JP3229216U - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP3229216U
JP3229216U JP2020003630U JP2020003630U JP3229216U JP 3229216 U JP3229216 U JP 3229216U JP 2020003630 U JP2020003630 U JP 2020003630U JP 2020003630 U JP2020003630 U JP 2020003630U JP 3229216 U JP3229216 U JP 3229216U
Authority
JP
Japan
Prior art keywords
water
anode
flow
cathode
distribution path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003630U
Other languages
Japanese (ja)
Inventor
賢一郎 小林
賢一郎 小林
Original Assignee
賢一郎 小林
賢一郎 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賢一郎 小林, 賢一郎 小林 filed Critical 賢一郎 小林
Priority to JP2020003630U priority Critical patent/JP3229216U/en
Application granted granted Critical
Publication of JP3229216U publication Critical patent/JP3229216U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】水が配水経路に確実に流れているかを、安価で機械的可動部がなく,メンテナンスが簡易な方法によって確認することを可能にするフローセンサを提供する。【解決手段】2本の棒状の金属製の検出電極(検出電極陽極2a、検出電極陰極2b)と水温センサを電極固定基板に取付けた構成とし、配水経路内に水が流れているかを検出するために,配水経路内に金属製検出電極(陽極2a、陰極2b)と温度補正用水温センサ1を挿入する。陽極2aを通電し、陰極2b側に接続してあるコンデンサ4の充電時間をインクリメントカウンタ9で計測し、その計測時間値を温度補正部11の温度補正の後に経時変化の差から流速計算部12で流速を求めて、水が流れているかを水流判定部13で判定する。【選択図】図1PROBLEM TO BE SOLVED: To provide a flow sensor capable of confirming whether water is surely flowing in a distribution path by a method that is inexpensive, has no mechanical moving parts, and is easy to maintain. SOLUTION: Two rod-shaped metal detection electrodes (detection electrode anode 2a, detection electrode cathode 2b) and a water temperature sensor are attached to an electrode fixing substrate to detect whether water is flowing in a water distribution path. Therefore, a metal detection electrode (anode 2a, cathode 2b) and a temperature correction water temperature sensor 1 are inserted into the water distribution path. The anode 2a is energized, the charging time of the capacitor 4 connected to the cathode 2b side is measured by the increment counter 9, and the measured time value is measured by the temperature correction unit 11 after the temperature correction by the temperature correction unit 11, and the flow velocity calculation unit 12 is based on the difference over time. The flow velocity is obtained with, and the water flow determination unit 13 determines whether or not water is flowing. [Selection diagram] Fig. 1

Description

本考案は,給水装置が水を配水経路に確実に供給しているかを常時確認するためのものである。 The present invention is for constantly confirming whether or not the water supply device reliably supplies water to the distribution route.

配水経路の流れを確認する場合,従来では超音波式,羽根車式,電磁誘導式,カルマン渦式などの流量計やパドル式,面積式のフロースイッチが使われてきた。羽根車式とカルマン渦式流量計やパドル式と面積式のフロースイッチは,配水経路の断面積に対して大きめの構造物を取付けるため,ゴミ詰まりによる動作不良が起きやすい。超音波式流量計は,配水経路を切断せずに送信器と受信器を取付けるため簡便で配水経路のゴミ詰まりによる動作不良の心配はないが,取付スペースが配水経路直径に対してある程度必要なため,コンパクトではない。電磁誘導式流量計は,配水経路の断面積に対して比較的小さい構造物を取付けるためゴミ詰まりによる動作不良が起きにくいが,動作時の消費電力が大きく乾電池や小容量の蓄電池での動作が難しい。 Conventionally, ultrasonic type, impeller type, electromagnetic induction type, Karman vortex type, and other flowmeters, paddle type, and area type flow switches have been used to check the flow of water distribution paths. Impeller-type and Karman vortex-type flowmeters and paddle-type and area-type flow switches have structures that are larger than the cross-sectional area of the water distribution path, so malfunctions due to dust clogging are likely to occur. The ultrasonic flowmeter is simple because the transmitter and receiver are attached without cutting the distribution path, and there is no concern about malfunction due to dust clogging in the distribution path, but installation space is required to some extent for the diameter of the distribution path. Therefore, it is not compact. Since the electromagnetic induction type flowmeter has a structure that is relatively small with respect to the cross-sectional area of the water distribution path, malfunctions due to clogging with dust are unlikely to occur, but it consumes a large amount of power during operation and can be operated with dry batteries or small-capacity storage batteries. difficult.

株式会社キーエンス ホームページ「流量知識.COM」内「流量計の種類(https://www.keyence.co.jp/ss/products/process/flowmeter/type/)」"Type of flow meter (https://www.keyence.co.jp/ss/products/process/flowmeter/type/)" in "Flow knowledge.COM" on the KEYENCE CORPORATION website SMC 株式会社 ホームページ「製品情報」内「水用フロースイッチ(https://www.smcworld.com/products/pickup/ja-jp/switch_sensor/f_liquid.html)」"Flow switch for water (https://www.smcworld.com/products/pickup/ja-jp/switch_sensor/f_liquid.html)" in "Product Information" on the SMC Corporation website 昭和機器計装株式会社 ホームページ「製品一覧(https://www.showa-kk.com/product.html)」Showa Kikai Keiso Co., Ltd. website "Product List (https://www.showa-kk.com/product.html)"

従来の配水経路の断面積に対して大きめの構造物を挿入する方式の流量計やフローセンサは,水道水のようなゴミの無い水にとっては詰りの問題はないが,河川や用水路から水を汲み上げる農業用水ではゴミや泥が混じった水が配水経路に流れることもある。これにより両者の詰まりによる動作不良が起きる恐れがあり,メンテナンスの手間がかかる。 Flow meters and flow sensors that insert a structure larger than the cross-sectional area of the conventional water distribution path do not have a problem of clogging for dust-free water such as tap water, but water can be drawn from rivers and irrigation canals. Water mixed with garbage and mud may flow into the distribution route in the pumped agricultural water. As a result, there is a risk of malfunction due to clogging of both, and maintenance is troublesome.

本センサは配水経路の断面積に対して直径2−3mm,長さ15−30mm程度の金属製検出電極2本と,直径と長さが3−5mm程度の温度センサのため,ゴミ詰まりによる動作不良が起きにくい。また機械的稼動部分がないため,メンテナンスの手間がかからない。 Since this sensor has two metal detection electrodes with a diameter of 2-3 mm and a length of about 15-30 mm with respect to the cross-sectional area of the water distribution path, and a temperature sensor with a diameter and length of about 3-5 mm, it operates due to dust clogging. Defects are unlikely to occur. In addition, since there are no mechanically moving parts, maintenance is not required.

樹脂製パイプ(15)の配水経路に,本センサを取付けた場合の説明をする(図3)。金属製の検出電極(16)(検出電極陽極(2a),検出電極陰極(2b),共にステンレス製)と水温センサ(18)を電極固定基板(17)に取付けたものを樹脂製パイプ(15)に取付け,電極固定基板(17)からの信号線は信号処理系統(3)−(14)に接続される(図1)。 A case where this sensor is attached to the water distribution path of the resin pipe (15) will be described (FIG. 3). A resin pipe (15) with a metal detection electrode (16) (detection electrode anode (2a), detection electrode cathode (2b), both made of stainless steel) and a water temperature sensor (18) attached to an electrode fixing substrate (17). ), And the signal line from the electrode fixing substrate (17) is connected to the signal processing system (3)-(14) (FIG. 1).

本センサの原理としては,検出電極陽極(2a),検出電極陰極(2b)が水中にある時,陽極(2a)から電気を流すと陰極(2b)に電気が流れる。コンデンサ(4)が放電した状態で,陽極(2a)から電気を流すと,陰極(2b)経由でコンデンサ(4)に充電される。陽極(2a)に通電開始をt0として,コンデンサ(4)−GND間の電圧が閾値Vthになるまでの時間tCRを計測する(図1)。Vthは,陽極(2a)印加電圧の63.22%とする。コンデンサ(4)充電時間tCRは,陽極(2a)−陰極(2b)両極間の電気抵抗と同等と見なし,充電時間が長いほど電気抵抗は大きくなる。水が樹脂製パイプ(15)内に無い場合の電気抵抗は無限大になるが,流れると低くなる。水が停滞しているか,流れているかは,tCRの経時変化の差から流速を求めて判定する。 The principle of this sensor is that when the detection electrode anode (2a) and the detection electrode cathode (2b) are in water, electricity flows to the cathode (2b) when electricity is passed from the anode (2a). When electricity is passed from the anode (2a) while the capacitor (4) is discharged, the capacitor (4) is charged via the cathode (2b). With the start of energization of the anode (2a) as t0, the time tCR until the voltage between the capacitor (4) and GND reaches the threshold value Vth is measured (FIG. 1). Vth is 63.22% of the voltage applied to the anode (2a). Capacitor (4) Charging time tCR is considered to be equivalent to the electrical resistance between the two electrodes of the anode (2a) and cathode (2b), and the longer the charging time, the greater the electrical resistance. The electrical resistance becomes infinite when water is not in the resin pipe (15), but decreases when it flows. Whether the water is stagnant or flowing is determined by obtaining the flow velocity from the difference in the change over time of tCR.

信号処理系統(3)−(14)の動作としては,まず計測条件設定部(10)で,コンパレータ(5)の閾値電圧Vthを出力するためのディジタルアナログコンバータ(6)の出力電圧値を設定する。電極制御部(8)でインクリメントカウンタ(9)をリセットし,陽極(2a)に通電してからインクリメントカウンタ(9)の加算を開始する。インクリメントカウンタ(9)の動作クロック1MHzは,カウンタクロック生成部(3)で生成する。陰極(2b)側に接続されたコンデンサ(4)−GND間の電圧と,ディジタルアナログコンバータ(6)出力の閾値電圧Vthをコンパレータ(5)で比較して,Vth以上になってれば加算と陽極(2a)の通電を止める。 As the operation of the signal processing system (3)-(14), first, the measurement condition setting unit (10) sets the output voltage value of the digital analog converter (6) for outputting the threshold voltage Vth of the comparator (5). To do. The electrode control unit (8) resets the increment counter (9), energizes the anode (2a), and then starts adding the increment counter (9). The operating clock 1 MHz of the increment counter (9) is generated by the counter clock generator (3). The voltage between the capacitor (4) and GND connected to the cathode (2b) side and the threshold voltage Vth of the output of the digital analog converter (6) are compared by the comparator (5), and if it becomes Vth or more, it is added. Turn off the energization of the anode (2a).

水温センサ(1,18)と水温計測部(7)で,検出電極(2a,2b,16)近傍の水温を測定する。インクリメントカウンタ(9)で加算したtCRを温度補正部(11)で補正をする(数1)。
流速計算部(12)にて,1サンプル前と現在のK25の差の絶対値をサンプリング間隔で除算して流速を求める(数2)。流側の変動を緩やかにするために,流速の単純移動平均を求める(数3)。移動平均の回数は5回とした。水流判定部(13)にて,spMAが閾値spth以上なら水が流れていると判定する。閾値未満なら流れていないと判定し結果出力部(14)にて警報信号を出力する。

Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
The water temperature sensor (1,18) and the water temperature measuring unit (7) measure the water temperature in the vicinity of the detection electrodes (2a, 2b, 16). The temperature correction unit (11) corrects the tCR added by the increment counter (9) (Equation 1).
The flow velocity calculation unit (12) divides the absolute value of the difference between the previous sample and the current K25 by the sampling interval to obtain the flow velocity (Equation 2). In order to moderate the fluctuation on the flow side, a simple moving average of the flow velocity is calculated (Equation 3). The number of moving averages was set to 5. If the spMA is equal to or greater than the threshold value spth, the water flow determination unit (13) determines that water is flowing. If it is less than the threshold value, it is determined that the signal is not flowing, and the result output unit (14) outputs an alarm signal.
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216
Figure 0003229216

水田など灌漑では,河川や用水路や井戸の水を可搬式のエンジンポンプ(20)又は電動ポンプや揚水機場に設置されたポンプで汲み上げて圃場(23)に給水する。エンジンポンプ(20)の場合は,燃料が無くなれば給水停止になるため,停止したことをユーザに伝達する手段が必要である。図4の実施例は,図3の樹脂製パイプ(15)に本センサを取付けたものを吐出し側に設置したもの。樹脂製パイプ(15)は呼び径50mmサイズ一般用VP,コンデンサ(4)は0.1μF,水温センサ(1,18)にはサーミスタを使用した。検出電極(2a,2b,16)は管内に20mm挿入した。結果出力部(14)に無線モデムを接続して,給水が停止すればユーザに無線で警報が伝達される。 In irrigation such as paddy fields, water from rivers, irrigation canals and wells is pumped by a portable engine pump (20) or an electric pump or a pump installed in a pumping station and supplied to the field (23). In the case of the engine pump (20), the water supply is stopped when the fuel runs out, so a means for notifying the user of the stop is required. In the embodiment of FIG. 4, the resin pipe (15) of FIG. 3 with this sensor attached is installed on the discharge side. The resin pipe (15) used a VP for general use with a nominal diameter of 50 mm, the condenser (4) used 0.1 μF, and the water temperature sensor (1,18) used a thermistor. The detection electrodes (2a, 2b, 16) were inserted 20 mm into the tube. When a wireless modem is connected to the result output unit (14) and the water supply is stopped, an alarm is transmitted wirelessly to the user.

図5の実施例は,市販の水田用給水栓(24)(水の吐き出し部分を分かり易いように切断図にしてある)の吐出し部分(25)((24)を上部から見た切断図)に検出電極(2a,2b,16),電極固定基板(17),水温センサ(1,18)の本センサ部分一式を取り付けた例である。これにより,給水中断を検出できる。 In the embodiment of FIG. 5, a cut view of the discharge portion (25) ((24) of a commercially available paddy field faucet (24) (the water discharge portion is shown in a cut diagram for easy understanding) as viewed from above. ), The detection electrode (2a, 2b, 16), the electrode fixing substrate (17), and the water temperature sensor (1,18) are attached to this sensor part set. This makes it possible to detect water supply interruptions.

近年,夏季気温の高温傾向による水稲の白未熟粒が増加してきており,昼間より水温が低い夜間掛流し灌漑が,その対策に有効だと言われている。しかし夜間に給水を行うと,夜間に圃場や揚水機場の見回りを行わなくてはならない。設定時刻に給水や停止を自動で行ったり,遠隔からの無線操作も行える自動給水栓が市販されているが,給水栓を閉じた時に枯葉や木の枝のようなゴミが埋まって完全に閉じなかったりすることがある。それらの自動給水栓には,モータ過負荷防止やボールねじ下限のセンサが搭載されていて,閉じる時の給水栓のゴミの噛み込みを検出できる。逆に自動給水栓が設定通りに開いていても,揚水機場や配水経路の問題で給水が中断された場合は,給水状況を検出できない。またそれらには水位計を接続可能なものもあるが,広い圃場の水位を上昇させるのには時間がかかるため,供給異常検知に多大なタイムラグが発生する。水位計は圃場に設置してあるため,構造によっては泥やゴミなどが詰まって正常動作しないことも起こり得る。 In recent years, the number of white immature grains of paddy rice has been increasing due to the tendency of high summer temperature, and it is said that nighttime irrigation, which has a lower water temperature than daytime, is effective as a countermeasure. However, if water is supplied at night, it is necessary to patrol the fields and pumping stations at night. There are commercially available automatic water faucets that can automatically supply and stop water at the set time and can also be operated wirelessly from a remote location, but when the water faucet is closed, dust such as dead leaves and tree branches is buried and it closes completely. It may not be there. These automatic faucets are equipped with a sensor for preventing motor overload and a lower limit of the ball screw, and can detect the biting of dust in the faucet when it is closed. On the contrary, even if the automatic faucet is opened as set, the water supply status cannot be detected if the water supply is interrupted due to a problem with the pumping station or the water distribution route. Some of them can be connected to a water level gauge, but it takes time to raise the water level in a wide field, which causes a large time lag in detecting supply abnormalities. Since the water level gauge is installed in the field, it may be clogged with mud or dust and may not operate normally depending on the structure.

図5のような形状の給水栓に,モータと制御装置を搭載した自動給水栓(これも市販されている)の吐出し口に本センサを取付けることによって,揚水機場や配水経路の問題よる給水中断を検出できる。また無線通信機能のない自動給水栓に本センサを取付けて,結果出力部(14)に無線モデムを接続すれば,給水状況を無線でユーザに伝達できる。 By attaching this sensor to the outlet of an automatic faucet (also commercially available) equipped with a motor and a control device on a faucet shaped as shown in Fig. 5, water can be supplied due to problems with the pumping station or water distribution route. Interruption can be detected. If this sensor is attached to an automatic water faucet that does not have a wireless communication function and a wireless modem is connected to the result output unit (14), the water supply status can be transmitted wirelessly to the user.

本考案の信号処理ブロックダイアグラムである。It is a signal processing block diagram of this invention. 本センサの検出電極(2a,2b,16)間の電圧の経時変化グラフである。It is a time-dependent graph of the voltage between the detection electrodes (2a, 2b, 16) of this sensor. 実施例の一つの樹脂製パイプに本センサを取付けた例である。This is an example in which this sensor is attached to one of the resin pipes of the embodiment. 実施例の一つの図3センサをエンジンポンプで使用した例である。FIG. 3 is an example in which the sensor shown in FIG. 3 of the embodiment is used in an engine pump. 実施例の一つの本センサを給水栓の吐出し口に取り付けた例である。This is an example in which this sensor, which is one of the embodiments, is attached to the discharge port of the faucet.

1:水温センサ
2a:検出電極陽極
2b:検出電極陰極
3:カウンタクロック生成部
4:コンデンサ
5:コンパレータ
6:ディジタルアナログコンバータ
7:水温計測部
8:電極制御部
9:インクリメントカウンタ
10:計測条件設定部
11:温度補正部
12:流速計算部
13:水流判定部
14:結果出力部
15:樹脂製パイプ
16:検出電極(2a,2b)
17:電極固定基板
18:水温センサ(1)
19:河川や用水路や井戸水の取水側配管
20:エンジンポンプ
21:吐出し側配管
22:吐出し側に取り付けた本センサ
23:圃場
24:給水栓
25:給水栓内部に取付けた本センサ
1: Water temperature sensor 2a: Detection electrode anode 2b: Detection electrode cathode 3: Counter clock generator 4: Capacitor 5: Comparator 6: Digital analog converter 7: Water temperature measurement unit 8: Electrode control unit 9: Increment counter 10: Measurement condition setting Unit 11: Temperature correction unit 12: Flow velocity calculation unit 13: Water flow determination unit 14: Result output unit 15: Resin pipe 16: Detection electrode (2a, 2b)
17: Electrode fixing substrate 18: Water temperature sensor (1)
19: Intake side piping for rivers, irrigation canals and wells 20: Engine pump 21: Discharge side piping 22: This sensor attached to the discharge side 23: Field 24: Water faucet 25: This sensor installed inside the water faucet

Claims (1)

棒状の金属製検出電極(2a,2b)2本と温度補正用の水温センサ(1)を配水経路内に挿入し,水の電気抵抗の経時的変化から流速を求める手段と,流速とその任意の設定閾値を比較して流れを判定する手段を持つフローセンサ。 A means of inserting two rod-shaped metal detection electrodes (2a, 2b) and a water temperature sensor (1) for temperature correction into the water distribution path to obtain the flow velocity from the change over time in the electrical resistance of water, the flow velocity and its arbitrary A flow sensor having a means for determining the flow by comparing the set threshold values of.
JP2020003630U 2020-08-26 2020-08-26 Flow sensor Active JP3229216U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003630U JP3229216U (en) 2020-08-26 2020-08-26 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003630U JP3229216U (en) 2020-08-26 2020-08-26 Flow sensor

Publications (1)

Publication Number Publication Date
JP3229216U true JP3229216U (en) 2020-12-03

Family

ID=73544479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003630U Active JP3229216U (en) 2020-08-26 2020-08-26 Flow sensor

Country Status (1)

Country Link
JP (1) JP3229216U (en)

Similar Documents

Publication Publication Date Title
US9000944B2 (en) Device for detecting a blockage of a mechanical fluid meter, and meter featuring blockage detection
CN102607784B (en) Method for detecting water leakage of tap water pipeline
US8678303B2 (en) Wattmeter circuit for operating a grinder pump assembly to inhibit operating under run dry or blocked conditions
US7549322B2 (en) System and method for detecting a leak in a piping system
CN112212931A (en) Intelligent water meter with automatic water leakage alarm function
JP3229216U (en) Flow sensor
EP3321644B1 (en) Fluid supply line comprising a fluid flow monitoring unit
US8684700B2 (en) Method and apparatus for waste water level indication
CN107767292B (en) Intelligent water supply management system and method thereof
CN210922938U (en) Fire hydrant wireless water pressure sensor based on Internet of things
CN1529139A (en) Automatic calibrating system for heat meter
JP2016205781A (en) Water treatment management device and water treatment management method
KR101321349B1 (en) Pump performance estimation method and system using a water level sensor
CN205426283U (en) Anticorrosion liquid level detection device
CN115234847A (en) Method for locating leakage points in a water supply network
CN209783659U (en) heating ventilation air conditioner flow measurement system
CN210375231U (en) Field device and flow meter
CN2869803Y (en) Water-level detecting instrument
US20200018056A1 (en) Venturi and salinity monitoring system and method for vacuum sewer collection systems
JP3901159B2 (en) Gas pipe leak monitoring device
CN211205396U (en) Device for measuring outlet flow of urban drainage pipeline
Kallesøe et al. Supervision of pumps and their operating conditions in sewage pumping stations
CN112415089B (en) Pump system
WO2023169990A1 (en) Method and system for leakage detection in a fluid system
CN218713496U (en) Bury formula initial stage rainwater automatic collection device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3229216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150