JP3230784B2 - Polarization dispersion compensator - Google Patents

Polarization dispersion compensator

Info

Publication number
JP3230784B2
JP3230784B2 JP27381293A JP27381293A JP3230784B2 JP 3230784 B2 JP3230784 B2 JP 3230784B2 JP 27381293 A JP27381293 A JP 27381293A JP 27381293 A JP27381293 A JP 27381293A JP 3230784 B2 JP3230784 B2 JP 3230784B2
Authority
JP
Japan
Prior art keywords
polarization
optical
signal
transmission line
polarization dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27381293A
Other languages
Japanese (ja)
Other versions
JPH07131418A (en
Inventor
哲夫 ▲高▼橋
崇雅 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27381293A priority Critical patent/JP3230784B2/en
Publication of JPH07131418A publication Critical patent/JPH07131418A/en
Application granted granted Critical
Publication of JP3230784B2 publication Critical patent/JP3230784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光信号が伝搬する光フ
ァイバ、光増幅中継器などの光伝送路の偏波分散による
伝送特性の劣化を補償する偏波分散補償器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization dispersion compensator for compensating for deterioration of transmission characteristics due to polarization dispersion of an optical transmission line such as an optical fiber through which an optical signal propagates and an optical amplifier repeater.

【0002】[0002]

【従来の技術】大容量・長距離伝送に用いる光伝送路と
して、損失の小さい石英系の単一モード光ファイバと、
その損失を補償するための光増幅中継器がある。しか
し、光ファイバおよび光増幅中継器を構成する光部品に
は、偏波分散、すなわち光信号の群速度が2つの直交す
る偏波主軸により異なるという性質があるので、光信号
が光伝送路を伝搬する間に信号波形に歪みが生じ、信号
劣化の原因となる。さらに、この偏波分散特性は、光フ
ァイバに加わる応力の変化や温度変化その他によって経
時変化を示す。したがって、光伝送路の偏波分散による
伝送特性劣化を補償する必要があり、さらにその補償も
経時変化に追随できるように適応的に行う必要がある。
2. Description of the Related Art As an optical transmission line used for large-capacity and long-distance transmission, a silica-based single-mode optical fiber having a small loss,
There is an optical amplifier repeater for compensating for the loss. However, the optical components constituting the optical fiber and the optical amplifier repeater have a property that the polarization dispersion, that is, the group velocity of the optical signal is different depending on two orthogonal polarization main axes. Distortion occurs in the signal waveform during propagation, causing signal degradation. Further, the polarization dispersion characteristic shows a temporal change due to a change in stress applied to the optical fiber, a change in temperature, and the like. Therefore, it is necessary to compensate for the deterioration of the transmission characteristics due to the polarization dispersion of the optical transmission line, and it is necessary to perform the compensation adaptively so as to follow the change with time.

【0003】偏波分散による伝送特性劣化は、すでに定
式化されている(C.D.Poole et al.,IEEE Photon. Techn
ol. Lett., vol.3,No.1,pp.68-70, 1991)。それによる
と、偏波分散による伝送特性の劣化量p(dB)は、光伝
送路の2つの偏波主軸に対する光信号の入力パワー比γ
(0<γ<1)と、光伝送路全体の偏波分散値Δτによ
り決まり、 p∝γ(1−γ)Δτ2 …(1) で表される。
The degradation of transmission characteristics due to polarization dispersion has already been formulated (CDPoole et al., IEEE Photon. Techn.
ol. Lett., vol.3, No.1, pp.68-70, 1991). According to this, the degradation amount p (dB) of the transmission characteristics due to polarization dispersion is determined by the input power ratio γ of the optical signal to the two polarization main axes of the optical transmission line.
(0 <γ <1) and the polarization dispersion value Δτ of the entire optical transmission line, and is expressed by p∝γ (1−γ) Δτ 2 (1).

【0004】このような偏波分散による伝送特性劣化に
対処する従来方法は、光信号の送信側で偏波状態を制御
し、光伝送路の2つの偏波主軸への入力パワー比γを0
または1とするものであった。そのシステム構成は、文
献(T.Ono et al., OAA.'93,Technical Digest, vol.1
4,SuC-6,pp.42-45, 1993 )に示されているが、その主
要部を図8に示す。
A conventional method for coping with such deterioration of transmission characteristics due to polarization dispersion controls a polarization state on the transmission side of an optical signal and sets an input power ratio γ to two polarization main axes of an optical transmission line to 0.
Or it was set to 1. The system configuration is described in the literature (T. Ono et al., OAA. '93, Technical Digest, vol. 1).
4, SuC-6, pp. 42-45, 1993), the main part of which is shown in FIG.

【0005】図において、基本となる光伝送システム
は、伝送信号で強度変調された光信号を送出する光送信
器61と、光信号を伝送する光伝送路62と、受信した
光信号から伝送信号を検出する光受信器63により構成
される。その他は、偏波分散による伝送特性劣化を防止
するためのものである。以下、その構成および動作につ
いて説明する。
In the figure, a basic optical transmission system includes an optical transmitter 61 for transmitting an optical signal intensity-modulated by a transmission signal, an optical transmission line 62 for transmitting the optical signal, and a transmission signal based on the received optical signal. Is configured by an optical receiver 63 that detects Others are for preventing transmission characteristic deterioration due to polarization dispersion. Hereinafter, the configuration and operation will be described.

【0006】光送信器61に所定の周波数fの変調信号
を入力し、光源となる半導体レーザを周波数変調する。
これにより、伝送信号で強度変調された光信号に周波数
変調が重畳される。この光信号の一部を受信側で光カプ
ラ71を介して分岐し、さらに偏波ビームスプリッタ7
2を介してバランス形受信器73で受信する。光伝送路
62に入射される光信号の偏波状態と光伝送路62の偏
波主軸が一致しない場合(γ≠0,1)には、 (1)式に
基づく伝送特性の劣化が生ずる。その劣化相当量は、バ
ランス形受信器73において光信号に重畳された変調周
波数fと同一周波数の強度変化として検出される。この
検出信号を増幅器74で増幅し、帯域通過フィルタ(B
PF)75で光信号に重畳された変調周波数を切り出
し、2乗検波器76で検波する。
[0006] A modulation signal having a predetermined frequency f is input to an optical transmitter 61 to frequency-modulate a semiconductor laser serving as a light source.
Thereby, the frequency modulation is superimposed on the optical signal intensity-modulated by the transmission signal. A part of this optical signal is split on the receiving side via an optical coupler 71 and further split by a polarization beam splitter 7.
2 and received by the balanced receiver 73. When the polarization state of the optical signal incident on the optical transmission line 62 does not coincide with the polarization main axis of the optical transmission line 62 (γ ≠ 0, 1), the transmission characteristics are deteriorated based on the expression (1). The amount of degradation is detected as a change in intensity at the same frequency as the modulation frequency f superimposed on the optical signal in the balanced receiver 73. This detection signal is amplified by the amplifier 74, and the band-pass filter (B
The modulation frequency superimposed on the optical signal is cut out by the PF (75) and detected by the square detector 76.

【0007】2乗検波器76の出力信号は、γが0また
は1に近づくと小さくなり、光伝送路62に入射される
光信号の偏波状態と光伝送路62の偏波主軸が一致した
とき(γ=0,1)に0を示す。したがって、2乗検波
器76の出力信号を誤差信号として、光信号の送信側に
設けられた偏波制御回路77に伝送路78を介して帰還
し、この誤差信号が0になるように最小値制御すること
により、偏波分散による伝送特性劣化のない伝送が可能
となる。
The output signal of the square detector 76 becomes smaller as γ approaches 0 or 1, and the polarization state of the optical signal incident on the optical transmission line 62 coincides with the main polarization axis of the optical transmission line 62. At this time (γ = 0, 1), 0 is indicated. Therefore, the output signal of the square detector 76 is returned as an error signal to the polarization control circuit 77 provided on the transmission side of the optical signal via the transmission line 78, and the minimum value is set so that the error signal becomes zero. By performing control, transmission without deterioration of transmission characteristics due to polarization dispersion becomes possible.

【0008】なお、偏波ビームスプリッタ72の前段に
配置した偏波制御回路79では、誤差信号が最大となる
ように偏波状態を制御する。すなわち、偏波ビームスプ
リッタ72に対して光信号の偏波を45°傾け、光信号に
重畳された変調周波数fと同一周波数の強度変化の最大
値を得るようにしている。
The polarization control circuit 79 arranged before the polarization beam splitter 72 controls the polarization state so that the error signal is maximized. That is, the polarization of the optical signal is inclined by 45 ° with respect to the polarization beam splitter 72, and the maximum value of the intensity change at the same frequency as the modulation frequency f superimposed on the optical signal is obtained.

【0009】[0009]

【発明が解決しようとする課題】従来技術は、受信側で
光伝送路に入射された光信号の偏波状態と光伝送路の偏
波主軸の不一致に伴う誤差信号を検出する。そして、こ
の誤差信号を送信側に帰還し、送信側で光信号の偏波状
態を光伝送路の偏波主軸に合わせ、偏波分散による伝送
特性劣化が生じるのを防止するようになっている。ま
た、全体がフィードバック制御構成になっているので、
偏波分散による伝送特性劣化の経時変化にも追随可能に
なっている。しかし、従来構成では、光信号の受信側か
ら送信側に誤差信号を伝送するための伝送路78が不可
欠であった。
In the prior art, the receiving side detects an error signal caused by a mismatch between the polarization state of the optical signal incident on the optical transmission line and the polarization main axis of the optical transmission line. Then, the error signal is fed back to the transmission side, and the polarization state of the optical signal is adjusted to the polarization main axis of the optical transmission line on the transmission side, thereby preventing transmission characteristic deterioration due to polarization dispersion. . In addition, since the whole has a feedback control configuration,
It is possible to follow a change with time of transmission characteristic deterioration due to polarization dispersion. However, in the conventional configuration, the transmission path 78 for transmitting the error signal from the receiving side of the optical signal to the transmitting side was indispensable.

【0010】本発明は、受信側のみで、光伝送路の偏波
分散による伝送特性劣化を補償することができ、さらに
光伝送路の偏波分散特性の経時変化に追随しうる偏波分
散補償器を提供することを目的とする。
The present invention is capable of compensating transmission characteristic deterioration due to polarization dispersion of an optical transmission line only on the receiving side, and further compensating for polarization dispersion characteristics of the optical transmission line with time. The purpose is to provide a vessel.

【0011】[0011]

【課題を解決するための手段】図1は、本発明の偏波分
散補償器の基本構成を示す。 (1)は請求項1に対応する
構成であり、 (2)は請求項2に対応する構成である。な
お、図8に示す従来構成と同等のものは同一符号を付
し、また各基本構成で同等のものは同一符号を付す。
FIG. 1 shows a basic configuration of a polarization dispersion compensator according to the present invention. (1) is a configuration corresponding to claim 1, and (2) is a configuration corresponding to claim 2. The same components as those in the conventional configuration shown in FIG. 8 are denoted by the same reference numerals, and the same components in the respective basic configurations are denoted by the same reference numerals.

【0012】図1(1) において、光送信器61は、所定
の周波数fの変調信号が入力され、伝送信号で強度変調
された光信号に周波数変調を重畳して光伝送路62に送
出する手段を含む。光伝送路62の出力端と光受信器6
3との間に、光伝送路62の偏波分散と逆特性の偏波分
散を与える偏波分散付与部10を備える。さらに、光伝
送路62の出力端と光受信器63との間かつ偏波分散付
与部10の前段に、光伝送路62を通った光信号の偏波
状態を制御信号に応じて制御する偏波制御回路20と、
偏波制御回路20の出力光信号の周波数変調成分から、
光伝送路62と偏波制御回路20からなる系の出力偏波
主軸と偏波分散付与部10の偏波主軸との差を検出し、
制御信号として偏波制御回路20に与える伝送路偏波主
軸検出器30とを備える。
In FIG. 1A, an optical transmitter 61 receives a modulation signal of a predetermined frequency f, superimposes a frequency modulation on an optical signal intensity-modulated by a transmission signal, and sends out the optical signal to an optical transmission line 62. Including means. Output end of optical transmission line 62 and optical receiver 6
3, a polarization dispersion providing unit 10 for providing polarization dispersion having a characteristic opposite to the polarization dispersion of the optical transmission line 62 is provided. In addition, optical transmission
A polarization control circuit that controls the polarization state of an optical signal passing through the optical transmission line 62 according to a control signal between the output end of the transmission line 62 and the optical receiver 63 and before the polarization dispersion providing unit 10. 20 and
From the frequency modulation component of the output optical signal of the polarization control circuit 20,
The difference between the output polarization main axis of the system including the optical transmission line 62 and the polarization control circuit 20 and the polarization main axis of the polarization dispersion providing unit 10 is detected.
A transmission path polarization main axis detector 30 to be provided to the polarization control circuit 20 as a control signal is provided.

【0013】図1(2) において、光送信器61は、所定
の周波数fの変調信号が入力され、伝送信号で強度変調
された光信号に周波数変調を重畳して光伝送路62に送
出する手段を含む。光受信器40は、光信号の波形劣化
を検出して波形劣化信号を出力する手段を含む。さら
に、光伝送路62の出力端と光受信器40との間に、光
伝送路62の偏波分散と逆特性の偏波分散を与え、かつ
波形劣化信号に応じて偏波分散値が変わる可変偏波分散
付与部50を備える。さらに、光伝送路62の出力端と
光受信器40との間かつ可変偏波分散付与部50の前段
に、光伝送路62を通った光信号の偏波状態を制御信号
に応じて制御する偏波制御回路20と、偏波制御回路の
出力光信号の周波数変調成分から、光伝送路62と偏波
制御回路20からなる系の出力偏波主軸と可変偏波分散
付与部50の偏波主軸との差を検出し、制御信号として
偏波制御回路20に与える伝送路偏波主軸検出器30と
を備える。
In FIG. 1B, an optical transmitter 61 receives a modulation signal of a predetermined frequency f, superimposes frequency modulation on an optical signal that has been intensity-modulated by a transmission signal, and transmits the signal to an optical transmission line 62. Including means. The optical receiver 40 includes means for detecting waveform deterioration of an optical signal and outputting a waveform deterioration signal. Further, between the output end of the optical transmission line 62 and the optical receiver 40, a polarization dispersion having a characteristic opposite to that of the optical transmission line 62 is given, and the polarization dispersion value changes according to the waveform deterioration signal. A variable polarization dispersion providing unit 50 is provided. Further, the output end of the optical transmission line 62 and
A polarization control circuit 20 for controlling a polarization state of an optical signal passing through the optical transmission line 62 in accordance with a control signal, between the optical receiver 40 and a stage preceding the variable polarization dispersion imparting section 50; From the frequency modulation component of the output optical signal of the circuit, the difference between the output polarization main axis of the system including the optical transmission line 62 and the polarization control circuit 20 and the polarization main axis of the variable polarization dispersion providing section 50 is detected. And a transmission line polarization main axis detector 30 provided to the polarization control circuit 20.

【0014】[0014]

【作用】伝送路偏波主軸検出器30から出力される制御
信号は、光伝送路62と偏波制御回路20からなる系の
出力偏波主軸と偏波分散付与部10の偏波主軸との差を
示す。したがって、偏波制御回路20が、制御信号に応
じて光伝送路62を通った光信号の偏波状態を制御する
ことにより、偏波分散付与部10の偏波主軸の群速度の
速い進相軸と群速度の遅い遅相軸に、光伝送路62と偏
波制御回路20からなる系の出力偏波主軸の遅相軸と進
相軸をそれぞれ一致させることができる。これにより、
光信号が偏波分散付与部10を通過すれば、光伝送路6
2の偏波分散に対して逆分散が与えられ、光伝送路62
の偏波分散による伝送特性劣化を抑圧することができ
る。
The control signal outputted from the transmission line polarization main axis detector 30 is a signal between the output polarization main axis of the system composed of the optical transmission line 62 and the polarization control circuit 20 and the polarization main axis of the polarization dispersion imparting section 10. Show the difference. Therefore, the polarization control circuit 20 controls the polarization state of the optical signal that has passed through the optical transmission line 62 in accordance with the control signal. The slow axis and the fast axis of the output polarization main axis of the system composed of the optical transmission line 62 and the polarization control circuit 20 can be made to coincide with the slow axis of the axis and the slow axis of the group velocity. This allows
When the optical signal passes through the polarization dispersion providing unit 10, the optical transmission path 6
2 is given an inverse dispersion to the polarization dispersion of the optical transmission line 62.
, It is possible to suppress the deterioration of the transmission characteristics due to the polarization dispersion.

【0015】また、偏波分散付与部10に代えて偏波分
散値を可変設定できる可変偏波分散付与部50を備え、
その偏波分散値を光受信器40で検出される波形劣化信
号に応じて変更する。これにより、可変偏波分散付与部
50では、光信号が光伝送路62の偏波分散に対して適
応的に逆分散が与えられ、光伝送路62の偏波分散によ
る伝送特性劣化を経時変化に追随して抑圧することがで
きる。
[0015] In addition, the polarization amount in place of the polarization mode dispersion imparting section 10
A variable polarization dispersion imparting unit 50 capable of variably setting a scattering value,
The polarization dispersion value is changed according to the waveform deterioration signal detected by the optical receiver 40. As a result, in the variable polarization dispersion providing section 50, the optical signal is adaptively inversely dispersed with respect to the polarization dispersion of the optical transmission line 62, and the transmission characteristic deterioration due to the polarization dispersion of the optical transmission line 62 changes with time. And can be suppressed.

【0016】[0016]

【実施例】図2は、請求項1に記載の発明の実施例構成
を示す。なお、本発明の偏波分散補償器は、光伝送路に
送信される光信号に周波数変調を重畳する手段を含む
が、図8に示す従来構成と同じであるのでここでは省略
し、図1(1) の基本構成に対応する偏波制御回路20、
伝送路偏波主軸検出器30および偏波分散付与部10の
実施例構成を示す。
FIG. 2 shows an embodiment of the first aspect of the present invention. Although the polarization dispersion compensator of the present invention includes a means for superimposing frequency modulation on an optical signal transmitted to an optical transmission line, it is the same as the conventional configuration shown in FIG. A polarization control circuit 20 corresponding to the basic configuration of (1),
An example configuration of the transmission line polarization main axis detector 30 and the polarization dispersion imparting unit 10 is shown.

【0017】図において、偏波制御回路20は、1/4
波長板21、1/2波長板22および1/4波長板23
を縦続に接続し、光伝送路62を出た光信号の偏波状態
を制御信号を用いて山登り法で制御する構成である。偏
波制御回路20から伝送路偏波主軸検出器30に入力さ
れた光信号は、偏波無依存ビームスプリッタ31で分岐
され、一方は1/2波長板32を介して偏波分散付与部
10へ送出され、他方はミラー33、偏波ビームスプリ
ッタ72を介してバランス形受信器73に受信される。
なお、各光素子間の破線で示した光路は、偏波状態が変
わらないように空間伝送路とする。
In the figure, the polarization control circuit 20
Wave plate 21, 1/2 wave plate 22, and 1/4 wave plate 23
Are connected in cascade, and the polarization state of the optical signal exiting the optical transmission line 62 is controlled by a hill-climbing method using a control signal. The optical signal input from the polarization control circuit 20 to the transmission line polarization main axis detector 30 is split by a polarization independent beam splitter 31, one of which is split via a half-wave plate 32 into a polarization dispersion imparting unit 10. And the other is received by the balanced receiver 73 via the mirror 33 and the polarization beam splitter 72.
The optical path indicated by the broken line between the optical elements is a spatial transmission path so that the polarization state does not change.

【0018】1/2波長板32は、初期状態において、
偏波分散付与部10として用いられる偏波保持ファイバ
11の進相軸と遅相軸に、光伝送路62の偏波分散の遅
相軸と進相軸をそれぞれ合わせるために用いられる。
The half-wave plate 32 is in an initial state.
It is used to align the slow axis and the fast axis of the polarization dispersion of the optical transmission line 62 with the fast axis and the slow axis of the polarization maintaining fiber 11 used as the polarization dispersion imparting unit 10, respectively.

【0019】バランス形受信器35の出力信号は、光信
号に重畳された変調周波数fと同一周波数の強度変化を
示す。その出力信号は、増幅器36で増幅され、帯域通
過フィルタ(BPF)37で光信号に重畳された変調周
波数を切り出し、2乗検波器38で検波され、制御信号
として偏波制御回路20に帰還される。
The output signal of the balanced receiver 35 shows an intensity change at the same frequency as the modulation frequency f superimposed on the optical signal. The output signal is amplified by an amplifier 36, cuts out a modulation frequency superimposed on the optical signal by a band-pass filter (BPF) 37, is detected by a square detector 38, and is fed back to the polarization control circuit 20 as a control signal. You.

【0020】この制御信号の大きさは、伝送路偏波主軸
検出器30の入力端におけるP偏波とS偏波のパワー比
が sin2θ:cos2θ …(2) であるときに、 γ(1−γ) sin22θ …(3) に比例する。したがって、制御信号が0になるように偏
波制御回路20を最小値制御することにより、偏波保持
ファイバ11の進相軸と遅相軸に、光伝送路62と偏波
制御回路20からなる系の出力偏波主軸の遅相軸と進相
軸をそれぞれ一致させることができる。その結果、光伝
送路62の偏波分散値に対して偏波保持ファイバ11の
偏波分散値を差し引いた値まで、偏波分散による伝送特
性劣化を抑圧することができる。
The magnitude of this control signal is such that when the power ratio between the P-polarized light and the S-polarized light at the input end of the transmission line polarization main axis detector 30 is sin 2 θ: cos 2 θ (2) γ (1−γ) sin 2 2θ (3) Therefore, by controlling the polarization control circuit 20 to the minimum value so that the control signal becomes 0, the polarization control circuit 20 includes the optical transmission line 62 and the polarization control circuit 20 on the fast axis and the slow axis of the polarization maintaining fiber 11. The slow axis and the fast axis of the output polarization main axis of the system can be matched with each other. As a result, transmission characteristic deterioration due to polarization dispersion can be suppressed to a value obtained by subtracting the polarization dispersion value of the polarization maintaining fiber 11 from the polarization dispersion value of the optical transmission line 62.

【0021】ただし、偏波保持ファイバ11の偏波分散
値は固定であるので、光伝送路62の偏波分散による伝
送特性劣化を完全に抑圧することはできない。しかし、
図3に示すように、偏波保持ファイバ11の偏波分散値
を光伝送路62の偏波分散値の分布の平均付近にとるこ
とにより、効率のよい偏波分散補償が可能となる。図3
は、横軸が光伝送路62の偏波分散値であり、縦軸が偏
波分散による伝送特性の劣化量pであり、補償前Aから
補償後Bへ伝送特性劣化が抑圧されることを示す。
However, since the polarization dispersion value of the polarization maintaining fiber 11 is fixed, it is not possible to completely suppress the deterioration of transmission characteristics due to the polarization dispersion of the optical transmission line 62. But,
As shown in FIG. 3, by setting the polarization dispersion value of the polarization maintaining fiber 11 near the average of the distribution of the polarization dispersion values of the optical transmission line 62, efficient polarization dispersion compensation becomes possible. FIG.
The horizontal axis indicates the polarization dispersion value of the optical transmission line 62, the vertical axis indicates the transmission characteristic degradation amount p due to the polarization dispersion , and indicates that the transmission characteristic degradation is suppressed from A before compensation to B after compensation. Show.

【0022】図4は、請求項2に記載の発明の第1実施
例構成を示す。なお、本発明の偏波分散補償器は、光伝
送路に送信される光信号に周波数変調を重畳する手段を
含むが、図8に示す従来構成と同じであるのでここでは
省略し、図1(2) の基本構成に対応する偏波制御回路2
0、伝送路偏波主軸検出器30、可変偏波分散付与部5
0および光受信器40aの実施例構成を示す。ただし、
偏波制御回路20および伝送路偏波主軸検出器30の構
成および動作は、図2に示す実施例と同様であるので説
明を省略する。
FIG. 4 shows the configuration of the first embodiment of the present invention. Although the polarization dispersion compensator of the present invention includes a means for superimposing frequency modulation on an optical signal transmitted to an optical transmission line, it is the same as the conventional configuration shown in FIG. Polarization control circuit 2 corresponding to the basic configuration of (2)
0, transmission line polarization main axis detector 30, variable polarization dispersion imparting section 5
0 and an example configuration of the optical receiver 40a. However,
The configuration and operation of the polarization control circuit 20 and the transmission line polarization main axis detector 30 are the same as those of the embodiment shown in FIG.

【0023】図において、伝送路偏波主軸検出器30か
ら可変偏波分散付与部50に入力される光信号は、偏波
ビームスプリッタ51で2つの偏波主軸に対応して分岐
され、一方はミラー52、可動式コーナーキューブ53
を通り、他方はミラー54を通って偏波ビームスプリッ
タ55で合成される。2つの光路間の伝搬遅延差は、光
受信器40から出力される波形劣化信号(本実施例では
信号対雑音比)により、可動式コーナーキューブ53を
可動させて制御する。この伝搬遅延差が、可変偏波分散
付与部50における偏波分散値を与える。
In the figure, an optical signal input from a transmission line polarization main axis detector 30 to a variable polarization dispersion imparting section 50 is split by a polarization beam splitter 51 corresponding to two polarization main axes. Mirror 52, movable corner cube 53
, And the other passes through a mirror 54 and is combined at a polarization beam splitter 55. The propagation delay difference between the two optical paths is controlled by moving the movable corner cube 53 based on the waveform deterioration signal (signal-to-noise ratio in this embodiment) output from the optical receiver 40. This propagation delay difference gives the polarization dispersion value in the variable polarization dispersion giving section 50.

【0024】可変偏波分散付与部50から光受信器40
aに入力される光信号は、光電気変換器41に受信さ
れ、ベースバンドの伝送信号(主信号)が増幅器42で
増幅されて取り出される。この主信号は、帯域通過フィ
ルタ(BPF1)431 で周波数f1 が切り出され、2
乗検波器441 でそのベースバンド電力W1 が検出され
る。また、この主信号は、帯域通過フィルタ(BPF
2)432 で周波数f2 が切り出され、2乗検波器44
2 でそのベースバンド電力W2 が検出される。割算回路
45は、W2 /W1 の演算を行い、信号対雑音比を検出
して波形劣化信号として出力する。この信号対雑音比が
波形劣化信号となる原理を図6に示す。
The variable polarization dispersion providing section 50 transmits the light to the optical receiver 40.
The optical signal input to a is received by the photoelectric converter 41, and the baseband transmission signal (main signal) is amplified by the amplifier 42 and extracted. The frequency f 1 of this main signal is cut out by a band-pass filter (BPF1) 43 1 ,
Baseband power W 1 multiplication and detector 44 1 is detected. This main signal is supplied to a band-pass filter (BPF).
2) The frequency f 2 is cut out at 43 2 and the square detector 44
Baseband power W 2 2 is detected. Dividing circuit 45 performs calculation of W 2 / W 1, and outputs the waveform degradation signal by detecting a signal-to-noise ratio. FIG. 6 shows the principle that this signal-to-noise ratio becomes a waveform-degraded signal.

【0025】偏波分散による信号波形の劣化は、高周波
成分の劣化となって表れる。したがって、2つの周波数
1 ,f2 の成分の比をとり、それが最小になるように
可変偏波分散付与部50で設定する偏波分散値を制御す
れば、光伝送路62の偏波分散による伝送特性劣化を経
時変化に追随して抑圧することができる。また、この構
成により、光伝送路62の偏波分散値と同じ偏波分散値
を付与することができるので、原理的に偏波分散による
伝送特性劣化を完全に抑圧することができる。
Deterioration of a signal waveform due to polarization dispersion appears as deterioration of a high-frequency component. Therefore, by taking the ratio of the components of the two frequencies f 1 and f 2 and controlling the polarization dispersion value set by the variable polarization dispersion imparting unit 50 so that the ratio is minimized, the polarization of the optical transmission line 62 can be improved. It is possible to suppress deterioration of transmission characteristics due to dispersion following a change with time. Further, this configuration, since the same polarization dispersion value <br/> the polarization dispersion value of the optical transmission line 62 can be imparted, to completely suppress the transmission characteristics degradation due principle polarization dispersion it can.

【0026】図5は、請求項2に記載の発明の第2実施
例構成を示す。なお、本発明の偏波分散補償器は、図4
に示す第1実施例構成の光受信器40aに代えて、構成
の異なる光受信器40bを用いたことを特徴とする。そ
の他の構成および動作は、図4に示す第1実施例と同様
であるので説明を省略する。
FIG. 5 shows the configuration of a second embodiment of the present invention. Note that the polarization dispersion compensator of the present invention is similar to that of FIG.
Is replaced by an optical receiver 40b having a different configuration in place of the optical receiver 40a having the configuration of the first embodiment. Other configurations and operations are the same as those of the first embodiment shown in FIG.

【0027】可変偏波分散付与部50から光受信器40
bに入力される光信号は、自動レベル制御機構付光増幅
器46を介して光電気変換器41に受信される。その出
力信号は、増幅器42で増幅された後にコンデンサ47
で直流成分がカットされ、2乗検波器48で検波され
る。この構成による検波出力が波形劣化信号となる原理
を図7に示す。
The variable polarization dispersion providing section 50 transmits the signal to the optical receiver 40.
The optical signal input to b is received by the photoelectric converter 41 via the optical amplifier 46 with an automatic level control mechanism. The output signal is amplified by an amplifier 42 and then output to a capacitor 47.
And the DC component is cut off, and is detected by the square detector 48. FIG. 7 shows the principle that the detection output by this configuration becomes a waveform degraded signal.

【0028】偏波分散による信号波形の劣化は、アイ開
口度の劣化となって表れるが、2乗検波することによ
り、図7(1) から(2) に示すように電力の減少として波
形劣化信号を得ることができる。すなわち、2乗検波器
48の出力が最大になるように可変偏波分散付与部50
で設定する偏波分散値を制御すれば、第1実施例と同様
に光伝送路62の偏波分散による伝送特性劣化を経時変
化に追随し、かつ完全に抑圧することができる。
Deterioration of the signal waveform due to polarization dispersion is manifested as deterioration of the eye opening degree, but by performing square detection, the waveform is degraded as a decrease in power as shown in FIGS. 7 (1) and (2). A signal can be obtained. That is, the variable polarization dispersion providing unit 50 sets the output of the square wave detector 48 to the maximum.
By controlling the polarization dispersion value set in (1), deterioration of transmission characteristics due to polarization dispersion of the optical transmission line 62 can follow time-dependent changes and be completely suppressed as in the first embodiment.

【0029】[0029]

【発明の効果】以上説明したように、本発明の偏波分散
補償器は、受信側だけの処理で光伝送路の偏波分散によ
る伝送特性劣化を補償することができる。さらに、光伝
送路の偏波分散特性の経時変化に対しても、受信側にお
ける適応的制御により伝送特性劣化を補償することがで
きる。
As described above, the polarization dispersion compensator of the present invention can compensate for the deterioration of the transmission characteristics due to the polarization dispersion of the optical transmission line by processing only on the receiving side. Furthermore, even with respect to the temporal change of the polarization dispersion characteristic of the optical transmission line, the transmission characteristic deterioration can be compensated by adaptive control on the receiving side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏波分散補償器の基本構成を示すブロ
ック図。
FIG. 1 is a block diagram showing a basic configuration of a polarization dispersion compensator of the present invention.

【図2】請求項1に記載の発明の実施例構成を示すブロ
ック図。
FIG. 2 is a block diagram showing the configuration of an embodiment of the invention described in claim 1;

【図3】図2の実施例における伝送特性劣化の改善例を
示す図。
FIG. 3 is a diagram showing an example of improvement of transmission characteristic deterioration in the embodiment of FIG. 2;

【図4】請求項2に記載の発明の第1実施例構成を示す
ブロック図。
FIG. 4 is a block diagram showing the configuration of a first embodiment of the invention described in claim 2;

【図5】請求項2に記載の発明の第2実施例構成を示す
ブロック図。
FIG. 5 is a block diagram showing a configuration of a second embodiment of the invention described in claim 2;

【図6】図4に示す実施例における信号対雑音比が波形
制御信号となる原理を説明する図。
FIG. 6 is a view for explaining the principle that the signal-to-noise ratio in the embodiment shown in FIG. 4 becomes a waveform control signal.

【図7】図5に示す実施例における2乗検波出力が波形
劣化信号となる原理を説明する図。
FIG. 7 is a view for explaining the principle that the square detection output in the embodiment shown in FIG. 5 becomes a waveform-degraded signal;

【図8】従来の偏波分散抑圧システムを示すブロック
図。
FIG. 8 is a block diagram showing a conventional polarization dispersion suppressing system.

【符号の説明】[Explanation of symbols]

10 偏波分散付与部 11 偏波保持ファイバ 20 偏波制御回路 21,23 1/4波長板 22 1/2波長板 30 伝送路偏波主軸検出器 31 偏波無依存ビームスプリッタ 32 1/2波長板 33 ミラー 40 光受信器 41 光電気変換器 42 増幅器 43 帯域通過フィルタ 44 2乗検波器 45 割算回路 46 自動レベル制御機構付光増幅器 47 コンデンサ 48 2乗検波器 50 可変偏波分散付与部 51,55 偏波ビームスプリッタ 52,54 ミラー 53 可動式コーナーキューブ 61 光送信器 62 光伝送路 63 光受信器 71 光カプラ 72 偏波ビームスプリッタ 73 バランス形受信器 74 増幅器 75 帯域通過フィルタ 76 2乗検波器 77,79 偏波制御回路 78 伝送路 DESCRIPTION OF SYMBOLS 10 Polarization dispersion | distribution provision part 11 Polarization holding fiber 20 Polarization control circuit 21, 23 1/4 wavelength plate 22 1/2 wavelength plate 30 Transmission line polarization main axis detector 31 Polarization-independent beam splitter 32 1/2 wavelength Plate 33 mirror 40 optical receiver 41 photoelectric converter 42 amplifier 43 band-pass filter 44 square detector 45 division circuit 46 optical amplifier with automatic level control mechanism 47 capacitor 48 square detector 50 variable polarization dispersion imparting section 51 , 55 Polarization beam splitter 52, 54 Mirror 53 Movable corner cube 61 Optical transmitter 62 Optical transmission line 63 Optical receiver 71 Optical coupler 72 Polarization beam splitter 73 Balanced receiver 74 Amplifier 75 Bandpass filter 76 Square detection 77, 79 Polarization control circuit 78 Transmission line

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光信号を送信する光送信器と、光信号を
伝送する光伝送路と、光信号を受信する光受信器により
構成される光伝送システムの偏波分散補償器において、 前記光送信器に、前記光信号に周波数変調を重畳する手
段を含み、前記光伝送路の出力端と前記光受信器との間に 、前記光
伝送路の偏波分散と逆特性の偏波分散を与える偏波分散
付与部を備え、前記光伝送路の出力端と前記光受信器との間かつ 前記偏
波分散付与部の前段に、前記光伝送路を通った光信号の
偏波状態を制御信号に応じて制御する偏波制御回路と、
偏波制御回路の出力光信号の周波数変調成分から、前記
光伝送路と偏波制御回路からなる系の出力偏波主軸と前
記偏波分散付与部の偏波主軸との差を検出し、制御信号
として偏波制御回路に与える伝送路偏波主軸検出器とを
備えたことを特徴とする偏波分散補償器。
1. A polarization dispersion compensator for an optical transmission system comprising: an optical transmitter for transmitting an optical signal; an optical transmission line for transmitting the optical signal; and an optical receiver for receiving the optical signal. The transmitter includes means for superimposing frequency modulation on the optical signal, and between the output end of the optical transmission line and the optical receiver, a polarization dispersion having a characteristic opposite to the polarization dispersion of the optical transmission line. A polarization dispersion providing unit for controlling the polarization state of the optical signal passing through the optical transmission line between the output end of the optical transmission line and the optical receiver and before the polarization dispersion providing unit. A polarization control circuit for controlling according to a signal,
From the frequency modulation component of the output optical signal of the polarization control circuit, the difference between the output polarization main axis of the system including the optical transmission line and the polarization control circuit and the polarization main axis of the polarization dispersion imparting unit is detected and controlled. 1. A polarization dispersion compensator, comprising: a transmission line polarization main axis detector for providing a signal to a polarization control circuit as a signal.
【請求項2】 光信号を送信する光送信器と、光信号を
伝送する光伝送路と、光信号を受信する光受信器により
構成される光伝送システムの偏波分散補償器において、 前記光送信器に、前記光信号に周波数変調を重畳する手
段を含み、 前記光受信器に、前記光信号の波形劣化を検出して波形
劣化信号を出力する手段を含み、前記光伝送路の出力端と前記光受信器との間 に、前記光
伝送路の偏波分散と逆特性の偏波分散を与え、かつ前記
波形劣化信号に応じて偏波分散値が変わる可変偏波分散
付与部を備え、前記光伝送路の出力端と前記光受信器との間かつ 前記可
変偏波分散付与部の前段に、前記光伝送路を通った光信
号の偏波状態を制御信号に応じて制御する偏波制御回路
と、偏波制御回路の出力光信号の周波数変調成分から、
前記光伝送路と偏波制御回路からなる系の出力偏波主軸
と前記可変偏波分散付与部の偏波主軸との差を検出し、
制御信号として偏波制御回路に与える伝送路偏波主軸検
出器とを備えたことを特徴とする偏波分散補償器。
2. A polarization dispersion compensator for an optical transmission system comprising: an optical transmitter for transmitting an optical signal; an optical transmission line for transmitting the optical signal; and an optical receiver for receiving the optical signal. The transmitter includes a unit that superimposes frequency modulation on the optical signal, The optical receiver includes a unit that detects a waveform deterioration of the optical signal and outputs a waveform deterioration signal, and includes an output terminal of the optical transmission line. Between the optical receiver and the optical receiver, a variable polarization dispersion providing unit that provides a polarization dispersion of the opposite characteristic to the polarization dispersion of the optical transmission line, and changes the polarization dispersion value according to the waveform deterioration signal Between the output end of the optical transmission line and the optical receiver and before the variable polarization dispersion providing unit, a polarization control unit that controls the polarization state of the optical signal passing through the optical transmission line according to a control signal. From the wave control circuit and the frequency modulation component of the output optical signal of the polarization control circuit,
The difference between the output polarization main axis of the system including the optical transmission line and the polarization control circuit and the polarization main axis of the variable polarization dispersion providing unit is detected.
A polarization dispersion compensator, comprising: a transmission path polarization main axis detector to be provided to a polarization control circuit as a control signal.
JP27381293A 1993-11-01 1993-11-01 Polarization dispersion compensator Expired - Fee Related JP3230784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27381293A JP3230784B2 (en) 1993-11-01 1993-11-01 Polarization dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27381293A JP3230784B2 (en) 1993-11-01 1993-11-01 Polarization dispersion compensator

Publications (2)

Publication Number Publication Date
JPH07131418A JPH07131418A (en) 1995-05-19
JP3230784B2 true JP3230784B2 (en) 2001-11-19

Family

ID=17532910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27381293A Expired - Fee Related JP3230784B2 (en) 1993-11-01 1993-11-01 Polarization dispersion compensator

Country Status (1)

Country Link
JP (1) JP3230784B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739813B2 (en) * 1993-12-20 1998-04-15 日本電気株式会社 Polarization dispersion compensation method
FR2791835B1 (en) * 1999-03-31 2001-06-29 Cit Alcatel DEVICE AND METHOD FOR COMPENSATING FOR POLARIZATION DISPERSION IN AN OPTICAL TRANSMISSION SYSTEM
US7154670B2 (en) * 2004-03-10 2006-12-26 Tyco Telecommunications (Us) Inc. Methods and apparatus for polarization control
EP2000847B1 (en) * 2004-03-25 2009-09-02 Fujitsu Limited Adaptive polarization adjustment apparatus for controlling polarization of light inputted to polarization-maintaining waveguide components

Also Published As

Publication number Publication date
JPH07131418A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US5003626A (en) Dual balanced optical signal receiver
JP3466486B2 (en) Method and apparatus for automatically compensating for first order polarization mode dispersion (PMD)
US6130766A (en) Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
JP2739813B2 (en) Polarization dispersion compensation method
US5737110A (en) Optical communication system using dark soliton lightwave
US6626592B2 (en) Optical communication system using optical phase conjugation to suppress waveform distortion caused by chromatic dispersion and optical Kerr effect
US7787716B2 (en) Polarization mode dispersion compensator, polarization mode dispersion compensating method, and its application to optical communication system
US7043122B2 (en) PMD compensator based on separation of principal state of polarization control and differential group delay control, and method thereof
JP3262444B2 (en) Automatic equalizer
EP0576060B1 (en) Optical mixing device having one photodetector for a heterodyne receiver and coherent optical receiver
JP4044115B2 (en) Polarization mode dispersion compensation apparatus, polarization mode dispersion compensation method, and application thereof to an optical communication system
JP3230784B2 (en) Polarization dispersion compensator
US5508839A (en) Control of a launched polarization state of a frequency modulated beam coincident with an optical fiber principal axis
EP0615356A1 (en) Technique for reducing nonlinear signal degradation and fading in a long optical transmission system
KR100483023B1 (en) Polarization mode dispersion compensating device in optical transmission system and method thereof
JP2000330079A (en) Polarization mode dispersion compensating device
KR100563492B1 (en) Polarization mode dispersion compensation apparatus for real-time automatically-adaptive
JP2758221B2 (en) Receiver for coherent optical communication
JP2758215B2 (en) Receiver for coherent optical communication
JP3495036B2 (en) Optical communication system with chromatic dispersion compensation and phase conjugate light generator applicable to the system
JP2974077B2 (en) Receiver for coherent optical communication
JPH06164513A (en) Optical transmission line and optical communication device
JPH0643411A (en) Method and device for controlling operating point of optical modulator
JPS6319928A (en) Reception equipment for double balanced polarization diversity
JPH01237529A (en) Optical receiver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees