JP3229430B2 - Determination of 1,5-anhydroglucitol - Google Patents

Determination of 1,5-anhydroglucitol

Info

Publication number
JP3229430B2
JP3229430B2 JP11372993A JP11372993A JP3229430B2 JP 3229430 B2 JP3229430 B2 JP 3229430B2 JP 11372993 A JP11372993 A JP 11372993A JP 11372993 A JP11372993 A JP 11372993A JP 3229430 B2 JP3229430 B2 JP 3229430B2
Authority
JP
Japan
Prior art keywords
enzyme
solution
anhydroglucitol
present
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11372993A
Other languages
Japanese (ja)
Other versions
JPH06303995A (en
Inventor
正彦 藪内
増田  稔
裕治 古谷
利克 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Food Research Co Ltd
Nippon Kayaku Co Ltd
Original Assignee
Ikeda Food Research Co Ltd
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Food Research Co Ltd, Nippon Kayaku Co Ltd filed Critical Ikeda Food Research Co Ltd
Priority to JP11372993A priority Critical patent/JP3229430B2/en
Publication of JPH06303995A publication Critical patent/JPH06303995A/en
Application granted granted Critical
Publication of JP3229430B2 publication Critical patent/JP3229430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、1,5−アンヒドログ
ルシトールの定量法に関し、詳しくは、糖尿病の診断マ
ーカーとして実用化されている1,5−アンヒドログル
シトール(以下「1,5−AG」という)の酵素を利用
した定量方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying 1,5-anhydroglucitol, and more particularly, to 1,5-anhydroglucitol (hereinafter referred to as "1 -anhydroglucitol") which is practically used as a diagnostic marker for diabetes. 1,5-AG ").

【0002】[0002]

【従来の技術】酵素による1,5−AGの定量方法は、
本出願人の一人によって既に提案されている(特開昭6
2−79780号公報、特開昭63−185397号公
報)。
2. Description of the Related Art A method for quantifying 1,5-AG using an enzyme is as follows.
It has already been proposed by one of the present applicants (Japanese Unexamined Patent Publication No.
2-79780, JP-A-63-185397).

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、新規
な1,5−アンヒドログルシトールの定量法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel method for determining 1,5-anhydroglucitol.

【0004】[0004]

【課題を解決するための手段】本発明は、試料中の1,
5−アンヒドログルシトールを酵素法により定量するに
当り、フラボバクテリウム属を除く微生物から得られ
る、1,5−アンヒドログルシトールの3位の水酸基を
酸化する能力を有する酵素を使用することを特徴とする
1,5−アンヒドログルシトールの定量法に関する。
SUMMARY OF THE INVENTION The present invention relates to a method for measuring the presence of 1,
In quantifying 5-anhydroglucitol by enzymatic method, it is obtained from microorganisms other than the genus Flavobacterium.
A method for quantifying 1,5-anhydroglucitol, which comprises using an enzyme capable of oxidizing the hydroxyl group at the 3-position of 1,5-anhydroglucitol.

【0005】以下、本発明を詳細に説明する。本発明に
おいて使用する1,5−AGの3位の水酸基を酸化する
能力を有する酵素は、フラボバクテリウム属を除く微生
物から得られる。具体的には、例えば、Hayano等
の文献(The Journal of Biological Chemistry vol.24
2,No.16 ,pp.3665-3672,1967) に記載された「Agroba
cterium tumefacience」から得られるグルコースの3位
を酸化する酵素、アグロバクテリウム・リゾゲネス(Ag
robacterium rhizogenes)IFO15188、アグロバ
クテリウム・sp. (Agrobacterium sp.)IFO1371
4、アグロバクテリウム・ラジオバクター(Agrobacter
ium radiobacter)IFO13532、アグロバクテリウ
ム・ツメファシエンス(Agrobacterium tumefacience)
IFO3058等のアグロバクテリウム属に属する微生
物から得られる酵素、シトファガ・ヘパリナ(Cytophag
a heparina)IFO12017、シトファガ・ケラトリ
チカ(Cytophaga keratolytica)IFO14087等の
シトファガ属に属する微生物から得られる酵素などが挙
げられる。
Hereinafter, the present invention will be described in detail. The enzyme having the ability to oxidize the hydroxyl group at the 3-position of 1,5-AG used in the present invention is a microorganism other than the genus Flavobacterium.
Obtained from things. Specifically, for example, a reference by Hayano et al. (The Journal of Biological Chemistry vol.24
2, No. 16, pp. 3665-3672, 1967).
Agrobacterium rhizogenes (Ag), an enzyme that oxidizes the 3-position of glucose obtained from "cterium tumefacience"
robacterium rhizogenes) IFO15188, Agrobacterium sp. IFO1371
4. Agrobacterium radiobacter
ium radiobacter) IFO13532, Agrobacterium tumefacience
Enzyme obtained from a microorganism belonging to the genus Agrobacterium such as IFO3058, Shi Tofaga-Heparina (Cytophag
a heparina) IFO12017, and enzymes obtained from microorganisms belonging to the genus Cytophaga, such as Cytophaga keratolytica IFO14087.

【0006】上記の微生物から本発明で使用する酵素を
得るには、この酵素は菌体の細胞質画分に存在するた
め、先ず、培養物から菌体を分離して適当な緩衝液中で
菌体を破壊し、次いで、その処理液から細胞質画分を得
ることが必要である。そして、菌体破壊の方法として
は、フレンチプレスや超音波破砕装置などにより行うこ
とができる。細胞質画分は、菌体破壊液を遠心すること
により、沈澱物として、膜画分および細胞壁成分などか
ら分離して得られる。
[0006] In order to obtain the enzyme used in the present invention from the above microorganisms, since this enzyme is present in the cytoplasmic fraction of the cells, the cells are first separated from the culture and cultured in an appropriate buffer. It is necessary to destroy the body and then obtain the cytoplasmic fraction from the treatment. Then, as a method for destroying the cells, a French press or an ultrasonic crusher can be used. The cytoplasmic fraction is obtained by centrifuging the cell disruption liquid and separating it as a precipitate from the membrane fraction, cell wall components and the like.

【0007】本発明においては、上記の遠心上澄液から
目的とする酵素を単離することができる。単離方法とし
ては、一般に酵素の精製法として知られているポリエチ
レングリコール分画や硫安分画などを使用することが出
来る。そして、更に高純度の酵素を必要とする場合は、
通常のイオン交換クロマトグラフィー及びゲル過等の
カラムクロマトグラフィーにより精製することができ
る。しかしながら、本発明においては、精製した酵素の
みならず、菌体破壊後の遠心上澄液も使用できる。ま
た、これらを樹脂や膜などの担体に固定して利用するこ
とも出来る。
In the present invention, a target enzyme can be isolated from the supernatant obtained by centrifugation. As an isolation method, a polyethylene glycol fraction or an ammonium sulfate fraction, which is generally known as a method for purifying an enzyme, can be used. And if you need more pure enzyme,
It can be purified by conventional ion exchange chromatography and gel filtration column chromatography over like. However, in the present invention, not only the purified enzyme but also the centrifugal supernatant obtained after the disruption of the cells can be used. Further, these can be used by fixing them to a carrier such as a resin or a film.

【0008】本発明方法を実施するには、例えば、電子
受容体の存在下、1,5−AGに上記の酵素を作用させ
る。そして、電子受容体の還元体の量から1,5−AG
を定量する。
[0008] In order to carry out the method of the present invention, for example, the above enzyme is allowed to act on 1,5-AG in the presence of an electron acceptor. Then, from the amount of the reduced form of the electron acceptor, 1,5-AG
Is quantified.

【0009】電子受容体としては、1,5−AGの酸化
反応に関与するものであれば特に制限なく、例えば、酸
素、フェナジンメトサルフェート、ジクロルフェノール
インドフェノールが挙げられる。また、フェリシアン化
カリウム、フェリシアン化ナトリウム、フェリシアン化
アンモニウム等のフェリシアン化化合物、チトクロム
C、NAD+ 、NADP+ 、FMN等の補酵素を使用す
ることも出来る。
The electron acceptor is not particularly limited as long as it is involved in the oxidation reaction of 1,5-AG, and examples thereof include oxygen, phenazine methosulfate, and dichlorophenolindophenol. Further, ferricyanide compounds such as potassium ferricyanide, sodium ferricyanide, and ammonium ferricyanide, and coenzymes such as cytochrome C, NAD + , NADP + , and FMN can also be used.

【0010】本発明においては、1,5−AGの濃度測
定が要求される如何なる試料をも対象にし得る。例え
ば、代表的には、髄液、血漿、血清、尿などが挙げられ
る。また、1,5−AG濃度を測定し易くするため、蛋
白質や糖類などを除去した処理液などが挙げられる。
In the present invention, any sample requiring 1,5-AG concentration measurement can be used. For example, typical examples include cerebrospinal fluid, plasma, serum, urine, and the like. Further, in order to facilitate the measurement of the 1,5-AG concentration, a treatment solution from which proteins, saccharides, and the like have been removed may be used.

【0011】本発明において、電子受容体の還元体の定
量は、特開昭62−79780号公報に記載された方法
に従って行なうことが出来る。代表的な方法として、電
子受容体の着色度変化を利用する方法について以下に説
明する。
In the present invention, the determination of the reduced form of the electron acceptor can be carried out according to the method described in JP-A-62-79780. As a typical method, a method utilizing a change in the degree of coloring of the electron acceptor will be described below.

【0012】先ず、トリスー塩酸緩衝液(0.05Mp
H7)0.7ml、0.1Mフェリシアン化カリウム溶
液0.1ml、酵素および1,5−AG溶液0.1ml
を容器に入れ、34℃で10分間反応させる。次いで、
硫酸第二鉄−デュバノール試薬(硫酸第二鉄5g、ラウ
リル硫酸ナトリウム3g、85%リン酸95ml、蒸留
水900ml)0.5ml、蒸留水3.5mlを加えた
後、10分間放置して660nmにおける吸光度を測定
する。既知濃度の1,5−AG溶液で作成した検量線を
利用し、試料の吸光度から1,5−AGの濃度を算出す
る。
First, a Tris-HCl buffer (0.05 Mp
H7) 0.7 ml, 0.1 M potassium ferricyanide solution 0.1 ml, enzyme and 1,5-AG solution 0.1 ml
Is put in a container and reacted at 34 ° C. for 10 minutes. Then
0.5 ml of ferric sulfate-Dubanol reagent (ferric sulfate 5 g, sodium lauryl sulfate 3 g, 85% phosphoric acid 95 ml, distilled water 900 ml) and distilled water 3.5 ml were added, and the mixture was allowed to stand for 10 minutes at 660 nm. Measure the absorbance. The concentration of 1,5-AG is calculated from the absorbance of the sample using a calibration curve prepared with a 1,5-AG solution having a known concentration.

【0013】[0013]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0014】酵素製造例1(アグロバクテリウム・リゾ
ゲネス(IFO15188)によるグルコース−3−デ
ヒドロゲナーゼの製造) 500ml容の坂口フラスコに次の表1に示す組成の培
地100mlを分注し、120℃15分間殺菌後、アグ
ロバクテリウム・リゾゲネス(IFO15188)を一
白金耳植菌し、27℃で24時間、浸蘯培養を行った。
なお、表1中の培地組成の数値は重量%を表す。
Enzyme Production Example 1 (Production of glucose-3-dehydrogenase by Agrobacterium rhizogenes (IFO15188)) 100 ml of a medium having the composition shown in the following Table 1 was dispensed into a 500 ml Sakaguchi flask, and then 120 ° C for 15 minutes. After sterilization, one loopful of Agrobacterium rhizogenes (IFO15188) was inoculated and cultured by shaking at 27 ° C. for 24 hours.
In addition, the numerical value of the medium composition in Table 1 represents weight%.

【0015】[0015]

【表1】 (NH4 2 SO4 : 0.1 尿素 :0.05 NaCl :0.02 MgSO4 ・7H2 O :0.02 CaCl2 ・H2 O :0.01 FeSO4 ・7H2 O :0.0025 1M リン酸緩衝液(pH7):5 Sucrose :2(Table 1) (NH 4 ) 2 SO 4 : 0.1 Urea: 0.05 NaCl: 0.02 MgSO 4 .7H 2 O: 0.02 CaCl 2 .H 2 O: 0.01 FeSO 4 .7H 2 O: 0.0025 1 M phosphate buffer (pH 7): 5 Sucrose: 2

【0016】次いで、得られた培養液を15000G×
20分間の条件下に遠心分離して菌体を得た。この菌体
を50mMリン酸緩衝液(pH7)で洗浄後、同様の緩
衝液に懸濁した。懸濁液を冷却下で超音波破砕装置によ
り処理して菌体を破砕した。破砕液を15000G×2
0分間の条件下に遠心分離して菌体残渣を除去し、粗酵
素液を得た。この粗酵素液に硫酸アンモニウム粉末を加
えて攪拌溶解させた。この時析出するタンパク質を15
000G×20分間の条件下に遠心分離し、各硫酸アン
モニウム画分のグルコース−3−デヒドロゲナーゼ活性
を測定した。活性は主に40%〜80%飽和画分に存在
していた。
Next, the obtained culture solution was subjected to 15000 G ×
The cells were obtained by centrifugation under the conditions of 20 minutes. The cells were washed with 50 mM phosphate buffer (pH 7) and suspended in the same buffer. The suspension was treated with an ultrasonic crusher under cooling to crush the cells. 15000G × 2 crushed liquid
Centrifugation was performed under 0 minute conditions to remove cell residue, and a crude enzyme solution was obtained. Ammonium sulfate powder was added to this crude enzyme solution and dissolved by stirring. At this time, 15
Centrifugation was performed under the condition of 000 G × 20 minutes, and the glucose-3-dehydrogenase activity of each ammonium sulfate fraction was measured. The activity was mainly present in the 40% -80% saturated fraction.

【0017】更に、上記硫安画分をリン酸緩衝液(10
mM pH7、10mMシュークロース含有)に溶解
し、透析膜を用いて脱塩した。脱塩液に硫酸アンモニウ
ム粉末を加えて攪拌溶解させた。40%〜80%飽和画
分で析出する蛋白質を15000G×20分間の条件下
に遠心分離して画分を得た。この画分をリン酸緩衝液
(5mM pH7 10mMグリセロール含有)に溶解
し、透析膜を用いて脱塩した。
Further, the above ammonium sulfate fraction was added to a phosphate buffer (10
mM pH 7, containing 10 mM sucrose) and desalted using a dialysis membrane. Ammonium sulfate powder was added to the desalted liquid and dissolved by stirring. The protein precipitated in the 40% to 80% saturated fraction was centrifuged under the condition of 15000 G × 20 minutes to obtain a fraction. This fraction was dissolved in phosphate buffer (containing 5 mM pH7 and 10 mM glycerol) and desalted using a dialysis membrane.

【0018】脱塩液をDEAE−セルロフアインカラム
に通して酵素を吸着させた後、KClを0〜0.1M含
有するリン酸緩衝液(10mM pH7 10mMグリ
セロール含有)により酵素を溶出した。各溶出画分のグ
ルコース−3−デヒドロゲナーゼ活性を測定して活性画
分を得た。アドバンテック社のUF膜により活性画分を
濃縮して酵素液を得た。この酵素液の活性は9.2単位
/mlであり、湿菌体1g当たり2単位の酵素を得た。
After the desalted solution was passed through a DEAE-cellulofine column to adsorb the enzyme, the enzyme was eluted with a phosphate buffer containing 0 to 0.1 M KCl (containing 10 mM pH7 and 10 mM glycerol). The activity fraction was obtained by measuring the glucose-3-dehydrogenase activity of each eluted fraction. The active fraction was concentrated using an Advantech UF membrane to obtain an enzyme solution. The activity of this enzyme solution was 9.2 units / ml, and 2 units of enzyme were obtained per 1 g of wet cells.

【0019】酵素製造例2(シトファーガ・ヘパリナ
(IFO12017)によるグルコース−3−デヒドロ
ゲナーゼの製造) ポリペプトン:1重量%、酵母エキス:0.2重量%、
MgSO4 ・7H2 O:0.1重量%を含有し、pH7
からなる培地100mlを500ml容の坂口フラスコ
に分注し、120℃15分間殺菌後、シトファーガ・ヘ
パリナ(IFO12017)を一白金耳植菌し、27℃
で24時間、振蘯培養を行った。培養液を15000G
×20分間の条件下に遠心分離して菌体を得た。この菌
体を50mMリン酸緩衝液(pH7)で洗浄後、同様の
緩衝液に懸濁した。懸濁液を冷却下で超音波破砕装置に
より処理して菌体を破砕した。破砕液を15000G×
20分間の条件下に遠心分離して菌体残渣を除去し、粗
酵素液を得た。
Enzyme Production Example 2 (Production of Glucose-3-dehydrogenase by Cytophaga heparina (IFO12017)) Polypeptone: 1% by weight, Yeast extract: 0.2% by weight,
MgSO 4 · 7H 2 O: containing 0.1 wt%, pH 7
Was dispensed into a 500 ml Sakaguchi flask, sterilized at 120 ° C. for 15 minutes, and inoculated with a platinum loop of Sitofaga heparina (IFO12017).
For 24 hours. 15,000 G of culture solution
The cells were centrifuged under conditions of × 20 minutes to obtain bacterial cells. The cells were washed with 50 mM phosphate buffer (pH 7) and suspended in the same buffer. The suspension was treated with an ultrasonic crusher under cooling to crush the cells. 15000G of crushed liquid
Centrifugation was performed for 20 minutes to remove cell residue, and a crude enzyme solution was obtained.

【0020】[0020]

【0021】次に、本発明で使用する代表的な酵素、例
えば、アグロバクテリウム・リゾゲネス(IFO151
88)、アグロバクテリウム・sp(IFO1371
4)、アグロバクテリウム・ラジオバクター(IFO1
3532)、アグロバクテリウム・ツメフアシエンス
(IFO3058)、シトフアーガ・ヘパリナ(IFO
12017)、シトフアーガ・ケラトリチカ(IFO1
4087)は、いずれも、グルコース、2−デオキシグ
ルコース、1,5−AG、シュークロースを酸化すると
言う基質特異性を有する。従って、これらの酵素は、前
記Hayano等の文献に記載の酵素と同様に、1,5
−AGの3位の水酸基を酸化するデヒドロゲナーゼであ
ると思われる。
Next, typical enzymes used in the present invention, for example, Agrobacterium rhizogenes (IFO151)
88), Agrobacterium sp (IFO1371)
4), Agrobacterium radiobacter (IFO1)
3532), Agrobacterium Tsumefuashiensu (IFO3058), Shi Tofuaga-Heparina (IFO
12017), Sitophaga keratricha (IFO1
4087) has a substrate specificity of oxidizing glucose, 2-deoxyglucose, 1,5-AG, and sucrose. Therefore, these enzymes are similar to the enzymes described in the aforementioned Hayano et al.
It seems to be a dehydrogenase that oxidizes the 3-position hydroxyl group of -AG.

【0022】実施例1 電子受容体としてジクロルフェノールインドフェノール
(DCIP)を用いる方法(検量線の作成) 0.5Mリン酸緩衝液(pH7.0)2.0mlに1.
6mM DCIP溶液0.7mlと酵素製造例1で作成
した酵素溶液0.2mlを加えて攪拌し、反応液を調製
した。光路長1cmの石英セルに50mg/l濃度の
1,5−AG溶液を蒸留水で倍々希釈した標準液0.1
mlと蒸留水1.0mlを加え、30℃に恒温化された
分光計のセルホルダーにセットした。3分間放置して恒
温化した後、この石英セルに前記の反応液0.1mlを
加えて転倒攪拌後、600nmにおける吸光度を測定し
た。反応開始1分経過後から、1分間の吸光度の減少速
度と1,5−AG濃度の関係を測定し、その結果を図1
に示した。
Example 1 Method Using Dichlorophenol Indophenol (DCIP) as Electron Acceptor (Preparation of Calibration Curve) In 2.0 ml of 0.5 M phosphate buffer (pH 7.0), 1.
0.7 ml of a 6 mM DCIP solution and 0.2 ml of the enzyme solution prepared in Enzyme Production Example 1 were added and stirred to prepare a reaction solution. In a quartz cell having an optical path length of 1 cm, a standard solution obtained by diluting a 1,5-AG solution having a concentration of 50 mg / l twice with distilled water.
ml and 1.0 ml of distilled water were added, and the mixture was set in a cell holder of a spectrometer thermostatized at 30 ° C. After allowing to stand for 3 minutes to allow the temperature to reach a constant temperature, 0.1 ml of the above reaction solution was added to the quartz cell, and the mixture was inverted and stirred, and the absorbance at 600 nm was measured. One minute after the start of the reaction, the relationship between the rate of decrease in absorbance for one minute and the concentration of 1,5-AG was measured.
It was shown to.

【0023】実施例2 電子受容体としてフェリシアン化カリウムを用いる方法
(検量線の作成) 20mMのトリス・塩酸緩衝液5.0mlに0.1Mフ
ェリシアン化カリウム溶液1.0ml、酵素製造例1で
作成したアグロバクテリウム・リゾゲネス(IFO15
188)由来の酵素(6.4単位/ml)0.5ml、
蒸留水1.5mlを加えて発色試薬を調整した。50μ
g/ml濃度の1,5−AG標準液を蒸留水で倍々希釈
した溶液0.1mlに発色試薬0.4mlを添加し、2
5℃で1時間反応を行なった。反応後、反応液にフェリ
ック・デュパノール試薬(硫酸第二鉄1.00g、ドデ
シル硫酸ナトリウム0.604g、85%リン酸19m
lを水に溶解して200mlとして調整した)0.25
mlを加えて反応を止め、更に、蒸留水1.75mlを
加えて攪拌後、660nmにおける吸光度を測定し、そ
の結果を図2に示した。
Example 2 Method of using potassium ferricyanide as an electron acceptor (preparation of calibration curve) 1.0 ml of a 0.1 M potassium ferricyanide solution in 5.0 ml of 20 mM Tris / hydrochloric acid buffer, and the agropreparation prepared in Enzyme Production Example 1 Bacterium rhizogenes (IFO15
188) of the enzyme (6.4 units / ml) 0.5 ml,
1.5 ml of distilled water was added to prepare a coloring reagent. 50μ
0.4 ml of a coloring reagent was added to 0.1 ml of a solution obtained by diluting a 1,5-AG standard solution having a concentration of g / ml twice with distilled water.
The reaction was performed at 5 ° C. for 1 hour. After the reaction, the reaction solution was added to a ferric-Dupanol reagent (1.00 g of ferric sulfate, 0.604 g of sodium dodecyl sulfate, 19 m of 85% phosphoric acid).
1 was dissolved in water and adjusted to 200 ml) 0.25
The reaction was stopped by adding 1.75 ml of distilled water, and the mixture was stirred and the absorbance at 660 nm was measured. The result is shown in FIG.

【0024】実施例3 ヒト血清1,5−AG濃度の測定 市販の1,5−AG測定用キット ラナAG(アンヒド
ログルシトール)(日本化薬株式会社製)の添付文書の
操作法に従い、前処理カラムの充填液を廃棄し、1.0
mlの蒸留水で洗浄してコンディショニングを行なっ
た。このカラムにヒト血清検体0.1mlを添加後、蒸
留水0.5mlで2回カラムを溶出し、タンパク質とグ
ルコースを除去した溶出液1.1mlを得た。同様にし
て、1,5−AG標準液についても前処理カラムで処理
した。この様にして得られた検体および1,5−AG標
準液のカラム処理液1.0mlを光路長1cmの石英セ
ルに入れ、実施例1の方法に従って反応させ、1,5−
AG濃度を測定した。その結果を表2に示す。
Example 3 Measurement of Human Serum 1,5-AG Concentration A commercially available kit for measuring 1,5-AG, Rana AG (anhydroglucitol) (manufactured by Nippon Kayaku Co., Ltd.) , Discard the packing solution in the pretreatment column, and
Conditioning was performed by washing with ml of distilled water. After adding 0.1 ml of a human serum specimen to the column, the column was eluted twice with 0.5 ml of distilled water to obtain 1.1 ml of an eluate from which protein and glucose were removed. Similarly, the 1,5-AG standard solution was treated with the pretreatment column. 1.0 ml of the thus-obtained sample and the column treatment solution of the 1,5-AG standard solution were placed in a quartz cell having an optical path length of 1 cm, and reacted according to the method of Example 1.
The AG concentration was measured. Table 2 shows the results.

【0025】[0025]

【表2】<ヒト血清検体の測定測定>(数値はmg/l) 検体 実施例2の結果 ラナAGによる結果 A 32.3 33.0 B 42.1 42.4 C 33.5 33.2 < Table 2 ><Measurement measurement of human serum sample> (numerical value is mg / l) Sample Result of Example 2 Result by Rana AG A 32.3 33.0 B 42.1 42.4 C 33.5 33.2

【0026】表2に示す通り、本発明による1,5−A
Gの実測値は、市販のラナAG(アンヒドログルシトー
ル)(酵素として1,5−AGの2位を酸化するピラノ
スオキシダーゼを使用)での実測値とほぼ一致してい
る。
As shown in Table 2, 1,5-A according to the present invention
The measured value of G almost agrees with the measured value of commercially available rana AG (anhydroglucitol) (using pyranos oxidase which oxidizes the 2-position of 1,5-AG as an enzyme).

【0027】[0027]

【発明の効果】以上説明した本発明によれば、1,5−
AGの3位の水酸基を酸化する酵素により1,5−AG
の定量が可能となる。従って、本発明は、例えば、糖尿
病の診断分野に寄与するところが大である。
According to the present invention described above, 1,5-
1,5-AG by an enzyme that oxidizes the hydroxyl group at the 3-position of AG
Can be quantified. Therefore, the present invention greatly contributes to, for example, the field of diabetes diagnosis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ジクロルフェノールインドフェノールを電子受
容体として用いた場合の検量線であり、縦軸は吸光度減
少速度(ABS:600nm/分)、横軸は1,5−A
G濃度(mg/L)を表す。
FIG. 1 is a calibration curve when dichlorophenol indophenol is used as an electron acceptor, the vertical axis represents the rate of decrease in absorbance (ABS: 600 nm / min), and the horizontal axis represents 1,5-A
G concentration (mg / L).

【図2】フェリシアン化カリウムを電子受容体として用
いた場合の検量線であり、縦軸は吸光度(660n
m)、横軸は1,5−AG濃度(mg/ml)を表す。
FIG. 2 is a calibration curve when potassium ferricyanide is used as an electron acceptor, and the vertical axis represents absorbance (660 n
m), and the horizontal axis represents 1,5-AG concentration (mg / ml).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平原 利克 広島県福山市箕沖町95−7 (56)参考文献 特開 昭62−79780(JP,A) 特開 昭63−185397(JP,A) J.Biochem.,100(4), 1049−1055(1986) (58)調査した分野(Int.Cl.7,DB名) C12Q 1/00 - 3/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshikatsu Hirahara 95-7 Minoki-cho, Fukuyama City, Hiroshima Prefecture (56) References JP-A-62-79780 (JP, A) JP-A-63-185397 (JP, A) J. Biochem. , 100 (4), 1049-1055 (1986) (58) Fields investigated (Int. Cl. 7 , DB name) C12Q 1/00-3/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料中の1,5−アンヒドログルシトー
ルを酵素法により定量するに当り、アグロバクテリウム
属またはシトファーガ属に属する微生物から得られる、
1,5−アンヒドログルシトールの3位の水酸基を酸化
する能力を有する酵素を使用することを特徴とする1,
5−アンヒドログルシトールの定量法。
1. Agrobacterium for determining 1,5-anhydroglucitol in a sample by an enzymatic method.
Obtained from a microorganism belonging to the genus or the genus Cytophaga ,
1, an enzyme having an ability to oxidize the hydroxyl group at the 3-position of 1,5-anhydroglucitol is used.
A method for determining 5-anhydroglucitol.
JP11372993A 1993-04-16 1993-04-16 Determination of 1,5-anhydroglucitol Expired - Fee Related JP3229430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11372993A JP3229430B2 (en) 1993-04-16 1993-04-16 Determination of 1,5-anhydroglucitol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11372993A JP3229430B2 (en) 1993-04-16 1993-04-16 Determination of 1,5-anhydroglucitol

Publications (2)

Publication Number Publication Date
JPH06303995A JPH06303995A (en) 1994-11-01
JP3229430B2 true JP3229430B2 (en) 2001-11-19

Family

ID=14619663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11372993A Expired - Fee Related JP3229430B2 (en) 1993-04-16 1993-04-16 Determination of 1,5-anhydroglucitol

Country Status (1)

Country Link
JP (1) JP3229430B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767697A (en) * 1993-09-03 1995-03-14 Pentel Kk Quantification of 1,5-anhydroglucitol
US5871949A (en) * 1996-12-04 1999-02-16 Daiichi Pure Chemicals Co., Ltd. Method of quantitative assay for 1,5-anhydroglucitol and reagent for quantitative assay
EP2039765B1 (en) 2006-06-22 2011-10-05 Ikeda Food Research Co. Ltd. Method for determination of 1,5-anhydroglucitol, and reagent composition for determination of 1,5-anhydroglucitol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Biochem.,100(4),1049−1055(1986)

Also Published As

Publication number Publication date
JPH06303995A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
EP0012446B1 (en) Acidic uricase, its production and its use for the determination of uric acid
EP0846773B1 (en) Method of quantitative assay for 1,5-anhydroglucitol and reagent for quantitative assay
US4186052A (en) NADH Peroxidase for hydrogen peroxide determination
JP3229430B2 (en) Determination of 1,5-anhydroglucitol
JPH0324200B2 (en)
BAUER et al. Microbial metabolism of quinoline and related compounds. XV. Quinoline-4-carboxylic acid oxidoreductase from Agrobacterium spec. 1B: a molybdenum-containing enzyme
JP2872983B2 (en) Method for quantifying 1,5-anhydroglucitol and reagent for quantification
JPH0767697A (en) Quantification of 1,5-anhydroglucitol
JPH1118762A (en) 1,5-anhydroglucitol dehydrogenase and its production
JP3819094B2 (en) 1,5-Anhydroglucitol dehydrogenase, method for producing the same, and method for quantifying 1,5-anhydroglucitol using the same
JPH04117281A (en) Production of betaine aldehyde dehydrogenase
JPH0544273B2 (en)
JP3743534B2 (en) Novel chloride ion measuring method and reagent
JPH0687777B2 (en) 3α-hydroxysteroid oxidase composition and method for quantifying 3α-hydroxysteroid using the same
JP2886846B2 (en) 1,5-anhydroglucitol dehydrogenase and method for producing the same
JPH0191778A (en) Maltose phosphorylase
JPH04126099A (en) Highly sensitive determination method of myoinositol and composition for determination
JP3065754B2 (en) Novel xanthine dehydrogenase-T enzyme, measuring method using the same, and analytical composition containing the enzyme
JP3862034B2 (en) Method for measuring glucose
JPS6046953B2 (en) Improved production method of choline oxidase
WO2006046524A1 (en) Pqq-dependent glucose dehydrogenase composition
JPS5982086A (en) L-alpha-glycerophosphoric acid oxidase
JPH0644878B2 (en) Bile acid measurement reagent
JPS61219384A (en) Production of n-acylneuraminic acid aldolase
JPH06189755A (en) D-glucoside 3-dehydrogenase and production of d-glucoside 3-dehydrogenase or substance containing the enzyme

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees