JP3226696B2 - Semiconductor laser module with thermoelectric cooling element - Google Patents

Semiconductor laser module with thermoelectric cooling element

Info

Publication number
JP3226696B2
JP3226696B2 JP01609894A JP1609894A JP3226696B2 JP 3226696 B2 JP3226696 B2 JP 3226696B2 JP 01609894 A JP01609894 A JP 01609894A JP 1609894 A JP1609894 A JP 1609894A JP 3226696 B2 JP3226696 B2 JP 3226696B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser module
cooling element
thermoelectric cooling
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01609894A
Other languages
Japanese (ja)
Other versions
JPH07225326A (en
Inventor
強 田中
聰 青木
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP01609894A priority Critical patent/JP3226696B2/en
Publication of JPH07225326A publication Critical patent/JPH07225326A/en
Application granted granted Critical
Publication of JP3226696B2 publication Critical patent/JP3226696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信用半導体レーザ
モジュールに係り、特にギガビット帯の高速変調下で使
用される広帯域半導体レーザモジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser module for optical communication, and more particularly to a broadband semiconductor laser module used under high-speed modulation in the gigabit band.

【0002】[0002]

【従来の技術】光通信用の半導体レーザモジュールに関
する従来技術として、特開平4-267385及び特開平4-3376
88号公報等に記載された技術が知られている。
2. Description of the Related Art Japanese Patent Application Laid-Open Nos. 4-267385 and 4-3376 disclose prior art related to a semiconductor laser module for optical communication.
The technology described in Japanese Patent Publication No. 88 and the like is known.

【0003】これら従来技術は、半導体レーザモジュー
ルの広帯域化のために必要となるケース内での高周波信
号入力部の接続部寄生インダクタンスの低減にのみ着目
しており、特にギガビット帯の高速変調下で発生するケ
ース内での空洞共振に対する配慮が成されていない。
[0003] These prior arts focus only on the reduction of the parasitic inductance of the connection portion of the high-frequency signal input section in a case required for widening the bandwidth of the semiconductor laser module, and particularly under the high-speed modulation in the gigabit band. No consideration has been given to cavity resonances in the case where they occur.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、光アイ
ソレータあるいは集光用レンズを保持するための金属ホ
ルダがケース内に突出し、半導体レーザを搭載したステ
ムと接近している場合、半導体レーザモジュールの小信
号周波数応答特性において、前記ステムと前記金属ホル
ダ間の空間を介した容量結合、及びケース内部での空洞
共振による3dB以上の共振状ディップが発生し、その
共振状ディップにより帯域制限されてしまう。
In the prior art, when a metal holder for holding an optical isolator or a condensing lens protrudes into a case and approaches a stem on which a semiconductor laser is mounted, a semiconductor laser module is not provided. In the small-signal frequency response characteristic, a capacitive dip of 3 dB or more occurs due to capacitive coupling through the space between the stem and the metal holder and cavity resonance inside the case, and the band is limited by the resonant dip. .

【0005】本発明の目的は、高周波特性とトレードオ
フとなる冷却能力特性を損なうことなく前記従来技術の
問題点を解決し、小信号周波数応答特性における共振状
ディップによる帯域制限のない熱電子冷却素子付半導体
レーザモジュールを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art without deteriorating a cooling capacity characteristic which is a trade-off with a high frequency characteristic, and to provide a thermoelectric cooling without band limitation by a resonance dip in a small signal frequency response characteristic. An object of the present invention is to provide a semiconductor laser module with an element.

【0006】[0006]

【課題を解決するための手段】本発明によれば前記目的
は、半導体レーザモジュールのケース内に突出した金属
ホルダと半導体レーザを搭載したステムとを導電性板材
で接続することにより達成される。そしてその導電性板
材には熱伝導率の低いコバール材を採用し、直線距離1
mmの寸法を鍵形状とすることで長さを3mmとした。
これにより、導電性板材の熱抵抗を可能なかぎり大と
し、熱電子冷却素子上に搭載されているステムへの流入
熱量が最小限に抑えられるため、冷却能力の劣化を最小
限に抑制しつつ小信号周波数応答特性における共振状デ
ィップを消去し、3dB帯域を向上させることができ
る。
According to the present invention, the above object is achieved by connecting a metal holder protruding into a case of a semiconductor laser module and a stem mounting a semiconductor laser with a conductive plate. A Kovar material having a low thermal conductivity is used as the conductive plate material, and a linear distance of 1 mm.
The length was set to 3 mm by making the dimension of mm a key shape.
As a result, the thermal resistance of the conductive plate material is made as large as possible, and the amount of heat flowing into the stem mounted on the thermoelectric cooling element is minimized, so that deterioration of the cooling capacity is minimized. The resonance dip in the small signal frequency response characteristic can be eliminated, and the 3 dB band can be improved.

【0007】[0007]

【作用】半導体レーザモジュールのケース内に突出した
金属ホルダと半導体レーザを搭載したステムとを導電性
板材により接続することで、高周波変調時に金属ホルダ
とステム間に発生する空間を介した容量結合、及びケー
ス内部での空洞共振を防止することができ、小信号周波
数応答特性における共振状ディップによる帯域制限を受
けず、3dB帯域を向上させることができる。また、そ
の導電性板材をコバール材とし、寸法も可能なかぎり熱
抵抗が大となるよう設定することで熱電子冷却素子上に
搭載されているステムへの流入熱量が最小限に抑えられ
るため、冷却能力の劣化を抑制することができる。
By connecting a metal holder protruding into the case of a semiconductor laser module and a stem on which a semiconductor laser is mounted by a conductive plate material, capacitive coupling via a space generated between the metal holder and the stem during high-frequency modulation, In addition, the cavity resonance inside the case can be prevented, and the 3 dB band can be improved without being limited by the resonance dip in the small signal frequency response characteristics. In addition, since the conductive plate material is made of Kovar material and the dimensions are set so that the thermal resistance is as large as possible, the amount of heat flowing into the stem mounted on the thermoelectric cooling element is minimized, Deterioration of the cooling capacity can be suppressed.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1〜図5により
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0009】図1は、光アイソレータを内蔵した2.5
Gb/s用の本発明熱電子冷却素子付半導体レーザモジ
ュールの構成を示す横断面図である。
FIG. 1 shows a 2.5-inch optical isolator.
FIG. 2 is a cross-sectional view illustrating a configuration of a semiconductor laser module with a thermoelectric cooling element of the present invention for Gb / s.

【0010】半導体レーザ1より出射したビームは第1
レンズ2により平行ビーム又は擬似平行ビームに変換さ
れ、外部反射戻り光防止用の光アイソレータ3を介し第
2レンズ4により集光され、フェルール5にて保持され
た光ファイバ6に入射し、光結合される。半導体レーザ
1は、第1レンズ2と半導体レーザ1の後方出射光をモ
ニタするモニタ用フォトダイオード7と半導体レーザ1
の温度を検出するサーミスタ8と共にステム9上に搭載
固定している。
The beam emitted from the semiconductor laser 1 is a first beam.
The light is converted into a parallel beam or a quasi-parallel beam by a lens 2, condensed by a second lens 4 via an optical isolator 3 for preventing external reflected return light, and is incident on an optical fiber 6 held by a ferrule 5 to be optically coupled. Is done. The semiconductor laser 1 includes a first lens 2, a monitoring photodiode 7 for monitoring backward emission light of the semiconductor laser 1, and a semiconductor laser 1.
Is mounted and fixed on a stem 9 together with a thermistor 8 for detecting the temperature of the light.

【0011】ステム9を温度制御用熱電子冷却素子10に
搭載し、ケース11の壁面にAgろう付けされたホルダ12
に、はんだにより気密封止固定された光アイソレータ3
と一体化した第2レンズ4と第1レンズ2の光軸が合う
位置に熱電子冷却素子10を位置調整し、ケース11内には
んだ付固定している。
A stem 9 is mounted on a thermoelectric cooling element 10 for temperature control, and a holder 12 brazed to the wall of a case 11 by Ag.
Optical isolator 3 hermetically sealed and fixed with solder
The thermoelectric cooling element 10 is adjusted to a position where the optical axes of the second lens 4 and the first lens 2 integrated with each other are aligned, and is fixed in the case 11 by soldering.

【0012】ケース11は、変調速度2.5Gb/sで使
用される半導体レーザモジュールのリード形成にセラミ
ック基板13を用いた14ピンバタフライ形パッケージで
ある。RFリード14より入力されたRF信号は、入力イ
ンピーダンスが25Ωに設定されたセラミック基板13上
のRFパターン15、半導体レーザ1とのインピーダンス
整合用抵抗16及び接続用リード等を介し、半導体レーザ
1に至る。半導体レーザ1のp側が接地されているステ
ム9は、ケース11と導通されたグランドパターン17にグ
ランド接続用リード18により接続している。
The case 11 is a 14-pin butterfly type package using a ceramic substrate 13 for forming leads of a semiconductor laser module used at a modulation speed of 2.5 Gb / s. The RF signal input from the RF lead 14 is transmitted to the semiconductor laser 1 via the RF pattern 15 on the ceramic substrate 13 whose input impedance is set to 25Ω, the impedance matching resistor 16 with the semiconductor laser 1, the connection lead, and the like. Reach. The stem 9 of the semiconductor laser 1 whose p-side is grounded is connected to a ground pattern 17 electrically connected to the case 11 by a ground connection lead 18.

【0013】ケース11内にステム9を搭載する際の作業
性と、光結合効率の劣化を抑えるべく第1レンズ2と第
2レンズ4の間隔が最小となるよう、ホルダ12とステム
9間の間隔を1mmとしている。そのホルダ12とステム
9間に、コバール材からなる容量結合及び空洞共振防止
用リード19(以下、空洞共振防止用リード19と略す)を
はんだにより接続している。この空洞共振防止用リード
19の形状を鍵状とし、長さ3mm、幅0.5mm、厚さ
0.2mmとした。
The workability when mounting the stem 9 in the case 11 and the distance between the holder 12 and the stem 9 are minimized so that the distance between the first lens 2 and the second lens 4 is minimized in order to suppress the deterioration of the optical coupling efficiency. The interval is 1 mm. Between the holder 12 and the stem 9, a lead 19 for capacitive coupling and cavity resonance prevention made of Kovar material (hereinafter abbreviated as cavity resonance prevention lead 19) is connected by soldering. This lead for preventing cavity resonance
The shape of No. 19 was key-shaped, 3 mm in length, 0.5 mm in width, and 0.2 mm in thickness.

【0014】図2及び図3にそれぞれ、空洞共振防止用
リード19なし(従来品)時、空洞共振防止用リード19有
り(本実施例)時の半導体レーザモジュールの小信号周
波数応答特性実測図を示す(レーザバイアス=閾値電流
+10mA)。図2より、空洞共振防止用リード19なし
の場合、半導体レーザ1が搭載されたステム9とホルダ
12間の空洞共振により周波数2.2GHz付近に4dB
程の共振状ディップが発生し、3dB帯域幅が2.1G
Hzとなっているのに対し、図3の空洞共振防止用リー
ド19有りの場合、共振状ディップが消去され、3dB帯
域幅は4.2GHzに改善されている。
FIGS. 2 and 3 show measured small signal frequency response characteristics of the semiconductor laser module without the cavity resonance preventing lead 19 (conventional product) and with the cavity resonance preventing lead 19 (this embodiment), respectively. (Laser bias = threshold current + 10 mA). As shown in FIG. 2, when the cavity resonance preventing lead 19 is not provided, the stem 9 on which the semiconductor laser 1 is mounted and the holder 9 are provided.
4dB around 2.2GHz due to cavity resonance between 12
And a 3 dB bandwidth of 2.1 G
3, the resonance dip is eliminated and the 3 dB bandwidth is improved to 4.2 GHz when the cavity resonance preventing lead 19 shown in FIG. 3 is provided.

【0015】図4及び図5にそれぞれ、空洞共振防止用
リード19なし(従来品)時、空洞共振防止用リード19有
り(本実施例)時の半導体レーザモジュールの4次ベッ
セルフィルタを介した光送信波形実測図を示す(2.5
Gb/s、レーザバイアス=閾値電流、信号振幅=40
mAp-p)。図4の空洞共振防止用リード19なし時に比
し、図5の空洞共振防止用リード19有り時の光送信波形
は、立上り,立下りジッタが小さく、アイ開口が大とな
り、改善されていることが判る。
FIGS. 4 and 5 show light passing through the fourth-order Bessel filter of the semiconductor laser module without the cavity resonance preventing lead 19 (conventional product) and with the cavity resonance preventing lead 19 (this embodiment), respectively. The transmission waveform measurement diagram is shown (2.5
Gb / s, laser bias = threshold current, signal amplitude = 40
mAp-p). Compared to the case without the cavity resonance preventing lead 19 of FIG. 4, the optical transmission waveform with the cavity resonance preventing lead 19 of FIG. 5 has a small rise and fall jitter, a large eye opening, and is improved. I understand.

【0016】熱電子冷却素子10を冷却動作、すなわち半
導体レーザ1が搭載されたステム9(低温側)を冷却す
る動作をさせた場合、熱電子冷却素子10が吸熱した熱量
と熱電子冷却素子10の発生するジュール熱が、ケース11
(高温側)を介し外部ヒートシンクへ放熱される。半導
体レーザモジュールの冷却能力は、上記高温側の温度と
低温側温度の差で表される。本実施例の場合、空洞共振
防止用リード19のない従来の半導体レーザモジュールに
比し、高温側であるケース11にAgろう付けされたホル
ダ12より、空洞共振防止用リード19を介し、低温側のス
テム9に流入する熱量により低温側温度が上昇するた
め、冷却能力が劣化する。冷却能力劣化を最小限に抑制
するため、空洞共振防止用リード19の材質を熱伝導率の
低いコバール材とし、熱抵抗は可能なかぎり大となるよ
う長さ寸法を前記の通り設定した。コバール材の熱伝導
率は16.7W/m・℃であり、例えば銅の393W/m
・℃の約1/24である。熱抵抗rはリードの長さl、厚
さt、幅W、熱伝導率λを用いてr=l/(t・W・λ)
より求められ、長さに比例するため、空洞共振防止用リ
ード19の長さを直線距離の1mmとする場合に比し、本
実施例のように鍵形状とし、長さを3mmとした場合、
3倍となる。また、空洞共振防止用リード19を介しステ
ム9へ流入する熱量Qは、高温側温度Th,低温側温度
Tc,熱抵抗rを用いてQ=(Th−Tc)/rより求
められ、熱抵抗に反比例するため、空洞共振防止用リー
ド19の長さを1mmより3mmとすることで1/3とな
る。これにより、本実施例の半導体レーザモジュールの
冷却能力実測値は、空洞共振防止用リード19なしの従来
品に比し、1℃以下の劣化に留めることができた。
When the thermoelectric cooling element 10 is cooled, that is, the stem 9 (low temperature side) on which the semiconductor laser 1 is mounted is cooled, the amount of heat absorbed by the thermoelectric cooling element 10 and the thermoelectric cooling element 10 The Joule heat generated
(High temperature side) and is radiated to the external heat sink. The cooling capacity of the semiconductor laser module is represented by the difference between the high temperature and the low temperature. In the case of the present embodiment, as compared with the conventional semiconductor laser module without the cavity resonance preventing lead 19, the holder 12 brazed to the case 11 on the high temperature side by Ag brazing and the low temperature side through the cavity resonance preventing lead 19 The temperature on the low-temperature side rises due to the amount of heat flowing into the stem 9, so that the cooling capacity deteriorates. In order to minimize the deterioration of the cooling capacity, the cavity resonance preventing lead 19 is made of a Kovar material having a low thermal conductivity, and the length dimension is set as described above so that the thermal resistance is as large as possible. The thermal conductivity of Kovar material is 16.7 W / m · ° C., for example, 393 W / m of copper.
-About 1/24 of ° C. The thermal resistance r is calculated by using the length l, thickness t, width W, and thermal conductivity λ of the lead as r = 1 / (tW · λ).
When the length of the cavity resonance preventing lead 19 is set to a key shape and the length is set to 3 mm as in the present embodiment, as compared with the case where the length of the cavity resonance preventing lead 19 is set to 1 mm of the linear distance,
3 times. The amount of heat Q flowing into the stem 9 via the cavity resonance preventing lead 19 is obtained from Q = (Th−Tc) / r using the high temperature side Th, the low temperature side Tc, and the thermal resistance r. When the length of the cavity resonance preventing lead 19 is set to 3 mm from 1 mm, the length is reduced to 1/3. As a result, the measured cooling capacity of the semiconductor laser module of the present embodiment could be kept at 1 ° C. or less as compared with the conventional product without the cavity resonance preventing lead 19.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、冷
却能力の劣化を1℃以下に留め、高周波変調時にケース
内で発生する空洞共振を防止することができ、小信号周
波数応答特性における共振状ディップによる帯域制限を
受けず、3dB帯域を向上させることができる。
As described above, according to the present invention, the deterioration of the cooling capacity can be kept at 1 ° C. or less, the cavity resonance generated in the case at the time of high frequency modulation can be prevented, and the small signal frequency response characteristic can be improved. The 3 dB band can be improved without being limited by the band due to the resonance dip.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示す横断面図であ
る。
FIG. 1 is a cross-sectional view showing the configuration of one embodiment of the present invention.

【図2】従来品の小信号周波数応答特性の実測図であ
る。
FIG. 2 is an actual measurement diagram of a small signal frequency response characteristic of a conventional product.

【図3】本実施例の小信号周波数応答特性の実測図であ
る。
FIG. 3 is an actual measurement diagram of a small signal frequency response characteristic of the present embodiment.

【図4】従来品の光送信波形の実測図である。FIG. 4 is an actual measurement diagram of an optical transmission waveform of a conventional product.

【図5】本実施例の光送信波形の実測図である。FIG. 5 is an actual measurement diagram of an optical transmission waveform according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…半導体レーザ、2…第1レンズ、3…光アイソレー
タ、4…第2レンズ、5…フェルール、6…光ファイ
バ、7…モニタ用フォトダイオード、8…サーミスタ、
9…ステム、10…熱電子冷却素子、11…ケース、12…ホ
ルダ、13…セラミック基板、14…RFリード、15…RF
パターン、16…インピーダンス整合用抵抗、17…グラン
ドパターン、18…グランド接続用リード、19…空洞共振
防止用リード。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... 1st lens, 3 ... Optical isolator, 4 ... Second lens, 5 ... Ferrule, 6 ... Optical fiber, 7 ... Monitor photodiode, 8 ... Thermistor,
9 ... stem, 10 ... thermoelectric cooling element, 11 ... case, 12 ... holder, 13 ... ceramic substrate, 14 ... RF lead, 15 ... RF
Pattern, 16: Resistance for impedance matching, 17: Ground pattern, 18: Lead for ground connection, 19: Lead for preventing cavity resonance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−359207(JP,A) 特開 平5−323158(JP,A) 特開 平4−337688(JP,A) 実開 平5−8511(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 6/42 - 6/43 G02B 6/26 - 6/27 G02B 6/30 - 6/35 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-359207 (JP, A) JP-A-5-323158 (JP, A) JP-A-4-337688 (JP, A) 8511 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 6/42-6/43 G02B 6/26-6/27 G02B 6/30-6/35

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体レーザと、 前記半導体レーザの温度を制御する熱電子冷却素子と、 前記熱電子冷却素子上に搭載され、前記半導体レーザ
搭載したステムと、 前記 半導体レーザより出射された光を集光するレンズ
と、 前記レンズを固定され、ケース内部に突出した構造であ
る金属ホルダと、 前記ステムと前記金属ホルダを接続する導電性板材とを
有し、 前記導電性板材が、鍵形状であること を特徴とする半導
体レーザモジュール。
1. A semiconductor laserWhen, Thermoelectric cooling element for controlling the temperature of the semiconductor laserWhen,  Mounted on the thermoelectric cooling element,The semiconductor laserTo
Equipped stemWhen, Said A lens that collects light emitted from a semiconductor laser
When, The lens is fixed and projects inside the case.
Metal holderWhen,  Conductive plate material for connecting the stem and the metal holderAnd
Have The conductive plate material has a key shape Characterized by semiconductive
Body laser module.
【請求項2】請求項1において、前記導電性板材が20
W/m・℃以下の熱伝導率を有する材料により形成され
ていることを特徴とする熱電子冷却素子付半導体レーザ
モジュール。
2. The method according to claim 1 , wherein the conductive plate material is 20
A semiconductor laser module with a thermoelectric cooling element, which is formed of a material having a thermal conductivity of W / m · ° C. or less.
【請求項3】請求項1又は請求項2において、ケース内
部に突出した金属ホルダには光アイソレータが挿入固定
されたことを特徴とする熱電子冷却素子付半導体レーザ
モジュール。
3. A process according to claim 1 or in claim 2, the semiconductor laser module with thermionic cooling device, characterized in that the optical isolator is a metal holder which protrudes into the case is inserted and fixed.
JP01609894A 1994-02-10 1994-02-10 Semiconductor laser module with thermoelectric cooling element Expired - Fee Related JP3226696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01609894A JP3226696B2 (en) 1994-02-10 1994-02-10 Semiconductor laser module with thermoelectric cooling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01609894A JP3226696B2 (en) 1994-02-10 1994-02-10 Semiconductor laser module with thermoelectric cooling element

Publications (2)

Publication Number Publication Date
JPH07225326A JPH07225326A (en) 1995-08-22
JP3226696B2 true JP3226696B2 (en) 2001-11-05

Family

ID=11907047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01609894A Expired - Fee Related JP3226696B2 (en) 1994-02-10 1994-02-10 Semiconductor laser module with thermoelectric cooling element

Country Status (1)

Country Link
JP (1) JP3226696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003273109A1 (en) * 2002-12-27 2004-07-22 Aligned Technologies Inc. To-can package of high speed data communications

Also Published As

Publication number Publication date
JPH07225326A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
JP4566506B2 (en) Compact laser package with built-in temperature controller and optoelectronic module
US6841733B2 (en) Laser monitoring and control in a transmitter optical subassembly having a ceramic feedthrough header assembly
US6878875B2 (en) Small form factor optical transceiver with extended transmission range
US7210859B2 (en) Optoelectronic components with multi-layer feedthrough structure
US6911599B2 (en) Header assembly for optoelectronic devices
KR100575969B1 (en) To-can type optical module
US20050213882A1 (en) Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
US7066659B2 (en) Small form factor transceiver with externally modulated laser
US7056036B2 (en) High speed TO-can based optical module
JP4199901B2 (en) Optical transmission module
US20110085767A1 (en) Cooled Laser Module
US6404042B1 (en) Subcarrier and semiconductor device
WO2021014568A1 (en) To-can-type optical transmission module
US6852928B2 (en) Cooled externally modulated laser for transmitter optical subassembly
JP4122577B2 (en) Optical module mounting structure
JP3226696B2 (en) Semiconductor laser module with thermoelectric cooling element
JP2007025433A (en) Optical element module and optical transmitter
JP2011249447A (en) Optical module
US5812715A (en) Optoelectronic device with a coupling between a semiconductor diode laser modulator or amplifier and two optical glass fibers
JP4454233B2 (en) Optical package and optical module using the same
JP2002329920A (en) Optical module
JP2723565B2 (en) Semiconductor laser device
JPH08179170A (en) Semiconductor laser module with thermionic cooling element
JPH0557748B2 (en)
JPH09232679A (en) Semiconductor laser module and optical transmission system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees