JP3232428B2 - Automatic train control device - Google Patents

Automatic train control device

Info

Publication number
JP3232428B2
JP3232428B2 JP16066694A JP16066694A JP3232428B2 JP 3232428 B2 JP3232428 B2 JP 3232428B2 JP 16066694 A JP16066694 A JP 16066694A JP 16066694 A JP16066694 A JP 16066694A JP 3232428 B2 JP3232428 B2 JP 3232428B2
Authority
JP
Japan
Prior art keywords
train
speed
point
blockage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16066694A
Other languages
Japanese (ja)
Other versions
JPH089516A (en
Inventor
真史 大村
誠 能見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16066694A priority Critical patent/JP3232428B2/en
Publication of JPH089516A publication Critical patent/JPH089516A/en
Application granted granted Critical
Publication of JP3232428B2 publication Critical patent/JP3232428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動列車制御装置、特
に、段階制御連続誘導式ATCまたはこの誘導式ATC
に点制御信号伝達装置を併用して列車を速度制御する自
動列車制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic train control device, and more particularly, to a step control continuous induction type ATC or an induction type ATC.
The present invention also relates to an automatic train control device that controls the speed of a train by using a point control signal transmission device in combination with the control device.

【0002】[0002]

【従来の技術】段階制御連続誘導式ATCを用いた現行
のATCシステムでは、軌道回路を所定距離(約1.5
km)ごとに分割した閉塞を設け、軌道回路単位で一定
の許容速度信号を現示し、後続列車が先行列車に近づく
につれて、後続列車に信号展開に従って低い許容走行速
度信号を指示する。そして、後続列車が列車速度よりも
下位の許容速度信号を受信すると、直ちに常用最大ブレ
ーキで制御するシステムとなっている。ここで、上記の
軌道回路距離は、ブレーキ性能の最悪の場合で設定する
ため、ブレーキ性能の良い車両は、早く減速し、低速で
走行することになる。これは、駅停止時の平均減速度が
低下するため、列車の運転時隔が増大してしまうことを
意味し、列車の高速、高密度化を困難にしている。
2. Description of the Related Art In a current ATC system using a step control continuous induction type ATC, a track circuit is moved a predetermined distance (about 1.5 times).
km), a fixed permissible speed signal is presented for each track circuit, and a lower permissible traveling speed signal is indicated to the succeeding train according to the signal development as the succeeding train approaches the preceding train. Then, when the succeeding train receives an allowable speed signal lower than the train speed, the system is controlled immediately by the service maximum brake. Here, since the above-mentioned track circuit distance is set in the worst case of the braking performance, a vehicle having a good braking performance decelerates quickly and runs at a low speed. This means that the average deceleration at the time of stopping the station is reduced, so that the train operation interval is increased, and it is difficult to increase the speed and density of the train.

【0003】上記困難を解決するために、特開平5−1
31928号公報には、閉塞の境界点に設けた点制御信
号伝達装置を現行のATCシステムに併用し、後続列車
が次閉塞における許容走行速度の信号現示、減速完了点
までの距離のほかデータの信頼性を確認するためのデー
タを受信し、これらの受信データと速度入力により減速
すべき速度と地点を演算し、その地点に滑らかに減速す
る速度制御指令を発生する技術が記載されている。な
お、この速度制御は、自動列車運転装置の定位置停止制
御のような運転制御を適用して行なう。
In order to solve the above-mentioned difficulties, Japanese Patent Laid-Open No. 5-1
In Japanese Patent No. 31928, a point control signal transmission device provided at a boundary point of blockage is used in combination with the existing ATC system. Describes a technique for receiving data for confirming the reliability of a vehicle, calculating a speed and a point to be decelerated based on the received data and the speed input, and generating a speed control command for smoothly decelerating the point. . This speed control is performed by applying operation control such as fixed position stop control of the automatic train operation device.

【0004】このようにして、現行のATCシステムで
は閉塞の半分程度の減速距離で減速完了するのに比べ、
上記公報の技術は、点制御式信号伝達装置からの情報を
用いた速度制御を行なうので、次閉塞にきわめて近い直
前の減速距離で減速が完了することになり、列車の運転
時隔を減じ、列車の高速、高密度化を可能としている。
As described above, in the current ATC system, deceleration is completed at a deceleration distance that is about half of the blockage.
Since the technology of the above publication performs speed control using information from the point control type signal transmission device, deceleration is completed at the deceleration distance immediately before the next blockage, reducing the train operation time interval, It enables high-speed and high-density trains.

【0005】[0005]

【発明が解決しようとする課題】ところで、点制御信号
伝送装置を用いたシステムでは、信号交信時に誤動作が
生じると、次の交信まで誤ったデータが訂正されない問
題がある。そこで、上記公報の技術は、点制御式信号伝
達装置からの情報として現示、距離、走行時間の多情報
を受信し、この多情報の組合せを段階制御連続誘導式A
TCより受信する現示、実際の走行における走行距離、
走行時間と照合することにより、信号伝達の信頼性を確
保し、照合不一致の場合は、段階制御連続誘導式ATC
の階段制御に切り換えることで保安装置としての安全性
を確保している。
In a system using a point control signal transmission device, if a malfunction occurs during signal communication, there is a problem that erroneous data cannot be corrected until the next communication. Therefore, the technique disclosed in the above publication receives multiple information of present, distance, and travel time as information from a point control type signal transmission device, and combines the multiple information with the step control continuous guidance type A.
The indication received from TC, the mileage in actual running,
The reliability of the signal transmission is ensured by collating with the travel time, and in the case of collation mismatch, the step control continuous induction type ATC
By switching to stair control, safety as a security device is secured.

【0006】しかし、上記公報の技術において、点制御
式信号伝達装置に信号交信時の誤動作など何らかの不具
合が発生すると、段階制御連続誘導式ATCの階段制御
に切り換えるため、列車の最小運転時隔が正常時より増
加し、高密度列車ダイヤの回復が困難となる。このた
め、点制御式信号伝達装置に高度の信頼性が確保されな
ければ、階段制御に切り換わってもダイヤの復旧が可能
な余裕をダイヤに持たせなければならず、列車の高速、
高密度化の効果が減じることになる。
However, in the technique disclosed in the above publication, if any trouble such as a malfunction at the time of signal communication occurs in the point control type signal transmission device, the switching to the stair control of the step control continuous induction type ATC is performed. It increases from normal time, making it difficult to recover high-density train schedules. For this reason, if a high degree of reliability is not ensured in the point control type signal transmission device, it is necessary to provide the diamond with enough time to recover the timetable even if switching to stair control, and the train speed,
The effect of high density is reduced.

【0007】本発明の目的は、上述した事情に鑑み、信
頼性、安全性が高く、かつ、列車の高速、高密度運転を
実施するに好適な自動列車制御装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic train control device which has high reliability and safety and is suitable for high-speed and high-density operation of a train in view of the above-mentioned circumstances.

【0008】[0008]

【課題を解決するための手段】上記目的は、車上に列車
が走行する全閉塞の区間距離データ及び信号展開データ
を予め記憶する手段と、列車の走行距離を計測する手段
と、列車が次閉塞に進入し、許容速度信号現示の下位変
化を検出したとき、予め記憶したデータと走行距離を用
いて現示変化点から列車が進入した次閉塞の次の閉塞直
前の減速完了点までの減速完了距離と信号現示速度差を
それぞれ算出する手段と、減速完了距離と信号現示速度
差をもとに列車の速度制御を行なう手段を有する共に、
閉塞境界点に点制御式信号伝達装置を設け、通常は点制
御式信号伝達装置が指示する現示変化点から列車が進入
した次閉塞の次の閉塞直前の減速完了点までの減速完了
距離と信号現示速度差をもとに速度制御を行ない、点制
御式信号伝達装置に不具合が発生した場合に、階段制御
連続誘導式ATCシステムに切り換えて、その前に正常
に計測した点制御式信号伝達装置からの走行距離に基づ
いて算出した現示変化点から列車が進入した次閉塞の次
の閉塞直前の減速完了点までの減速完了距離と信号現示
速度差をもとに速度制御を行なうことによって、達成さ
れる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a means for storing in advance the distance data and signal development data of a total blockage in which a train runs on a car, a means for measuring a running distance of a train, and When entering the blockage and detecting a lower-order change in the permissible speed signal indication, it uses the previously stored data and mileage to change from the indicated change point to the deceleration completion point immediately before the next blockage of the next blockage that the train entered. Both means for calculating the deceleration completion distance and the signal present speed difference, and means for controlling the speed of the train based on the deceleration completion distance and the signal present speed difference,
A point control type signal transmission device is provided at the block boundary point, and the deceleration completion distance from the present change point normally indicated by the point control type signal transmission device to the deceleration completion point immediately before the next blockage of the next blockage that the train entered and Speed control is performed based on the signal display speed difference, and if a failure occurs in the point control type signal transmission device, switch to the stair control continuous induction type ATC system, and the point control type signal that was measured normally before that Speed control is performed based on the difference between the signal deceleration distance and the signal deceleration completion distance from the current change point calculated based on the traveling distance from the transmission device to the deceleration completion point immediately before the next blockage after the train enters and the next blockage. This is achieved by:

【0009】また、上記目的は、車上に列車が走行する
全閉塞の区間距離データ及び信号展開データを予め記憶
する手段と、列車の走行距離を計測する手段と、列車が
次閉塞に進入し、許容速度信号現示の下位変化を検出し
たとき、予め記憶したデータと走行距離を用いて現示変
化点から先行列車の存在する閉塞手前の所定閉塞直前の
減速完了目標点までの減速完了目標距離と信号現示速度
差をそれぞれ算出する手段と、減速完了目標距離と信号
現示速度差をもとに列車の速度制御を行なう手段を有
し、軌道回路を所定距離ごとに分割した閉塞区間の境界
に閉塞境界区間を設定し、現示変化点から列車が進入し
た次閉塞の次の閉塞直前の減速完了点、または、現示変
化点から先行列車の存在する閉塞手前の所定閉塞直前の
減速完了目標点をそれぞれ前記閉塞境界区間とすること
によって、達成される。
Further, the above object is to provide means for previously storing section distance data and signal development data of a total blockage in which a train travels on a car, means for measuring a travel distance of a train, and that a train enters a next blockage. When a lower-order change in the permissible speed signal is detected, the deceleration completion target from the currently indicated change point to the deceleration completion target point immediately before the predetermined blockage before the blockage where the preceding train exists using the data and the traveling distance stored in advance. Closed section having means for calculating the distance and the signal present speed difference, and means for controlling the speed of the train based on the deceleration completion target distance and the signal present speed difference, and dividing the track circuit for each predetermined distance A blockage boundary section is set at the boundary of the deceleration, and the deceleration completion point immediately before the next blockage of the next blockage that the train entered from the present change point, or just before the predetermined blockage before the blockage where the preceding train exists from the present change point. Set the deceleration completion target point By a respective said closed boundary interval is achieved.

【0010】[0010]

【作用】本発明は、段階制御連続誘導式ATCシステム
からの許容速度信号を用いて、次閉塞との境界に近い減
速距離で減速完了するため、また、先行列車の存在する
閉塞の直前までに停止する速度制御を行なうため、従来
の階段制御に比べて列車の高速、高密度化に適した速度
制御が可能である。また、段階制御連続誘導式ATCシ
ステムに点制御式信号伝達装置を併用し、両者のデータ
の照合して合理性を確認するので、信頼性、安全性の高
い列車の速度制御及び列車の高速、高密度運転を実施す
ることができる。
According to the present invention, the deceleration is completed at a deceleration distance close to the boundary with the next block by using the allowable speed signal from the step control continuous guidance type ATC system. Since the stop speed control is performed, speed control suitable for high-speed and high-density trains is possible as compared with conventional stair control. In addition, a point control type signal transmission device is used in combination with the step control continuous induction type ATC system, and the data of both are collated and checked for rationality. High-density operation can be performed.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、本発明による速度制御曲線を示す。図中、
破線は段階制御連続誘導式ATCシステムにおける許容
速度信号現示、一点鎖線は駅停止時の段階制御連続誘導
式ATCシステムにおける速度制御曲線、実線は本発明
によるパターン1の速度制御曲線、二点鎖線は本発明に
よるパターン2の速度制御曲線を表す。T1〜Tn+5は閉
塞番号、表中のL1〜Ln+5は閉塞区間距離データ、グラ
フ上及び表中の01(Km/h),30(Km/h),
70(Km/h),120(Km/h),170(Km
/h),220(Km/h)は信号展開データを示す。
段階制御連続誘導式ATCシステムによる許容速度信号
(破線)は、閉塞番号Tnまで信号展開データ220
(Km/h)、Tn+1のとき170(Km/h)、Tn+2
のとき120(Km/h)、Tn+3のとき70(Km/
h)、Tn+4のとき30(Km/h)、Tn+5のとき01
(Km/h)を現示する。先行列車が閉塞番号Tn+5
存在する場合、後続列車が各閉塞区間の信号展開データ
を受信すると、従来の段階制御連続誘導式ATCシステ
ムによる速度制御曲線は、一点鎖線のように、閉塞区間
の半分程度の減速距離で減速を完了する速度制御を行な
う。これに対し、本発明によるパターン1の速度制御曲
線は、実線のように、次閉塞の直前までに減速が完了す
る速度制御を行なう。また、本発明によるパターン2の
速度制御曲線は、二点鎖線のように、先行列車の存在す
る閉塞番号Tn+5の2つ手前の閉塞番号Tn+3で閉塞番号
n+4の直前までに減速が完了し、閉塞番号Tn+5の直前
に停止する速度制御を行なう。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a speed control curve according to the invention. In the figure,
The dashed line indicates the permissible speed signal in the step control continuous guidance ATC system, the dashed line indicates the speed control curve in the step control continuous guidance ATC system when the station is stopped, the solid line indicates the speed control curve of pattern 1 according to the present invention, and the two-dot chain line. Represents the speed control curve of Pattern 2 according to the present invention. T 1 to T n + 5 are blockage numbers, L 1 to L n + 5 in the table are block section distance data, 01 (Km / h), 30 (Km / h) on the graph and in the table,
70 (Km / h), 120 (Km / h), 170 (Km
/ H) and 220 (Km / h) indicate signal development data.
Phase control continuous inductive ATC system according to the allowable speed signal (dashed line) signal decompressed data 220 to the closed number T n
(Km / h), 170 (Km / h) at Tn + 1 , Tn + 2
120 at the time of (Km / h), 70 at the time of Tn + 3 (Km / h)
h), 30 at T n + 4 (Km / h), 01 at T n + 5
(Km / h). When the preceding train is present at the block number T n + 5 , when the subsequent train receives the signal development data of each block section, the speed control curve of the conventional step control continuous induction type ATC system becomes a block diagram as indicated by a dashed line. Speed control for completing deceleration at a deceleration distance of about half of the section is performed. On the other hand, the speed control curve of the pattern 1 according to the present invention performs speed control in which deceleration is completed just before the next blockage as indicated by a solid line. Further, the speed control curve of the pattern 2 according to the present invention is, as indicated by a two-dot chain line, a blockage number Tn + 3 and a blockage number Tn + 4 two blocks before the blockage number Tn + 5 where the preceding train exists. Deceleration is completed immediately before, and speed control is performed to stop immediately before the closing number Tn + 5 .

【0012】図2は、本発明の実施例を説明するための
第一の参考例であり、パターン1の速度制御を実行する
ための自動列車制御装置の構成を示す。図2において、
1は速度発電機、2は段階制御連続誘導式ATCシステ
ムを構成するATC受信器、3は戸閉回路、4はデータ
記憶部、5は減速完了点演算部、6は速度制御演算部、
7はノッチ指令回路を表す。速度発電機1は、列車の速
度を検出し、速度信号11を出力する。ATC受信器2
は、閉塞境界区間において段階制御連続誘導式ATCシ
ステムから発せられる許容速度信号12を受信し、出力
する。戸閉回路3は、駅停止時に開閉する扉の開閉信号
13を出力する。データ記憶部4は、車上に列車が走行
する全閉塞の区間距離データ及び各閉塞で受信した各許
容速度信号に対応した列車前方の信号展開データを予め
記憶する。減速完了点演算部5は、速度発電機1より与
えられる速度信号11が0であることと、戸閉回路3よ
り与えられる扉開閉信号13により駅停止を判定して走
行距離を補正し、また、走行中は速度信号11を積分演
算して、駅や地上子など位置が明確な基準地点からの列
車の走行距離lを計測し、この走行距離lとデータ記憶
部4より読み込む基準地点から現在走行中の閉塞までの
閉塞区間距離データ14を和して算出した閉塞境界まで
の距離を比較して閉塞番号を判別する。そして、閉塞境
界区間においてATC受信器2より与えられる許容速度
信号12の下位現示変化を検出した場合、データ記憶部
4より下位現示閉塞の閉塞区間距離データ14を読み込
み、現示変化点から減速完了点までの距離16を決定す
る。また、データ記憶部4より信号展開データ15を読
み込み、現示変化点から減速完了点までの現示変化速度
差17を算出する。ここで、現示変化点には、走行距離
の計測誤差や許容速度信号現示の変化時間の遅れを吸収
するための余裕を閉塞境界区間αとして設定する。速度
制御演算部6は、現示変化点から減速完了点までの距離
16、現示変化速度差17と速度信号11を入力し、次
閉塞直前までに減速完了する速度制御に従って減速制御
指令18を出力する。ここで、速度制御演算部6には自
動運転装置の定位置停止制御のような制御を適用する。
ノッチ指令回路7は、速度制御演算部6の減速制御指令
18を受け、常時はブレーキノッチ指令20を出力す
る。また、速度制御演算部6は、従来のATC速度照査
部と同様の異常検出回路を持ち、異常検出時には非常ブ
レーキ19を出力する。
FIG. 2 is a first reference example for explaining an embodiment of the present invention, and shows a configuration of an automatic train control device for executing speed control of pattern 1. As shown in FIG. In FIG.
1 is a speed generator, 2 is an ATC receiver constituting a step control continuous induction type ATC system, 3 is a door closed circuit, 4 is a data storage unit, 5 is a deceleration completion point calculation unit, 6 is a speed control calculation unit,
Reference numeral 7 denotes a notch command circuit. The speed generator 1 detects the speed of the train and outputs a speed signal 11. ATC receiver 2
Receives and outputs the permissible speed signal 12 emitted from the step-controlled continuous guidance ATC system in the closed boundary section. The door closing circuit 3 outputs an opening / closing signal 13 for a door that opens and closes when the station stops. The data storage unit 4 stores in advance the section distance data of the entire block in which the train runs on the car and the signal development data in front of the train corresponding to each allowable speed signal received at each block. The deceleration completion point calculating unit 5 determines that the station is stopped based on the fact that the speed signal 11 given from the speed generator 1 is 0 and the door opening / closing signal 13 given from the door closing circuit 3, and corrects the traveling distance. During traveling, the speed signal 11 is integrated to calculate the travel distance l of the train from a reference point whose position is clear such as a station or a ground station. The blockage number is determined by comparing the distance to the blockage boundary calculated by adding the blockage section distance data 14 to the blockage during traveling. Then, when a lower present change of the permissible speed signal 12 given from the ATC receiver 2 is detected in the occlusion boundary section, the occlusion section distance data 14 of the lower present occlusion is read from the data storage section 4, and from the present change point. The distance 16 to the deceleration completion point is determined. Also, the signal development data 15 is read from the data storage unit 4, and the present change speed difference 17 from the present change point to the deceleration completion point is calculated. Here, at the present change point, a margin for absorbing the measurement error of the traveling distance and the delay of the change time of the allowable speed signal display is set as the closed boundary section α. The speed control calculation unit 6 inputs the distance 16 from the present change point to the deceleration completion point, the present change speed difference 17 and the speed signal 11, and issues a deceleration control command 18 in accordance with the speed control to complete the deceleration just before the next blockage. Output. Here, control such as fixed position stop control of the automatic driving device is applied to the speed control calculation unit 6.
The notch command circuit 7 receives the deceleration control command 18 from the speed control calculation unit 6 and outputs a brake notch command 20 at all times. The speed control calculation unit 6 has an abnormality detection circuit similar to the conventional ATC speed check unit, and outputs the emergency brake 19 when an abnormality is detected.

【0013】以下、本参考例の動作を図3を参照しなが
ら説明する。なお、図3は、パターン1の速度制御曲線
の詳細を示す。いま、列車が基準地点に停止している
と、速度発電機1の速度信号11は0、戸閉回路3は扉
開閉信号13を出力する。減速完了点演算部5は、この
速度信号11と扉開閉信号13をもとに駅停止を判定し
て走行距離をリセットして補正する。つぎに、先行列車
が閉塞番号Tn+5(図1を参照)に存在するとして、列
車が走行を開始し、閉塞番号TnとTn+1の境界にさしか
かると、減速完了点演算部5は、走行中の速度信号11
を積分演算して、基準地点からの列車の走行距離lを計
測し、一方、基準地点から現在走行中の閉塞番号Tn
での閉塞区間距離データ14をデータ記憶部4より読み
込み、和して閉塞番号TnとTn+1の閉塞境界までの距離
を算出する。すなわち、 この和して算出した距離と列車の走行距離lを比較し
て、次閉塞区間の閉塞番号Tn+1を判別する。ここで、
一般に、列車の走行地点がどの閉塞区間中あるいは閉塞
境界上かの判定は、下記式によって行なう。 n-1 n ΣLi+α≦l≦ΣLi−α (式1) (式1)は列車が閉塞番号Tn区間内を走行中であるこ
とを表す。 n n ΣLi−α≦l≦ΣLi+α (式2) (式2)は列車が閉塞番号Tnと閉塞番号Tn+1の閉塞境
界区間を走行中であることを表す。 続いて、この閉塞境界区間においてATC受信器2より
許容速度信号12が減速完了点演算部5に与えられ、減
速完了点演算部5がこの許容速度信号12の下位現示変
化を検出したとき、データ記憶部4より下位現示閉塞
(閉塞番号Tn+1)の閉塞区間距離データ14(Ln+1
を読み込み、現示変化点から減速完了点までの距離16
(L’n+1=Ln+1−α)を決定する。また、データ記憶
部4より閉塞番号TnとTn+1の信号展開データ15(2
20と170)を読み込み、現示変化速度差17(ΔV
=220−170Km/h)を算出する。つぎに、速度
制御演算部6は、現示変化点から減速完了点までの距離
16(L’n+1)、現示変化速度差17(ΔV)とこの
時点の列車の速度信号11を入力し、次閉塞(閉塞番号
n+2)直前までに減速完了するパターン1のような速
度制御に従って減速制御指令18を出力する。ノッチ指
令回路7は、速度制御演算部6の減速制御指令18を受
け、常時はブレーキノッチ指令20を出力する。なお、
異常検出時には速度制御演算部6から非常ブレーキ19
を出力する。以下同様にして、段階制御連続誘導式AT
Cシステムからの許容速度信号を用いて、次閉塞境界区
間直前までに減速完了する列車の速度制御を行ない、最
終的には、先行列車が存在する閉塞境界区間直前で減速
を完了し、停止する。本参考例によれば、階段式連続誘
導式ATCシステムからの許容速度信号を用いて、次閉
塞境界区間直前までに減速完了する列車の速度制御を行
なうので、最小運転時隔を減少することができる。
The operation of this embodiment will be described below with reference to FIG. FIG. 3 shows details of the speed control curve of the pattern 1. Now, when the train stops at the reference point, the speed signal 11 of the speed generator 1 outputs 0, and the door closing circuit 3 outputs the door opening / closing signal 13. Based on the speed signal 11 and the door opening / closing signal 13, the deceleration completion point calculation unit 5 determines that the station is stopped and resets and corrects the traveling distance. Next, assuming that the preceding train exists at the block number T n + 5 (see FIG. 1), the train starts running, and when reaching the boundary between the block numbers T n and T n + 1 , the deceleration completion point calculation unit 5 is a running speed signal 11
The by integral operation, the travel distance l of the train from a reference point is measured, whereas, the block section distance data 14 from the reference point to the closed number T n currently driving read from the data storage unit 4, and the sum The distance to the block boundary between block numbers T n and T n + 1 is calculated. That is, The distance calculated by the sum is compared with the traveling distance 1 of the train to determine the block number T n + 1 of the next block section. here,
In general, the following equation is used to determine in which closed section or on the closed boundary the traveling point of the train is. n-1 n ΣL i + α ≦ l ≦ ΣL i -α (Equation 1) (Equation 1) indicates that the train is traveling in the block Tn section. n n ΣL i -α ≦ l ≦ ΣL i + α (Equation 2) (Equation 2) indicates that the train is traveling in the closed boundary section of the closed number Tn and the closed number Tn + 1 . Subsequently, in the closed boundary section, the allowable speed signal 12 is given from the ATC receiver 2 to the deceleration completion point calculation unit 5, and when the deceleration completion point calculation unit 5 detects a lower present change of the allowable speed signal 12, data storage unit 4 from the lower current-occlusion (occlusion number T n + 1) of the closing section distance data 14 (L n + 1)
And the distance 16 from the current change point to the deceleration completion point
(L ′ n + 1 = L n + 1 −α) is determined. The data storage unit 4 from the closed numbers T n and T n + 1 of the signal development data 15 (2
20 and 170) and read the present change speed difference 17 (ΔV
= 220-170 km / h). Next, the speed control calculation unit 6 inputs the distance 16 (L ' n + 1 ) from the present change point to the deceleration completion point, the present change speed difference 17 (ΔV), and the train speed signal 11 at this time. Then, a deceleration control command 18 is output in accordance with the speed control as in pattern 1 in which deceleration is completed immediately before the next blockage (blockage number T n + 2 ). The notch command circuit 7 receives the deceleration control command 18 from the speed control calculation unit 6 and outputs a brake notch command 20 at all times. In addition,
When an abnormality is detected, the emergency brake 19
Is output. In the same manner as described above, the step control continuous induction AT
Using the permissible speed signal from the C system, speed control is performed on the train whose deceleration is completed immediately before the next block boundary section, and finally, the deceleration is completed immediately before the block boundary section where the preceding train exists and stops. . According to the present reference example, the speed control of the train whose deceleration is completed immediately before the next blockage boundary section is performed by using the allowable speed signal from the staircase continuous guidance ATC system, so that the minimum operation interval can be reduced. it can.

【0014】次に、本発明の実施例を説明するための第
二の参考例を説明する。第二の参考例の自動列車制御装
置の構成は、第一の参考例と同様であり、異なる点は、
減速完了点演算部5と速度制御演算部6の動作に関する
構成であり、図4を参照しながら説明する。なお、図4
は、パターン2の速度制御曲線の詳細を示す。減速完了
点演算部5は、第一の参考例と同様に基準地点から現在
走行中の閉塞番号Tnまでの閉塞区間距離データ14を
データ記憶部4より読み込み、和して閉塞番号TnとT
n+1の閉塞境界までの距離を算出する。その後、この閉
塞境界区間においてATC受信器2より許容速度信号1
2が減速完了点演算部5に与えられ、減速完了点演算部
5がこの許容速度信号12の下位現示変化を検出したと
き、データ記憶部4より、その閉塞の許容速度信号現示
に基づいて前方の信号展開データを読み込み、先行列車
の存在する閉塞の閉塞番号Tn+5を特定し、減速完了目
標点とする2つ手前の下位現示閉塞区間(閉塞番号T
n+3)までの閉塞区間距離データ14(Ln+1、Ln+2
n+3)を和して現示変化点から減速完了目標点までの
距離16を決定する。ここで、第一の参考例と同じく閉
塞境界区間αを設定しているので、減速完了目標となる
地点は、閉塞番号Tn+3のL’n+3(=Ln+3−α)とな
る。また、データ記憶部4より閉塞番号TnとTn+3の信
号展開データ15(220と70)を読み込み、現示変
化速度差17(ΔV=220−70Km/h)を算出す
る。つぎに、速度制御演算部6は、現示変化点から減速
完了目標点までの距離16(Ln+1+Ln+2
L’n+3)、現示変化速度差17(ΔV)とこの時点の
列車の速度信号11を入力し、減速完了目標点の閉塞番
号Tn+3で次閉塞(閉塞番号Tn+4)直前までに減速完了
するパターン2のような速度制御に従って減速制御指令
18を出力する。続いて、閉塞番号Tn+4における速度
制御は、第一の参考例と同様の動作により減速し、先行
列車が存在する閉塞番号Tn+5の直前で減速を完了し、
停止する。このようにして、本参考例では、現示変化点
から減速完了点までの距離と現示速度差により滑らかな
減速制御で後続列車が先行列車に安全に接近することが
でき、段階制御連続誘導式ATCシステムからの許容速
度信号を用いて、現示変化点から先行列車の存在する閉
塞境界区間に近い手前の下位現示閉塞区間までに減速完
了する列車の速度制御を行なうので、列車の最小運転時
隔をさらに減少できる。なお、本参考例では、減速完了
目標点を先行列車の存在する閉塞の2つ手前の閉塞区間
としたが、任意手前の閉塞区間としてもよい。
Next, a second reference example for explaining an embodiment of the present invention will be described. The configuration of the automatic train control device of the second reference example is the same as that of the first reference example.
This is a configuration relating to the operations of the deceleration completion point calculation section 5 and the speed control calculation section 6, and will be described with reference to FIG. FIG.
Shows the details of the speed control curve of pattern 2. Deceleration completion point calculation unit 5, the first reference example as well as read the block section distance data 14 from the reference point to the closed number T n of the current traveling from the data storage unit 4, a closing number T n and the sum T
Calculate the distance to the n + 1 occlusion boundary. After that, in this blockage boundary section, the ATC receiver 2 sends the allowable speed signal 1
2 is given to the deceleration completion point calculation unit 5, and when the deceleration completion point calculation unit 5 detects a change in the lower-order indication of the allowable speed signal 12, the data storage unit 4 outputs the information based on the allowable speed signal indication of the blockage. To read the signal development data ahead, identify the block number T n + 5 of the block where the preceding train exists, and specify the lower present blocked section immediately before the deceleration completion target point (block number T n +5).
n + 3 ), the closed section distance data 14 (L n + 1 , L n + 2 ,
L n + 3 ) to determine the distance 16 from the present change point to the deceleration completion target point. Here, since the block boundary section α is set as in the first reference example, the deceleration completion target point is L ′ n + 3 (= L n + 3 −α) of the block number T n + 3. Becomes Further, reads the signal development data 15 of the occlusion number from the data storage unit 4 T n and T n + 3 (220 and 70), it calculates the current示変rate difference 17 (ΔV = 220-70Km / h) . Next, the speed control calculation unit 6 calculates the distance 16 (Ln + 1 + Ln + 2 +) from the present change point to the deceleration completion target point.
L ′ n + 3 ), the present change speed difference 17 (ΔV) and the speed signal 11 of the train at this time are input, and the next blockage (blockage number Tn + 4 ) is performed with the blockage number Tn + 3 of the deceleration completion target point. 3) Output a deceleration control command 18 in accordance with the speed control as in pattern 2 in which deceleration is completed immediately before. Subsequently, the speed control at the block number T n + 4 is decelerated by the same operation as in the first reference example, and the deceleration is completed immediately before the block number T n + 5 where the preceding train exists,
Stop. In this manner, in the present reference example, the following train can safely approach the preceding train by smooth deceleration control based on the distance from the present change point to the deceleration completion point and the present speed difference, and the step control continuous guidance Using the permissible speed signal from the ATC system, the speed control of the train that completes deceleration from the present change point to the lower present blockage section immediately before the blockage boundary section where the preceding train exists is performed. Driving intervals can be further reduced. In the present embodiment, the deceleration completion target point is a block section two blocks before the block where the preceding train exists, but may be a block section before any block.

【0015】図5は、本発明の一実施例であり、パター
ン1の速度制御を実行するための自動列車制御装置の構
成を示す。本実施例は、第一の参考例に従来の技術で挙
げた点制御式信号伝達装置からの情報による速度制御を
併用することに特徴がある。また、点制御信号伝達装置
は、閉塞境界ごとに設けられ、当該閉塞境界から列車の
走行距離を計測する。図5において、8はトランスポン
ダ受信部、9は論理部を示す。図2と同一記号は同じ対
象を示す。トランスポンダ受信部8は、各閉塞境界直前
に敷設された点制御式信号伝達装置のトランスポンダよ
り列車の速度信号、許容速度信号、閉塞境界区間の現示
変化点から減速完了点までの距離、現示変化速度差の各
種受信データ21を受信し、論理部9に出力し、また、
減速完了点演算部5が各点制御式信号伝達装置のトラン
スポンダごとに列車の走行距離を計測するためのトリガ
信号25を受信し、減速完了点演算部5に出力する。減
速完了点演算部5は、トリガ信号25を受信すると、各
点制御式信号伝達装置のトランスポンダごとに当該トラ
ンスポンダを基準点にした列車の走行距離を計測する。
論理部9は、段階制御連続誘導式ATCシステムを形成
する速度発電機1からの速度信号11、ATC受信器2
からの許容速度信号12、減速完了点演算部5からの現
示変化点と減速完了点間の距離16及び現示変化速度差
17を入力し、これらのデータとトランスポンダ受信部
8からの受信データ21と比較、照合し、合理性のチェ
ックを行なう。そして、合理性チェックの結果、正常の
ときは受信データ21のうち減速完了点距離23と現示
変化速度差24を速度制御演算部6に出力し、合理性チ
ェックが異常のときは系切り換え指令22を出力する。
FIG. 5 shows an embodiment of the present invention, and shows a configuration of an automatic train control device for executing the speed control of pattern 1. As shown in FIG. The present embodiment is characterized in that the first reference example is used in combination with the speed control based on information from the point control type signal transmission device described in the prior art. Further, the point control signal transmission device is provided for each closed boundary, and measures the traveling distance of the train from the closed boundary. In FIG. 5, reference numeral 8 denotes a transponder receiving unit, and 9 denotes a logic unit. The same symbols as those in FIG. 2 indicate the same objects. The transponder receiving unit 8 transmits a train speed signal, a permissible speed signal, a distance from a currently changing point of the block boundary section to a deceleration completion point, and a current signal from the transponder of the point control type signal transmission device laid immediately before each block boundary. Various kinds of reception data 21 of the change speed difference are received and output to the logic unit 9, and
The deceleration completion point calculation unit 5 receives the trigger signal 25 for measuring the traveling distance of the train for each transponder of each point control type signal transmission device, and outputs the signal to the deceleration completion point calculation unit 5. Upon receiving the trigger signal 25, the deceleration completion point calculation unit 5 measures, for each transponder of each point-controlled signal transmission device, the running distance of the train with respect to the transponder as a reference point.
The logic unit 9 includes a speed signal 11 from the speed generator 1 and a ATC receiver 2 which form a step-controlled continuous induction ATC system.
, The distance 16 between the present change point and the deceleration completion point from the deceleration completion point calculation unit 5 and the present change speed difference 17 are input, and these data and the reception data from the transponder reception unit 8 are input. Compare with 21 and check for rationality. Then, as a result of the rationality check, when the rationality check is normal, the deceleration completion point distance 23 and the present change speed difference 24 of the received data 21 are output to the speed control calculation unit 6. 22 is output.

【0016】以下、本実施例の動作を図6を参照しなが
ら説明する。なお、図6は、トラスポンダとパターン1
の速度制御曲線の詳細を示す。いま、列車が点制御式信
号伝達装置のトランスポンダPn+1を通過したとき、ト
ランスポンダ受信部8は、トランスポンダPn+1から受
信した列車の速度信号、、許容速度信号(170)、閉
塞境界区間の現示変化点から減速完了点までの距離L’
n+1(=Ln+1−α)、現示変化速度差ΔV(220−1
70Km/h)の各種受信データ21を論理部9に出力
する。この各種受信データ21は、論理部9に入力し、
論理部9において速度発電機1からの速度信号11、A
TC受信器2からの許容速度信号12、減速完了点演算
部5からの現示変化点から減速完了点間の距離16及び
現示変化速度差17と比較、照合し、合理性のチェック
を行ない、正常のときは受信データ21のうち減速完了
点距離23と現示変化速度差24を速度制御演算部6に
出力する。速度制御演算部6は、受信データ21のうち
減速完了点距離23と現示変化速度差24に基づいて第
一の参考例と同様の動作を実行する。ここで、減速完了
点演算部5は、各点制御式信号伝達装置のトランスポン
ダごとにトリガ信号25を受信し、当該トランスポンダ
を基準にした列車の走行距離を計測する。この場合、列
車の走行距離は、第一の参考例において計測する基準地
点からの列車の走行距離lに比し、閉塞境界ごとに設け
られている点制御信号伝達装置において当該閉塞境界か
ら列車の走行距離を計測するので、走行距離の計測精度
が向上し、閉塞境界区間αを小さく設定でき、このため
減速完了点を閉塞境界に近づけることができる。
The operation of this embodiment will be described below with reference to FIG. FIG. 6 shows the transponder and the pattern 1
2 shows details of the speed control curve of FIG. Now, when the train passes through the transponder P n + 1 of the point control type signal transmission device, the transponder receiving unit 8 sets the speed signal of the train received from the transponder P n + 1 , the allowable speed signal (170), Distance L 'from the current change point of the section to the deceleration completion point
n + 1 (= L n + 1 −α), the present change speed difference ΔV (220-1
It outputs various reception data 21 of 70 Km / h) to the logic unit 9. The various received data 21 is input to the logic unit 9,
In the logic unit 9, the speed signal 11 from the speed generator 1, A
The permissible speed signal 12 from the TC receiver 2, the distance 16 from the present change point to the deceleration completion point from the deceleration completion point calculation unit 5 and the present change speed difference 17 are compared, collated, and checked for rationality. , When it is normal, the deceleration completion point distance 23 and the present change speed difference 24 of the received data 21 are output to the speed control calculation unit 6. The speed control calculation unit 6 performs the same operation as that of the first reference example based on the deceleration completion point distance 23 and the present change speed difference 24 in the received data 21. Here, the deceleration completion point calculation unit 5 receives the trigger signal 25 for each transponder of each point-controlled signal transmission device, and measures the running distance of the train based on the transponder. In this case, the travel distance of the train is compared with the travel distance 1 of the train from the reference point measured in the first reference example, and the point control signal transmission device provided for each closed boundary is used to transmit the train from the closed boundary. Since the traveling distance is measured, the accuracy of measuring the traveling distance is improved, and the closed boundary section α can be set small, so that the deceleration completion point can be closer to the closed boundary.

【0017】一方、合理性チェックが異常のときは、速
度制御演算部6に系切り換え指令22を出力し、速度制
御演算部6は、点制御信号伝達装置による速度制御から
段階制御連続誘導式ATCシステムによる速度制御に切
り換え、第一の参考例と同様の動作を実行する。ここ
で、合理性チェックの異常として、点制御信号伝達装置
のトランスポンダPn+1に受信不良が発生した場合につ
いて述べる。図6において、各点制御式信号伝達装置の
トランスポンダが各閉塞境界より距離Lpだけ手前に敷
設してあり、トランスポンダPn+1に受信不良が発生し
たとき、減速完了点演算部5は、トランスポンダPn+1
からのトリガ信号25を受信しないことを条件に、トラ
ンスポンダPn+1に何らかの不具合が発生したと判断
し、その前に正常に計測している点制御式信号伝達装置
のトランスポンダPnからの走行距離l’を用い、l’
<Lp+Lnであれば閉塞番号Tn、l’≧Lp+Lnであ
れば閉塞番号Tn+1として、現在走行している閉塞境界
及び閉塞番号を判定する。列車の走行距離l’がl’<
p+Lnすなわち閉塞番号Tnであり、ATC受信器2
より許容速度信号12が減速完了点演算部5に与えられ
ると、減速完了点演算部5は、データ記憶部4より下位
現示閉塞(閉塞番号Tn+1)の閉塞区間距離データ14
(Ln+1)を読み込み、現示変化点から減速完了点まで
の距離16(L’n+1=Ln+1−α)を決定し、また、デ
ータ記憶部4より閉塞番号TnとTn+1の信号展開データ
15(220と170)を読み込み、現示変化速度差1
7(ΔV=220−170Km/h)を算出する。以降
第一の参考例と同様に、段階制御連続誘導式ATCシス
テムの速度制御によってパターン1のように次閉塞(閉
塞番号Tn+1)の直前までに減速完了する。また、列車
の走行距離l’がl’≧Lp+Lnすなわち閉塞番号T
n+1であるとき、減速完了点演算部5は、データ記憶部
4より下位現示閉塞(閉塞番号Tn+2)の閉塞区間距離
データ14(Ln+2)を読み込み、現示変化点から減速
完了点までの距離16(L’n+2=Ln+2−α)を決定
し、また、データ記憶部4より閉塞番号Tn+1とTn+2
信号展開データ15(170と120)を読み込み、現
示変化速度差17(ΔV=170−120Km/h)を
算出する。以下同様に、パターン1のように次閉塞(閉
塞番号Tn+2)の直前までに減速完了する。このよう
に、本実施例では、点制御式信号伝達装置に不具合があ
ったとき、段階制御連続誘導式ATCシステムに切り換
え、第一の参考例と同様の速度制御を行なうので、信頼
性、安全性の高い列車の速度制御ができるとともに、列
車の最小運転時隔を短縮することができ、従来のように
階段制御に切り換わると、最小運転時隔が増大して高密
度ダイヤを保てないという問題を解決できる。また、点
制御信号伝達装置と段階制御連続誘導式ATCシステム
が発する各種データを論理部9で照合して合理性を確認
することにより、速度制御の信頼性と安全性を一層向上
することができる。
On the other hand, when the rationality check is abnormal, a system switching command 22 is output to the speed control calculation unit 6, and the speed control calculation unit 6 changes the speed control by the point control signal transmission device to the step control continuous induction type ATC. Switching to speed control by the system is performed, and the same operation as in the first reference example is performed. Here, a case where a reception failure occurs in the transponder P n + 1 of the point control signal transmission device as an abnormality of the rationality check will be described. In FIG. 6, when the transponder of each point control type signal transmission device is laid by a distance L p before each closed boundary, and when reception failure occurs in the transponder P n + 1 , the deceleration completion point calculation unit 5 Transponder P n + 1
It is determined that some trouble has occurred in the transponder P n + 1 on condition that the trigger signal 25 from the transponder P n + 1 is not received, and the traveling from the transponder P n of the point control type signal transmission device which has been normally measured before that. Using distance l ', l'
If <L p + L n , the block number T n , and if l ′ ≧ L p + L n , the block number and the block number are determined as the block number T n +1 . Train travel distance l 'is l'<
An L p + L n ie occlusion number T n, ATC receiver 2
When the permissible speed signal 12 is given to the deceleration completion point calculation unit 5, the deceleration completion point calculation unit 5 stores the block section distance data 14 of the lower present blockage (block number T n + 1 ) from the data storage unit 4.
(L n + 1) reads to determine the distance 16 (L 'n + 1 = L n + 1 -α) up to the deceleration completion point from the current示変of points, also closed from the data storage unit 4 No. T n And the signal development data 15 (220 and 170) of T n + 1 are read, and the present change speed difference 1
7 (ΔV = 220-170 km / h) is calculated. Thereafter, in the same manner as in the first embodiment, the deceleration is completed just before the next blockage (blockage number T n + 1 ) as shown in Pattern 1 by the speed control of the step control continuous induction type ATC system. In addition, if the traveling distance l ′ of the train is l ′ ≧ L p + L n, that is, the closing number T
When n + 1 , the deceleration completion point calculation unit 5 reads the block section distance data 14 (L n + 2 ) of the lower present block (block number T n + 2 ) from the data storage unit 4 and changes the current change. The distance 16 from the point to the deceleration completion point (L ′ n + 2 = L n + 2 −α) is determined, and the signal development data 15 of the block numbers T n + 1 and T n + 2 are stored in the data storage unit 4. (170 and 120) are read, and the present change speed difference 17 (ΔV = 170−120 km / h) is calculated. Similarly, the deceleration is completed just before the next blockage (blockage number T n + 2 ) as in pattern 1. As described above, in the present embodiment, when there is a failure in the point control type signal transmission device, the system is switched to the step control continuous induction type ATC system and the same speed control as in the first reference example is performed. High-speed train speed control can be performed, and the minimum train operation interval can be shortened. When switching to stair control as in the past, the minimum operation interval increases and a high-density schedule cannot be maintained. Problem can be solved. Further, the logic unit 9 checks various data generated by the point control signal transmission device and the step control continuous induction type ATC system to confirm the rationality, thereby further improving the reliability and safety of the speed control. .

【0018】[0018]

【発明の効果】以上、本発明によれば、段階制御連続誘
導式ATCシステムからの許容速度信号を用いて、次閉
塞との境界に近い減速距離で減速完了することができる
ため、また、先行列車の存在する閉塞の直前までに停止
する速度制御を行なうことができるため、従来の階段制
御に比べて列車の高速、高密度化に適した速度制御が可
能である。また、段階制御連続誘導式ATCシステムに
点制御式信号伝達装置を併用し、両者のデータの照合し
て合理性を確認するので、信頼性、安全性の高い列車の
速度制御及び列車の高速、高密度運転を実施することが
できる。また、段階制御連続誘導式ATCシステムに点
制御式信号伝達装置を併用して、閉塞境界から列車の走
行距離を計測するので、走行距離の計測精度が向上し、
閉塞境界区間を小さく設定でき、このため減速完了点を
閉塞境界に近づけることができ、列車の高速、高密度化
を図ることができる。
As described above, according to the present invention, the deceleration can be completed at a deceleration distance close to the boundary with the next blockage using the allowable speed signal from the step control continuous guidance type ATC system. Since speed control for stopping immediately before the blockage of the train can be performed, speed control suitable for high-speed and high-density trains can be performed as compared with conventional staircase control. In addition, a point control type signal transmission device is used in combination with the step control continuous induction type ATC system, and the data of both are collated and checked for rationality. High-density operation can be performed. In addition, the point control type signal transmission device is used in combination with the step control continuous guidance type ATC system to measure the mileage of the train from the block boundary, so that the measurement accuracy of the mileage is improved,
The blockage boundary section can be set small, so that the deceleration completion point can be close to the blockage boundary, and the speed and density of the train can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による速度制御曲線を示す。FIG. 1 shows a speed control curve according to the invention.

【図2】本発明の第一の参考例によるパターン1の速度
制御を実行するための自動列車制御装置の構成を示す。
FIG. 2 shows a configuration of an automatic train control device for executing speed control of pattern 1 according to a first reference example of the present invention.

【図3】本発明の第一の参考例によるパターン1の速度
制御曲線の詳細を示す。
FIG. 3 shows details of a speed control curve of Pattern 1 according to the first reference example of the present invention.

【図4】本発明の第二の参考例によるパターン2の速度
制御曲線の詳細を示す。
FIG. 4 shows details of a speed control curve of Pattern 2 according to a second reference example of the present invention.

【図5】本発明の一実施例によるパターン1の速度制御
を実行するための自動列車制御装置の構成を示す。
FIG. 5 shows a configuration of an automatic train control device for executing speed control of pattern 1 according to one embodiment of the present invention.

【図6】トラスポンダとパターン1の速度制御曲線の詳
細を示す。
FIG. 6 shows details of the speed control curve of the transponder and the pattern 1;

【符号の説明】[Explanation of symbols]

1 速度発電機 2 ATC受信器 3 戸閉回路 4 データ記憶部 5 減速完了点演算部 6 速度制御演算部 7 ノッチ指令回路 8 トランスポンダ受信部 9 論理部 Reference Signs List 1 speed generator 2 ATC receiver 3 door closed circuit 4 data storage unit 5 deceleration completion point calculation unit 6 speed control calculation unit 7 notch command circuit 8 transponder reception unit 9 logic unit

フロントページの続き (56)参考文献 特開 昭50−59908(JP,A) 特開 平4−308402(JP,A) 特開 平4−150705(JP,A) 特開 昭57−125409(JP,A) 特開 平6−70402(JP,A) 特開 平1−298906(JP,A) 実開 昭57−143804(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60L 15/40 B61L 3/08 B61L 23/16 Continuation of front page (56) References JP-A-50-59908 (JP, A) JP-A-4-308402 (JP, A) JP-A-4-150705 (JP, A) JP-A-57-125409 (JP) JP-A-6-70402 (JP, A) JP-A-1-298906 (JP, A) JP-A-57-143804 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB Name) B60L 15/40 B61L 3/08 B61L 23/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軌道回路を所定距離ごとに分割した閉塞
区間を設け、先行列車に近づくにつれて車両に伝達する
各閉塞の許容速度信号を低下させるように制御する階段
制御連続誘導式ATCシステムであって、車上に列車が
走行する全閉塞の区間距離データ及び信号展開データを
予め記憶する手段と、列車の走行距離を計測する手段
と、列車が次閉塞に進入し、許容速度信号現示の下位変
化を検出したとき、前記予め記憶したデータと前記走行
距離を用いて現示変化点から列車が進入した次閉塞の次
の閉塞直前の減速完了点までの減速完了距離と信号現示
速度差をそれぞれ算出する手段と、前記減速完了距離と
前記信号現示速度差をもとに列車の速度制御を行なう手
段を有する共に、閉塞境界点に点制御式信号伝達装置を
設け、通常は前記点制御式信号伝達装置が指示する現示
変化点から列車が進入した次閉塞の次の閉塞直前の減速
完了点までの減速完了距離と信号現示速度差をもとに速
度制御を行ない、前記点制御式信号伝達装置に不具合が
発生した場合に、階段制御連続誘導式ATCシステムに
切り換えて、その前に正常に計測した点制御式信号伝達
装置からの走行距離に基づいて算出した現示変化点から
列車が進入した次閉塞の次の閉塞直前の減速完了点まで
の減速完了距離と信号現示速度差をもとに速度制御を行
なうことを特徴とする自動列車制御装置。
1. A staircase control continuous guidance ATC system for providing a closed section in which a track circuit is divided every predetermined distance, and controlling so as to reduce an allowable speed signal of each closed block transmitted to a vehicle as approaching a preceding train. Means for storing in advance the section distance data and signal development data of the total blockage in which the train travels on the car, means for measuring the train travel distance, and when the train enters the next blockage and the permissible speed signal is displayed. When a lower order change is detected, a deceleration completion distance and a signal present speed difference from the present change point to the deceleration completion point immediately before the next blockage of the next blockage by the train using the previously stored data and the travel distance. And a means for controlling the speed of the train based on the difference between the deceleration completion distance and the signal-presenting speed, and a point-controlled signal transmission device is provided at the block boundary point, and usually the point System The speed control is performed based on the difference between the signal deceleration speed and the deceleration completion distance from the present change point indicated by the control signal transmission device to the deceleration completion point immediately before the next blockage that the train has entered, and the speed control is performed. When a malfunction occurs in the control-type signal transmission device, it is switched to the staircase control continuous induction type ATC system, and the present change point calculated based on the mileage from the point control-type signal transmission device which was normally measured before that. An automatic train control device for performing speed control based on a difference between a signal deceleration speed and a deceleration completion distance from a vehicle to a deceleration completion point immediately before the next blockage after a train enters.
【請求項2】 請求項1において、階段制御連続誘導式
ATCシステムと点制御式信号伝達装置がそれぞれ発す
る各種データのうち、少なくとも現示変化点から列車が
進入した次閉塞の次の閉塞直前の減速完了点までの減速
完了距離と信号現示速度差をそれぞれ照合し、合理性を
チェックする手段を有することを特徴とする自動列車制
御装置。
2. The system according to claim 1, wherein, among various data generated by the staircase control continuous guidance type ATC system and the point control type signal transmission device, at least immediately before the next blockage after the next blockage when the train enters from the present change point. An automatic train control device comprising means for checking a deceleration completion distance to a deceleration completion point and a signal present speed difference to check rationality.
【請求項3】 軌道回路を所定距離ごとに分割した閉塞
区間を設け、先行列車に近づくにつれて車両に伝達する
各閉塞の許容速度信号を低下させるように制御する階段
制御連続誘導式ATCシステムであって、車上に列車が
走行する全閉塞の区間距離データ及び信号展開データを
予め記憶する手段と、列車の走行距離を計測する手段
と、列車が次閉塞に進入し、許容速度信号現示の下位変
化を検出したとき、前記予め記憶したデータと前記走行
距離を用いて、現示変化点から先行列車の存在する閉塞
手前の所定閉塞直前の減速完了目標点までの減速完了目
標距離と信号現示速度差をそれぞれ算出する手段と、前
記減速完了目標距離と前記信号現示速度差をもとに列車
の速度制御を行なう手段を有し、軌道回路を所定距離ご
とに分割した閉塞区間の境界に閉塞境界区間を設定し、
現示変化点から列車が進入した次閉塞の次の閉塞直前の
減速完了点、または、現示変化点から先行列車の存在す
る閉塞手前の所定閉塞直前の減速完了目標点をそれぞれ
前記閉塞境界区間とすることを特徴とする自動列車制御
装置。
3. A staircase control continuous induction type ATC system in which a closed section in which a track circuit is divided at a predetermined distance is provided, and an allowable speed signal of each closed block transmitted to a vehicle is decreased as approaching a preceding train. Means for storing in advance the section distance data and signal development data of the total blockage in which the train travels on the car, means for measuring the train travel distance, and when the train enters the next blockage and the permissible speed signal is displayed. When a lower-order change is detected, the deceleration completion target distance from the present change point to the deceleration completion target point immediately before the predetermined blockage before the blockage where the preceding train is present and the signal current are used, using the previously stored data and the travel distance. A block section for dividing the track circuit for each predetermined distance, comprising: means for calculating the indicated speed difference; and means for controlling the speed of the train based on the deceleration completion target distance and the signal present speed difference. Set a closed boundary section at the boundary of
The deceleration completion point immediately before the next blockage of the next blockage that the train entered from the present change point, or the deceleration completion target point immediately before the predetermined blockage before the blockage where the preceding train exists from the present change point, respectively, the blockage boundary section An automatic train control device, characterized in that:
JP16066694A 1994-06-20 1994-06-20 Automatic train control device Expired - Fee Related JP3232428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16066694A JP3232428B2 (en) 1994-06-20 1994-06-20 Automatic train control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16066694A JP3232428B2 (en) 1994-06-20 1994-06-20 Automatic train control device

Publications (2)

Publication Number Publication Date
JPH089516A JPH089516A (en) 1996-01-12
JP3232428B2 true JP3232428B2 (en) 2001-11-26

Family

ID=15719868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16066694A Expired - Fee Related JP3232428B2 (en) 1994-06-20 1994-06-20 Automatic train control device

Country Status (1)

Country Link
JP (1) JP3232428B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448598B2 (en) * 2000-05-01 2010-04-14 株式会社京三製作所 Automatic train control device and method
JP4580068B2 (en) * 2000-07-11 2010-11-10 株式会社京三製作所 Automatic train control device and automatic train control method
JP2002118908A (en) * 2000-10-06 2002-04-19 Seibu Tetsudo Kk Continuous ats device
JP4796231B2 (en) * 2001-02-21 2011-10-19 株式会社京三製作所 Automatic train control apparatus and automatic train control method using speed distance table
JP5170994B2 (en) * 2006-08-08 2013-03-27 株式会社日立製作所 ATS equipment
CN102186713A (en) * 2008-10-16 2011-09-14 株式会社东芝 Vehicle driving device
JP5878730B2 (en) * 2011-10-25 2016-03-08 東日本旅客鉄道株式会社 On-board database device, train control device, and train control method

Also Published As

Publication number Publication date
JPH089516A (en) 1996-01-12

Similar Documents

Publication Publication Date Title
CN107709136B (en) Method and device for determining driving authorization for a rail vehicle
US20240051587A1 (en) Automatic driving methods, vehicle on-board controllers, traffic control integrated automation systems, and zone controllers
EP1318059B1 (en) Train control method and system
CN109159801B (en) Method for forward line arrival, passing through standard and backward jumping locking of full-automatic train
US6246956B1 (en) Vehicle traffic control apparatus
US5533695A (en) Incremental train control system
DK3038879T3 (en) Determination of the position of a rail vehicle
US20060195236A1 (en) Signaling system
US20100327125A1 (en) Method for signal-technology safeguarding of rail vehicles and safeguarding systems related thereto
CN109318940A (en) Train automatic Pilot method, apparatus and system
CN112124360A (en) Turnout conflict protection method, ITS, IVOC and VBTC system
JP3232428B2 (en) Automatic train control device
JP3300915B2 (en) Train control system
JP2001286009A (en) Automatic train controller
JP2006006030A (en) Drive pattern creation device, vehicle speed control device and vehicle drive support device
JPH07227009A (en) Automatic train controller
JP3211067B2 (en) Railway vehicle speed control device
JPH06321115A (en) Train controller
JP2002240714A (en) Automatic train control device
JP3392916B2 (en) Digital transmission type automatic train controller
JPH08308031A (en) Automatic train driving device
KR20080061054A (en) Train route controll system for closed-loof type, method for train toute control and train traveling management using the same
JP2001048021A (en) Running control device for movable body
JPS62230306A (en) Automatic operative device for train
FUJITA et al. Development of Automatic Train Operation System Based on Intermittent Type ATP with Continuous Speed Checks

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees