JP3234180B2 - Method for pickling Fe-Ni based low thermal expansion alloy products - Google Patents
Method for pickling Fe-Ni based low thermal expansion alloy productsInfo
- Publication number
- JP3234180B2 JP3234180B2 JP27233197A JP27233197A JP3234180B2 JP 3234180 B2 JP3234180 B2 JP 3234180B2 JP 27233197 A JP27233197 A JP 27233197A JP 27233197 A JP27233197 A JP 27233197A JP 3234180 B2 JP3234180 B2 JP 3234180B2
- Authority
- JP
- Japan
- Prior art keywords
- pickling
- thermal expansion
- alloy
- low thermal
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Fe−Ni系低熱膨張
率合金製品、例えば、板材、管材、線材、これらを素材
として作製される各種の製品の脱スケール、錆落とし等
を目的とする酸洗方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to descaling, rust removal, etc. of Fe-Ni-based low thermal expansion alloy products, for example, sheet materials, pipe materials, wire materials, and various products made from these materials. It relates to a pickling method.
【0002】[0002]
【従来の技術】30〜45重量%のNiを含むFe−Ni系の合金
は、熱膨張率が著しく小さい。特に、36%Ni-Fe合金お
よび42%Ni-Fe合金は、インバーと呼ばれて温度変化に
よる熱膨張を嫌う種々の部品材料として実用に供されて
いる。しかし、従来の用途は、バイメタルやブラウン管
のシャドウマスクというような比較的小型の精密機器の
部品が多い。2. Description of the Related Art A Fe-Ni alloy containing 30 to 45% by weight of Ni has a remarkably low coefficient of thermal expansion. In particular, 36% Ni-Fe alloys and 42% Ni-Fe alloys have been put into practical use as various component materials called "invar" which dislike thermal expansion due to temperature change. However, in the conventional applications, there are many components of relatively small precision equipment such as a shadow mask of a bimetal or a cathode ray tube.
【0003】上記の低熱膨張率合金を液化天然ガス(LN
G)のような低温物質の輸送用配管(低温配管)に応用
すれば、きわめて大きな実益が得られる。低温配管は、
通常、SUS304のようなオーステナイト系のステンレス鋼
で作られているが、この材料は、熱膨張率が大きいの
で、配管の温度変化に起因する膨張・収縮量が大きい。
従って、配管の所々にはこの膨張・収縮を吸収するため
のループ管を挟む必要がある。このループ管の存在によ
って、溶接継手の数が増え、ループ管の保冷作業にも
手間がかかる、ループ管用の高価なエルボ管が必要に
なる、ループ管の張り出しの分だけ大きな敷設スペー
スを要する、トンネル内配管の場合にはトンネルの径を
大きくしなければならない、ループ管により流体の流
れ方向が変化し、これに伴い圧力損失が増大する、とい
った数々の問題が生じる。[0003] The above low thermal expansion alloy is converted to liquefied natural gas (LN).
If applied to piping for transporting low-temperature substances (low-temperature piping) such as G), extremely great benefits can be obtained. Low temperature piping
Usually, it is made of austenitic stainless steel such as SUS304, but since this material has a large coefficient of thermal expansion, the amount of expansion and contraction caused by a change in the temperature of the pipe is large.
Therefore, it is necessary to interpose a loop pipe for absorbing the expansion and contraction in some parts of the pipe. Due to the presence of this loop tube, the number of welded joints increases, and it takes time to keep the loop tube cool, an expensive elbow tube for the loop tube is required, and a large installation space is required for the overhang of the loop tube. In the case of a pipe in a tunnel, there are various problems such as a need to increase the diameter of the tunnel, a change in the flow direction of the fluid due to the loop pipe, and an increase in pressure loss.
【0004】上記のFe−Ni系合金の熱膨張率は、オース
テナイト系ステンレス鋼の約1/10である。このような合
金を低温配管用の材料とすれば、配管の途中に、ループ
管を設ける必要がなくなり、前記の問題は一挙に解決で
きる。しかしながら、低熱膨張率合金製の配管を実用化
するには、解決すべき様々な課題がある。その一つがFe
−Ni系合金の脱スケールや錆落としである。[0004] The thermal expansion coefficient of the above Fe-Ni alloy is about 1/10 of that of austenitic stainless steel. If such an alloy is used as a material for low-temperature piping, it is not necessary to provide a loop pipe in the middle of the piping, and the above problem can be solved at once. However, there are various problems to be solved in order to put a pipe made of a low thermal expansion coefficient alloy into practical use. One of them is Fe
-Descaling and rust removal of Ni-based alloys.
【0005】Fe−Ni系合金は、加熱されると表面に酸化
スケールが発生する。また、大気中に長時間放置された
り、水分に触れたりすると茶緑色の錆が生じる。これら
の酸化スケールや錆は、合金の耐食性、表面処理作業
性、外観等を損なうので、Fe−Ni系合金製の板や管を製
造する場合、製造工程の途中あるいは最終の工程で酸化
スケールや錆を除去する必要がある。[0005] When the Fe-Ni alloy is heated, oxide scale is generated on the surface. In addition, brown-green rust is generated when left in the air for a long time or when it comes into contact with moisture. Since these oxide scales and rust impair the corrosion resistance, surface treatment workability, appearance, etc. of the alloy, when manufacturing a plate or pipe made of an Fe-Ni alloy, the oxide scale or rust may be generated during or in the final manufacturing process. Rust must be removed.
【0006】一般のステンレスを脱スケールする場合に
は硝酸と弗酸の混合液に浸漬する方法が広く使われてい
る。しかし、Fe−Ni系低熱膨張率合金は、Crを含有して
いないので、表面にCr酸化物の保護皮膜を持たない。従
って、ステンレス鋼の脱スケールに使用されているよう
な酸液で処理すると容易に孔食を起こしてしまう。When descaling general stainless steel, a method of dipping in a mixed solution of nitric acid and hydrofluoric acid is widely used. However, since the Fe-Ni-based low thermal expansion alloy does not contain Cr, it does not have a Cr oxide protective film on the surface. Therefore, when treated with an acid solution used for descaling stainless steel, pitting corrosion easily occurs.
【0007】上記のような事情から、Fe−Ni系低熱膨張
率合金の脱スケールや錆落としは、通常は研削や切削に
よって行うことが多い。しかし、前記の低温配管のよう
な大型構造物に使用する板材や管材の脱スケールをこの
ような機械的方法で行うのは効率的でない。特に管のよ
うな曲面で構成される製品や形状の複雑な製品では、バ
フ研磨のような機械的な方法は適用し難い。Under the circumstances described above, descaling and rust removal of an Fe—Ni-based low thermal expansion alloy are usually performed by grinding or cutting. However, it is not efficient to descaling a plate material or a tube material used for a large structure such as the low-temperature pipe by such a mechanical method. In particular, for a product having a curved surface such as a tube or a product having a complicated shape, a mechanical method such as buffing is difficult to apply.
【0008】なお、酸の代わりに塩化第二鉄を主成分と
する処理液を使って脱スケールを実施することもある
が、やはり孔食の発生を伴うことがある上、脱スケール
効率も悪い。そこで、例えば、特開平5-78788号公報に
は、塩化第2鉄を主成分とする処理液で酸洗する場合の
ピット状またはあばた状の腐食を防止する対策として、
合金の成分を調整する発明が提案されている。しかしな
がら、大量に使用する合金の化学組成を、単に酸洗性の
改善だけを目的として変更するというのも現実的ではな
い。In some cases, descaling is carried out by using a treatment solution containing ferric chloride as a main component instead of an acid. However, pitting corrosion may also occur, and the descaling efficiency is poor. . Therefore, for example, Japanese Patent Application Laid-Open No. 5-78788 discloses a measure for preventing pit-like or pock-like corrosion when pickling with a treatment solution containing ferric chloride as a main component.
An invention for adjusting the components of the alloy has been proposed. However, it is not practical to change the chemical composition of the alloy used in large quantities merely for the purpose of improving pickling properties.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、Fe−
Ni系低熱膨張率合金製の板材、管材、線材(例えば溶接
ワイヤ)あるいはこれらを組み合わせて作られる機器
(本明細書ではこれらの素材、半製品、および製品を総
称して「Fe−Ni系低熱膨張率合金製品」という)の酸洗
を、前述の孔食等を発生させることなく、効率よく行う
方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide Fe-
Plates, pipes, wires (for example, welding wires) made of Ni-based low thermal expansion alloys or equipment made by combining them (in this specification, these materials, semi-finished products, and products are collectively referred to as "Fe-Ni-based low heat An object of the present invention is to provide a method of efficiently pickling an alloy product having an expansion coefficient) without causing the aforementioned pitting corrosion or the like.
【0010】[0010]
【課題を解決するための手段】本発明は「5〜10重量%
の硝酸と1.5〜3重量%の弗酸を含み、温度が20〜45℃
の水溶液に、2〜13分浸漬することを特徴とするFe−Ni
系低熱膨張率合金製品の酸洗方法」を要旨とする。According to the present invention, there is provided a method for preparing a "5 to 10% by weight"
Nitric acid and 1.5 ~ 3wt% hydrofluoric acid, temperature is 20 ~ 45 ℃
Fe-Ni, characterized by being immersed in an aqueous solution for 2 to 13 minutes
Method of pickling low-thermal-expansion alloy products ".
【0011】なお、上記のFe−Ni系低熱膨張率合金と
は、30〜45重量%のNiを含み、残部が実質的にFeから成
る合金、および更にCo、Ti、Nb、Cr、Mo等の少量の副成
分を含む合金を意味する。The above-mentioned Fe—Ni-based low thermal expansion alloy is an alloy containing 30 to 45% by weight of Ni and the balance substantially consisting of Fe, and further contains Co, Ti, Nb, Cr, Mo, and the like. Means an alloy containing a small amount of subcomponents.
【0012】硝酸濃度の望ましい範囲は7〜10重量%、
弗酸濃度の望ましい範囲は2〜3重量%、液の望ましい
温度は25〜40℃、処理時間の望ましい範囲は3〜8分で
ある。The preferred range of the nitric acid concentration is 7 to 10% by weight,
The preferred range of hydrofluoric acid concentration is 2-3% by weight, the preferred temperature of the solution is 25-40 ° C, and the preferred range of treatment time is 3-8 minutes.
【0013】[0013]
【発明の実施の形態】前記の低温配管やタンク等の構造
物に使用する管や板、あるいはこれらの溶接に用いる溶
接材料(ワイヤ)等の脱スケールや錆落としは、処理量
が多く、また形状も様々であるから、機械的な方法では
効率が悪い。従って、一般のステンレスで広く使われて
いるような、酸液に浸漬する方法(酸洗)が望ましい。
しかし、ステンレス鋼の酸洗の条件をそのまま適用する
ことはできない。前記のように、Fe-Ni系低熱膨張率合
金は、基本的にはCrを含んでいないために、孔食を防ぐ
酸化皮膜が材料表面に存在せず、従って、酸洗によりス
ケールや錆が除去されると同時に母材自身が局部的に腐
食されてしまうからである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The descaling and rust removal of pipes and plates used for structures such as low-temperature pipes and tanks, or welding materials (wires) used for welding them, require a large amount of processing. Due to the variety of shapes, mechanical methods are inefficient. Therefore, a method of dipping in an acid solution (pickling), which is widely used in general stainless steel, is desirable.
However, the conditions for pickling stainless steel cannot be directly applied. As described above, since the Fe-Ni-based low thermal expansion alloy basically does not contain Cr, there is no oxide film that prevents pitting corrosion on the material surface. This is because the base material itself is locally corroded while being removed.
【0014】本発明者は、この点に注目し、酸の種類、
濃度、温度および浸漬時間について詳細な検討を行っ
て、Fe−Ni系低熱膨張率合金でも孔食を起こさずに酸洗
ができる条件を見いだした。即ち、酸化スケールや錆が
完全に除去されて、しかも孔食を発生させないために
は、酸洗液の硝酸濃度を5〜10重量%、弗酸濃度を1.5
〜3重量%とし、処理温度(酸洗液の温度)を20〜45℃
とし、処理時間(浸漬時間)を2〜13分に管理する必要
があることを確認した。以下、それぞれの限定理由を説
明する。 (1)酸の種類と濃度について 使用する酸としては、ステンレス鋼の酸洗に常用されて
いる硝酸と弗酸を選んだ。それはFe−Ni系低熱膨張率合
金の加工が、ステンレス鋼を取り扱う工場で行われるこ
とが多いので、ステンレス鋼の処理に使用する資材を流
用するのが望ましいからである。そして、この硝酸と弗
酸の混合水溶液であっても、その濃度や使用条件を適正
に決定すれば、Fe−Ni系低熱膨張率合金の酸洗が効果的
に実施できることを確認した。The present inventors have paid attention to this point, and
The concentration, temperature, and immersion time were examined in detail, and conditions for pickling without causing pitting corrosion were found even for Fe—Ni-based low thermal expansion alloys. That is, in order to completely remove oxide scale and rust and prevent pitting corrosion, the concentration of the nitric acid in the pickling solution is 5 to 10% by weight and the concentration of hydrofluoric acid is 1.5.
To 3% by weight, and the treatment temperature (temperature of the pickling solution) is 20 to 45 ° C.
It was confirmed that the treatment time (immersion time) needed to be controlled to 2 to 13 minutes . Hereinafter, the reasons for each limitation will be described. (1) Type and concentration of acid As the acid to be used, nitric acid and hydrofluoric acid commonly used for pickling stainless steel were selected. This is because the processing of the Fe—Ni-based low coefficient of thermal expansion alloy is often performed in a factory that handles stainless steel, and therefore it is desirable to divert materials used for processing stainless steel. Then, it was confirmed that even with this mixed aqueous solution of nitric acid and hydrofluoric acid, the pickling of the Fe—Ni-based low thermal expansion alloy can be effectively carried out if the concentration and the use conditions are properly determined.
【0015】硝酸濃度が10重量%を超えたばあい、ま
た、弗酸濃度が3重量%を超えた場合、いずれも被処理
材に孔食が発生し易くなる。一方、硝酸濃度が5重量%
未満の場合、および弗酸濃度が1.5重量%未満のばあい
は、酸洗能力が低下し、非効率的になる。なお、硝酸と
弗酸の濃度比率が10:3程度の場合が最も効果的であ
る。When the concentration of nitric acid exceeds 10% by weight, and when the concentration of hydrofluoric acid exceeds 3% by weight, pitting corrosion easily occurs in the material to be treated. On the other hand, the nitric acid concentration is 5% by weight.
If the concentration is less than 1.5%, or if the concentration of hydrofluoric acid is less than 1.5% by weight, the pickling ability is reduced, resulting in inefficiency. The most effective case is when the concentration ratio between nitric acid and hydrofluoric acid is about 10: 3.
【0016】(2)処理温度について 処理温度(酸洗液の温度)が、20℃よりも低いと、酸洗
の能力が低下し、処理に長時間を要して作業能率が落ち
る。一方、処理温度が45℃を超える高温になると、被処
理製品に孔食が発生しやすくなって、処理時間の調整だ
けでは孔食防止が困難になる。(2) Treatment temperature If the treatment temperature (the temperature of the pickling solution) is lower than 20 ° C., the pickling ability will be reduced, and the treatment will take a long time and the working efficiency will be reduced. On the other hand, if the processing temperature is higher than 45 ° C., pitting corrosion is likely to occur in the product to be processed, and it becomes difficult to prevent pitting corrosion only by adjusting the processing time.
【0017】(3)処理時間について 上記(1)および(2)の条件下では、2分から13分ま
での処理時間(酸洗液中の浸漬時間)で、孔食発生無し
に完全な脱スケールまたは錆落としを行うことができ
る。この時間内でスケールや錆の厚さ等に応じて、適正
な処理時間を選定すればよい。なお、原則的には、酸洗
液の酸の濃度および温度が高い時には処理時間は短く
し、逆の場合は長くする。処理液の濃度ばらつきや、処
理する合金の成分のばらつきも考慮して、浸漬時間は、
3分〜8分で管理するのが望ましい。(3) Treatment time Under the above conditions (1) and (2), no pitting occurs with a treatment time of 2 minutes to 13 minutes (immersion time in pickling solution). Complete descaling or rust removal can be performed. Within this time, an appropriate processing time may be selected according to the scale, rust thickness, and the like. In principle, the treatment time is shortened when the concentration and temperature of the acid in the pickling solution are high, and longer when the concentration is opposite. Considering the dispersion of the concentration of the treatment liquid and the dispersion of the components of the alloy to be treated, the immersion time is
It is desirable to manage in 3 to 8 minutes.
【0018】[0018]
〔実施例1〕表1に示す試材1の熱間圧延のままの板を
試験片として表2に示す種々の条件で酸洗を行い、処理
後の試験片の表面を目視観察して、スケールの有無と孔
食の有無を調べた。その結果を表2に併記する。[Example 1] Pickling was performed under various conditions shown in Table 2 by using a hot-rolled plate of sample 1 shown in Table 1 as a test piece, and the surface of the treated test piece was visually observed. The presence of scale and the presence of pitting were examined. The results are also shown in Table 2.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】表2に示すとおり、2分から13分の処理時
間では、25℃、40℃のいずれの処理時間でも合格レベル
の脱スケール効果が得られている。特に、3分から8分
の間では、全く孔食の発生なしに、脱スケールができて
いる。As shown in Table 2, in the processing time of 2 minutes to 13 minutes, an acceptable level of descaling effect was obtained in any of the processing times of 25 ° C. and 40 ° C. In particular, descaling was completed without any pitting corrosion between 3 minutes and 8 minutes.
【0022】なお、この実施例では、処理時間1分では
スケール残りが発生する場合があるが、酸洗温度を45℃
まで高めることによってこのスケール残りも解消でき
た。一方、処理時間15分と20分で生じている孔食は、酸
洗温度を20℃まで下げることによって防止することがで
きた。In this embodiment, a scale residue may be generated in a processing time of 1 minute.
By increasing the scale, this scale residue could be eliminated. On the other hand, the pitting that occurred in the treatment time of 15 minutes and 20 minutes could be prevented by lowering the pickling temperature to 20 ° C.
【0023】〔実施例2〕前記の表1に示した試材2の
合金から外径508mm、肉厚9.5mmの管(溶接管)を製造
し、下記の条件で酸洗してスケールと錆の残存の有無と
孔食の発生状況を調べた。どの合金製の管にもスケール
や錆は残存しておらず、また、孔食の発生もないことが
確認された。Example 2 A pipe (welded pipe) having an outer diameter of 508 mm and a thickness of 9.5 mm was manufactured from the alloy of Test Material 2 shown in Table 1 above, and was pickled under the following conditions to remove scale and rust. The existence of pits and the presence of pits were investigated. It was confirmed that no scale or rust remained in any of the alloy tubes, and that no pitting occurred.
【0024】酸洗条件: 酸洗液・・・9%硝酸、3%弗酸の水溶液。Pickling conditions: Pickling solution: 9% nitric acid, 3% hydrofluoric acid aqueous solution.
【0025】処理温度(酸洗液の温度)・・・25℃ 処理時間(酸洗液への浸漬時間)・・・5分Treatment temperature (temperature of pickling solution) 25 ° C Treatment time (immersion time in pickling solution) 5 minutes
【0026】[0026]
【発明の効果】本発明の方法を用いれば、一般のステン
レス鋼の脱スケールに使用されている硝酸と弗酸を含む
酸洗液によって、孔食を発生させることなくFe−Ni系低
熱膨張率合金の酸洗を行うことができる。この方法は、
被処理製品の形状にかかわらず適用でき、しかも効率的
であるから、Fe−Ni系低熱膨張率合金を配管やタンク等
の材料として実用化するのに大きく貢献する。According to the method of the present invention, the pickling solution containing nitric acid and hydrofluoric acid, which is used for descaling of general stainless steel, has a low thermal expansion coefficient of Fe-Ni system without causing pitting corrosion. Pickling of the alloy can be performed. This method
Since it can be applied regardless of the shape of the product to be processed and is efficient, it greatly contributes to putting Fe-Ni-based low thermal expansion alloys into practical use as materials for pipes and tanks.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 政雄 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 久保 尚重 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 岩橋 拓 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 山川 武人 兵庫県加古郡播磨町新島8番地川崎重工 業株式会社播磨工場内 (72)発明者 政友 弘明 兵庫県尼崎市東向島西之町1番地住友金 属工業株式会社関西製造所特殊管事業所 内 (56)参考文献 特開 昭62−139888(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23G 1/08 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masao Shirai Osaka Gas Co., Ltd. 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka (72) Inventor Naoshige Kubo 4, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. 1-2 (72) Inventor Taku Iwahashi Inside Osaka Gas Co., Ltd. 4-1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture (72) Taketo Yamakawa Niijima, Harima-cho, Kako-gun, Hyogo Prefecture No. 8 Inside the Harima Plant of Kawasaki Heavy Industries, Ltd. (72) Inventor Hiroaki Masatomo 1st place of Nishinocho, Higashimukaijima, Amagasaki City, Hyogo Special Sumitomo Metal Industries Co., Ltd.Kansai Works Special Pipe Works (56) References -139888 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C23G 1/08
Claims (1)
酸を含み、温度が20〜45℃の水溶液に2〜13分浸漬する
ことを特徴とするFe−Ni系低熱膨張率合金製品の酸洗方
法。1. An Fe-Ni type low thermal expansion characterized by being immersed in an aqueous solution containing 5 to 10% by weight of nitric acid and 1.5 to 3% by weight of hydrofluoric acid and having a temperature of 20 to 45 ° C. for 2 to 13 minutes. Pickling method for high alloy products.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27233197A JP3234180B2 (en) | 1997-10-06 | 1997-10-06 | Method for pickling Fe-Ni based low thermal expansion alloy products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27233197A JP3234180B2 (en) | 1997-10-06 | 1997-10-06 | Method for pickling Fe-Ni based low thermal expansion alloy products |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11106969A JPH11106969A (en) | 1999-04-20 |
JP3234180B2 true JP3234180B2 (en) | 2001-12-04 |
Family
ID=17512407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27233197A Expired - Fee Related JP3234180B2 (en) | 1997-10-06 | 1997-10-06 | Method for pickling Fe-Ni based low thermal expansion alloy products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3234180B2 (en) |
-
1997
- 1997-10-06 JP JP27233197A patent/JP3234180B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11106969A (en) | 1999-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Copson et al. | Effect of some environmental conditions on stress corrosion behavior of Ni-Cr-Fe alloys in pressurized water | |
JPH02156034A (en) | Alloy based on anticorrosive nickel | |
JP2017206735A (en) | Duplex stainless steel with excellent steam oxidation resistance | |
EP3594372A1 (en) | Material for cold-rolled stainless steel sheet, and production method therefor | |
Singh et al. | Investigation on aging-induced degradation of impact toughness and corrosion performance of duplex stainless steel weldment | |
Mukai et al. | Corrosion behavior of 25 Pct Cr duplex stainless steel in CO2-H2S-Cl− environments | |
JP2004514052A (en) | Surface treatment to improve corrosion resistance of austenitic stainless steel | |
JP3234180B2 (en) | Method for pickling Fe-Ni based low thermal expansion alloy products | |
Neumann et al. | Stress-Corrosion Cracking of Type 347 Stainless Steel And Other Alloys in High Temperature Water | |
JP4196755B2 (en) | Pipe welded joint of low carbon stainless steel pipe and its manufacturing method | |
JP2004107773A (en) | Stainless steel pipe for line pipe having excellent corrosion resistance | |
PL170353B1 (en) | High-silicon corrosion resisting austenitic steel | |
JP2720716B2 (en) | Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same | |
Warren | Corrosion and weldability studies on chromium-manganese austenitic stainless steels | |
Nair et al. | Corrosion resistance of molybdenum modified cr-ni-mn austenitic stainless steels | |
Pawel | Effect of mercury velocity on corrosion of type 316L stainless steel in a thermal convection loop | |
JPH05339682A (en) | Heat resistant austenitic stainless steel excellent in high temperature salt damage corrosion resistance and high temperature fatigue property | |
JP7248893B2 (en) | duplex stainless steel | |
Karzina et al. | Analysis of Causes of Corrosion Damage to Internal Surface of Stainless Steel Heat Exchanger Tubes | |
Kauczor | Stress Corrosion Cracking Failures in Components Made of Austenitic Chromium Nickel Steels | |
Henthorne et al. | Intergranular corrosion resistance of Carpenter 20Cb-3 | |
Pawel et al. | Corrosion of alloy 718 in a mercury thermal convection loop | |
de Sas Stupnicka et al. | An investigation into the anticorrosive properties of structures produced by different welding processes | |
JPH08269641A (en) | Austenitic stainless steel pipe for hot water supply pipe, excellent in stress corrosion cracking resistance | |
Demiroren et al. | The effect of Nb and heat treatment on the corrosion behavior of ferritic stainless steel in acid environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090921 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |