converted into microbubbles to increase the amount. A self-priming valve is also provided from the suction side of the pump, and a small amount of air is self-sucked by adjusting the valve. The amount of generated water is increased. Further, the pressure liquid is returned from the pressure front chamber 18 of the micro-bubble generation nozzle to the pump suction side by adjusting the valve, and the amount of micro-bubble generation is further increased and adjusted by the rotary swirling flow of the pump. [Selection diagram] Fig. 2

Description

本考案は、ベンチュリ−方式によるマイクロバブル発生をより効果的に増量させるマイクロバブル発生ノズルとマイクロバブル発生装置に関するものである。 The present invention relates to a microbubble generation nozzle and a microbubble generator that more effectively increase the amount of microbubble generation by the Venturi method.

安価なベンチュリ−方式でマイクロバブルを発生させるものと、高価な圧力タンクやコンプレッサー等の必要な加圧溶解方式が主流となっている。 The mainstream methods are those that generate microbubbles by an inexpensive Venturi method and those that require a pressure melting method such as an expensive pressure tank or compressor.

通常のベンチュリ−方式は、通過前後の圧力差で負圧による自吸空気量によって、マイクロバブルを発生するが、加圧溶解方式と比べると発生量が少なく気泡も大きく安定しない。しかし加圧溶解方式は高価で設置スペースが大きなため、横展開するにはかなりの費用と場所がいる。そこで安価な設置スペースの少ないベンチュリ−方式を用いて、マイクロバブル発生量をより増加し、気泡の大きさも安定できる、効率の良いマイクロバブル発生ノズルとマイクロバブル発生装置を考案することで、ベンチュリ−方式前述の課題を解決しようとするものである。 In the normal Venturi method, microbubbles are generated by the amount of self-absorbing air due to negative pressure due to the pressure difference before and after passing, but the amount generated is smaller than that in the pressure melting method, and the bubbles are also large and unstable. However, the pressure melting method is expensive and requires a large installation space, so it requires considerable cost and space for horizontal deployment. Therefore, by using the Venturi method, which is inexpensive and requires less installation space, we devise an efficient micro-bubble generation nozzle and micro-bubble generator that can increase the amount of micro-bubble generation and stabilize the size of the bubbles. Method This is to solve the above-mentioned problems.

本考案はマイクロバブル発生装置において、ベンチュリ−方式のノズルを丸棒内に3〜6ヶ所円形方向に均等なテーパ多管を設け、丸棒中心には約3mm径の空気管を設け、空気管前後はネジで液が侵入しないように封鎖してあり、吐出し側の漏れ防止ねじに2〜8枚スクリューを取り付けて、丸棒外周からも空気管を設け、そして丸棒には全体をソケットで包み込み、ソケットにはめ合う配管で丸棒を抱え込み外部と遮断し、バルブで丸棒外周と中心空気管から空気がテーパ多管に各独立して自吸されるようにしてあり、圧力液を通過させ圧力差で最小径管部に空気を自吸し、マイクロバブルを発生させる。吐出し側は吐出し液流でスクリューを自然回転させ、旋回流を発生させ気泡の大きさの安定と増量させる。及びポンプの吸込み側からもバルブを設け、バルブ調整で微量な空気を自吸し、ポンプの回転旋回流で、空気を混合溶解させた圧力液なので、従来のベンチュリ−方式単管よりマイクロバブルの発生量が多く、またマイクロバブル発生ノズルの圧力前室側から、圧力液をバルブ調整でリターンさせ、ポンプの回転旋回流で更にマイクロバブル発生量を増量調整するので、ベンチュリ−方式の問題を解決している。 In the present invention, in the micro bubble generator, venturi-type nozzles are provided in 3 to 6 places in a round bar evenly tapered in a circular direction, and an air tube having a diameter of about 3 mm is provided in the center of the round bar. The front and back are sealed with screws to prevent liquid from entering, 2 to 8 screws are attached to the leakage prevention screw on the discharge side, an air pipe is also provided from the outer circumference of the round bar, and the whole is socketed on the round bar. The round bar is held by a pipe that fits into the socket and shuts off from the outside, and the valve allows air to be independently sucked into the tapered multi-tube from the outer circumference of the round bar and the central air pipe. Air is self-sucked into the minimum diameter pipe part by the pressure difference through which it passes, and microbubbles are generated. On the discharge side, the screw is naturally rotated by the discharge liquid flow to generate a swirling flow to stabilize and increase the size of bubbles. Also, a valve is provided from the suction side of the pump, and a small amount of air is self-sucked by adjusting the valve. The amount of microbubbles generated is large, and the pressure liquid is returned from the pressure front chamber side of the microbubble generating nozzle by adjusting the valve, and the amount of microbubbles generated is further increased and adjusted by the rotating swirling flow of the pump, so the problem of the ventilary method is solved. doing.

上述の様に、本考案のマイクロバブル発生ノズルとマイクロバブル発生装置はベンチュリ−方式を多管化し、スクリューを取付け自然旋回流と独自の自吸機構やポンプの回転旋回流を設けることにより、相乗的に発生量を増加安定させた安価で省スペースなマイクロバブル発生装置ができる。 As described above, the micro-bubble generating nozzle and the micro-bubble generating device of the present invention have a synergistic effect by making the Venturi system multi-tube, attaching a screw, and providing a natural swirling flow and a unique self-priming mechanism or a rotating swirling flow of a pump. It is possible to create an inexpensive and space-saving micro-bubble generator that increases and stabilizes the amount of generation.

マイクロバブル発生ノズル本体Micro bubble generation nozzle body マイクロバブル発生ノズル本体断面図Cross-sectional view of the micro-bubble generating nozzle body マイクロバブル発生差圧多管部正面・左面・右面Micro-bubble generation differential pressure multi-tube part front, left side, right side 4−1マイクロバブル縦型発生装置上面図 4−2マイクロバブル横型発生装置上面図4-1 Top view of micro-bubble vertical generator 4-2 Top view of micro-bubble horizontal generator

マイクロバブル発生装置において汎用ポンプで液体(水系、油系等)を吸引し、ベンチュリ−方式の3〜6か所あるテーパ多管ノズルの入口と出口で圧力差が発生し、中心空気管と外周空気管の両方から負圧となって各テーパ多管の最小径管部に、独立してバルブ調整された自吸エアーが均等に吸引され、マイクロバブルが発生する。そのマイクロバブル吐出し液流でスクリューが自然回転し旋回流が発生してマイクロバブルの大きさが安定して増量し、更にポンプ吸引側からもバルブで調整された空気が自吸され、ポンプの回転旋回流で圧力液に混合及び溶解されるので、テーパ多管ノズルで析出しマイクロバブルが増量される。また更にポンプ排出側テーパ多管前の圧力液を、ポンプ吸引側にバルブ調整でリターンさせることで、圧力及び流量が調整され、またマイクロバブルの発生量が更に増量される。 In the micro bubble generator, a general-purpose pump sucks liquid (water-based, oil-based, etc.), and a pressure difference is generated at the inlet and outlet of the 3 to 6 tapered multi-tube nozzles of the venturi method, and the central air tube and the outer circumference Negative pressure is applied from both of the air pipes, and the self-priming air that is independently adjusted by the valve is evenly sucked into the minimum diameter pipe portion of each tapered multi-tube, and microbubbles are generated. The screw discharges naturally due to the flow of liquid discharged from the microbubbles, and a swirling flow is generated to stably increase the size of the microbubbles. Furthermore, the air adjusted by the valve is self-sucked from the suction side of the pump, and the pump Since it is mixed and dissolved in the pressure liquid by the rotary swirling flow, it is deposited by the tapered multi-tube nozzle and the amount of microbubbles is increased. Further, by returning the pressure liquid in front of the tapered multi-tube on the pump discharge side to the suction side of the pump by adjusting the valve, the pressure and the flow rate are adjusted, and the amount of microbubbles generated is further increased.

以下、添付図面に従って一実施例を説明する。1はマイクロバブル発生ノズルで、中に3MB発生差圧多管部があり、6入口ザグリ多管部と7吐出しテーパ多管部の19最小径管部に、負圧で吸引される4多孔部外周空気管と8中心部空気管からなりたっている。8中心部空気管は9の空気止めネジで封鎖され5中心部空気管へ外周空気取入空気管から吸引し、4,8は2の吐出し側自吸エアーバルブから調整し吸引される。3MB発生差圧多管部は4,8の両方から均等に独立して吸引される機構となっている。また20のスクリューでマイクロバブル液を旋回流で大きさの安定と増量する。図4の各マイクロバブル発生装置で、10の汎用ポンプで17から吸込み1のマイクロバブル発生ノズルでマイクロバブルを発生させ16の吐出しから排出させるが、さらに発生量を増加するために14の吸込み側自吸エアーバルブから調整吸引させ、10汎用ポンプの回転旋回流を利用して、圧力液に空気を混合及び溶解させて1の発生ノズルで発生量を増加させる。また更に13リターン圧力・流量・MB調整バルブで18につながる圧力液をリターンさせ、10汎用ポンプの回転旋回流で更にマイクロバブルを増加させる。図4の4−1、4−2が記載してあるが、設置場所によって1のマイクロバブル(MB)発生ノズル本体を上向きに設置することもできる。またスクリューがあったほうが良いが無くても良い。 Hereinafter, an embodiment will be described with reference to the accompanying drawings. 1 is a micro bubble generation nozzle, which has a 3MB generation differential pressure multi-tube part, 6 inlet counterbore multi-tube part and 7 discharge taper multi-tube part 19 minimum diameter tube part, 4 perforations that are sucked by negative pressure. It consists of an outer peripheral air pipe and an eight central air pipe. The 8 central air pipe is closed by the air cap screw of 9, and is sucked into the 5 central air pipe from the outer peripheral air intake air pipe, and 4 and 8 are adjusted and sucked from the self-priming air valve on the discharge side of 2. The 3MB generated differential pressure multi-tube section has a mechanism in which suction is performed evenly and independently from both 4 and 8. In addition, the size of the microbubble liquid is stabilized and increased by a swirling flow with 20 screws. In each microbubble generator of FIG. 4, 10 general-purpose pumps suck from 17 and 1 microbubble generating nozzle generates microbubbles and discharges from 16 discharges, but 14 suctions are used to further increase the amount of generation. Adjusted suction is performed from the side self-priming air valve, and air is mixed and dissolved in the pressure liquid using the rotary swirling flow of the 10 general-purpose pumps to increase the amount generated by one generating nozzle. Further, the pressure liquid connected to 18 is returned by the 13 return pressure / flow rate / MB adjustment valve, and the microbubbles are further increased by the rotary swirling flow of the 10 general-purpose pump. Although 4-1 and 4-2 in FIG. 4 are described, the microbubble (MB) generating nozzle main body of 1 can be installed facing upward depending on the installation location. Also, it is better to have a screw, but it is not necessary.

1 マイクロバブル(MB)発生ノズル本体
2 吐出し側自吸エアーバルブ
3 MB発生差圧多管部
4 多孔部外周空気管
5 中心部空気管へ外周空気取入空気管
6 入口ザグリ多管部
7 吐出しテーパ多管部
8 中心部空気管
9 空気止めネジ
10 汎用ポンプ
11 呼び水バルブ
12 圧力取口
13 リターン圧力・流量・MB調整バルブ
14 吸込み側自吸エアーバルブ
15 プレハブジョイント
16 MB吐出し
17 吸込み
18 テーパ多管圧力前室側
19 最小径管部
20 スクリュー
1 Micro bubble (MB) generation nozzle body 2 Discharge side self-priming air valve 3 MB generation differential pressure multi-tube part 4 Perforated outer peripheral air pipe 5 Outer peripheral air intake air pipe to central air pipe 6 Inlet counterbore multi-tube part 7 Discharge taper multi-tube part 8 Central air pipe 9 Air stop screw 10 General-purpose pump 11 Facing valve 12 Pressure intake 13 Return pressure / flow rate / MB adjustment valve 14 Suction side self-priming air valve 15 Prefabricated joint 16 MB Discharge 17 Suction 18 Tapered multi-tube pressure Front chamber side 19 Minimum diameter tube 20 Screw

Claims (4)

マイクロバブル発生装置において、ベンチュリ−方式のノズルを丸棒内に3〜6ヶ所円形方向に均等なテーパ多管を設け、そして丸棒中心に空気管を設け、また丸棒外周からも空気管を設け、各独立して空気を両方から各テーパ多管に自吸し、圧力差でマイクロバブルを発生させたのち3〜6ヶ所のテーパ多管から吐出し混合されることを特徴とするマイクロバブル発生ノズル。 In the micro-bubble generator, venturi-type nozzles are provided in 3 to 6 places in the round bar that are evenly tapered in the circular direction, and an air tube is provided in the center of the round bar, and an air tube is also provided from the outer circumference of the round bar. Microbubbles are provided, each independently sucking air from both into each tapered multi-tube, generating microbubbles by a pressure difference, and then discharging and mixing from 3 to 6 tapered multi-tubes. Generating nozzle. マイクロバブル発生のための上記ノズルの吐出し側中心部空気管の漏れ防止ねじに2〜8枚スクリューを取り付け、3〜6ヶ所のテーパ多管からの吐出し液流で自然回転させ旋回流を発生させることを特徴とする請求項1に記載のマイクロバブル発生ノズル。 Attach 2 to 8 screws to the leak prevention screw of the air pipe at the center of the discharge side of the nozzle for generating microbubbles, and rotate naturally with the discharge liquid flow from 3 to 6 tapered multi-tubes to create a swirling flow. The microbubble generating nozzle according to claim 1, wherein the microbubble generating nozzle is generated. マイクロバブル発生のための上記ノズルを汎用ポンプに連結し、吸い込み側にバルブを設け、バルブ調整で微量な空気を自吸し、ポンプの回転旋回流で、圧力液に空気を混合溶解させることを特徴とする請求項1及び2に記載のマイクロバブル発生ノズルでマイクロバブルを析出発生させるマイクロバブル発生装置。 The above nozzle for generating microbubbles is connected to a general-purpose pump, a valve is provided on the suction side, a small amount of air is self-sucked by adjusting the valve, and the rotating swirling flow of the pump mixes and dissolves the air in the pressure liquid. A micro-bubble generator that deposits and generates micro-bubbles with the micro-bubble generating nozzle according to claims 1 and 2. マイクロバブル発生ノズルの圧力液側から、バルブでポンプ吸引側にリターンさせて圧力・流量を調整し、およびポンプの回転旋回流で更にマイクロバブルを増加調整させることを特徴とする請求項1及び2に記載のマイクロバブル発生ノズルと請求項3に記載のマイクロバブル発生装置。 Claims 1 and 2 are characterized in that the pressure / flow rate is adjusted by returning from the pressure liquid side of the microbubble generating nozzle to the pump suction side with a valve, and the microbubbles are further increased and adjusted by the rotary swirling flow of the pump. The micro-bubble generating nozzle according to the above and the micro-bubble generating device according to claim 3.
JP2021001611U 2021-03-12 2021-03-12 Micro bubble generation nozzle and generator Active JP3234218U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021001611U JP3234218U (en) 2021-03-12 2021-03-12 Micro bubble generation nozzle and generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001611U JP3234218U (en) 2021-03-12 2021-03-12 Micro bubble generation nozzle and generator

Publications (1)

Publication Number Publication Date
JP3234218U true JP3234218U (en) 2021-09-30

Family

ID=77846884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001611U Active JP3234218U (en) 2021-03-12 2021-03-12 Micro bubble generation nozzle and generator

Country Status (1)

Country Link
JP (1) JP3234218U (en)

Similar Documents

Publication Publication Date Title
JP4002439B2 (en) Microbubble generating nozzle and its application device
KR20150003473U (en) Generation apparatus for dissolving gas in liquid and fluid nozzle
TWM560276U (en) Micro-nano air bubble sprinkler head
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
JP3234218U (en) Micro bubble generation nozzle and generator
JP4915602B2 (en) Microbubble generator
US11154825B2 (en) Enhanced micro bubble device, system and methods related thereto
JP4678387B2 (en) Microbubble generator
KR100902136B1 (en) Generator of micro bubble, and bath system using the same
KR101162576B1 (en) Aeration systems for water treatment
JP2005000882A (en) Apparatus for generating micro bubble
JP4561781B2 (en) Microbubble generator
JP3264714B2 (en) Bubble generator
KR20190123839A (en) Bubble generator
JP4162894B2 (en) Vacuum pump device
JP2004290803A (en) Gas-liquid dissolving tank structure of fine air bubble generator
CN219289302U (en) Bathtub
JP2005087985A (en) Foam water generator
JP3238867U (en) Microbubble (MB) generation nozzle and generator
TW202200873A (en) Water discharging device having ozone supply inner pipe including a water outlet part, a mixing part, a supporting ring seat part and a foaming part
KR200266540Y1 (en) Shower head for mixing gas in water under the low pressure
JP2009241050A (en) Microbubble-generating device
JP2001095873A (en) Bubbled water jetting device for bathroom
CN218990352U (en) Foaming device and intelligent toilet
JP2003056500A (en) Ejector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

R150 Certificate of patent or registration of utility model

Ref document number: 3234218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250