JP3222164B2 - Imaging device - Google Patents

Imaging device

Info

Publication number
JP3222164B2
JP3222164B2 JP26697991A JP26697991A JP3222164B2 JP 3222164 B2 JP3222164 B2 JP 3222164B2 JP 26697991 A JP26697991 A JP 26697991A JP 26697991 A JP26697991 A JP 26697991A JP 3222164 B2 JP3222164 B2 JP 3222164B2
Authority
JP
Japan
Prior art keywords
image
low
pass filter
imaging
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26697991A
Other languages
Japanese (ja)
Other versions
JPH0580275A (en
Inventor
勝也 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP26697991A priority Critical patent/JP3222164B2/en
Publication of JPH0580275A publication Critical patent/JPH0580275A/en
Priority to US08/322,371 priority patent/US5444574A/en
Application granted granted Critical
Publication of JP3222164B2 publication Critical patent/JP3222164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、撮像面上の光の強度を
サンプリングして撮像する撮像素子の撮像面上に像を形
成する光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system which forms an image on an image pickup surface of an image pickup device which samples light intensity on the image pickup surface and picks up an image.

【0002】[0002]

【従来の技術】近年、テレビモニターで観察する画像を
撮像する装置には、CCD等の固体撮像素子を用いた撮
像光学系が用いられている。これら撮像装置で用いる撮
像素子は、撮像面上の光の強度分布をある周波数でサン
プリングし、光の強度を電気信号に変換しこれをテレビ
モニター上に再生する。
2. Description of the Related Art In recent years, an image pickup optical system using a solid-state image pickup device such as a CCD has been used as a device for picking up an image to be observed on a television monitor. An imaging element used in these imaging devices samples the light intensity distribution on the imaging surface at a certain frequency, converts the light intensity into an electric signal, and reproduces it on a television monitor.

【0003】しかしながら、このようにサンプリングし
て像を再生する場合、サンプリング定理によりナイキス
ト限界までの周波数しか再生できない。更にナイキスト
限界付近では、モアレと呼ばれる偽解像を生ずる。
However, when an image is reproduced by sampling as described above, only the frequency up to the Nyquist limit can be reproduced by the sampling theorem. Further, near the Nyquist limit, a pseudo-resolution called moire occurs.

【0004】そのために、ナイキスト限界付近の周波数
の像が、撮像面上で解像しないよう光学系にローパス効
果を持たせるように様々な工夫がなされている。例え
ば、水晶フィルターを用いて二重像を作ったり、位相フ
ィルターを用いて像をぼかしたりする方法がよく知られ
ている。
For this purpose, various measures have been taken so that an optical system has a low-pass effect so that an image having a frequency near the Nyquist limit is not resolved on the imaging surface. For example, there are well known methods of creating a double image using a quartz filter and blurring the image using a phase filter.

【0005】又実開昭63−24523号公報等に示さ
れているような、光束の一部が楔プリズムを通るように
して二重像を作る方法や、特開昭47−38001号公
報等に記載されているような、円錐形のプリズムで輪帯
像を形成する方法や、特開昭63−6520号公報等に
示されているように高次の球面収差を発生させて像をぼ
かす方法等がある。
A method of forming a double image by allowing a part of a light beam to pass through a wedge prism as disclosed in Japanese Utility Model Laid-Open No. 63-24523, Japanese Patent Application Laid-Open No. 47-38001, etc. And a method of forming an annular image with a conical prism as described in Japanese Patent Application Laid-Open No. 63-6520, and blurring an image by generating high-order spherical aberration as disclosed in JP-A-63-6520. There are methods.

【0006】[0006]

【発明が解決しようとする課題】上記の各方法のうち、
現在最も良く使われていると思われる水晶フィルターを
用いる方法は、点像が2点に分離するため良好なローパ
ス効果が得られる。しかし周波数空間でのカットオフが
1次元であるため、通常は複数枚の水晶フィルターが用
いられ、スペースを多く必要とし、非常に高価なものに
なる。特にイメージガイド等のサンプリングされた像を
撮像素子上に結像させる場合、多数の水晶フィルターが
必要であるため一層高価なものになる。
SUMMARY OF THE INVENTION In each of the above methods,
The method using a crystal filter which is considered to be most frequently used at present has a good low-pass effect because the point image is separated into two points. However, since the cutoff in the frequency space is one-dimensional, usually a plurality of quartz filters are used, which requires a lot of space and is very expensive. Particularly, when a sampled image such as an image guide is formed on an image sensor, a large number of crystal filters are required, so that the cost becomes higher.

【0007】又位相フィルターは、安価であるが一般に
水晶フィルターよりも性能が劣る。
Although phase filters are inexpensive, they generally have lower performance than quartz filters.

【0008】楔プリズムを用いる方法も、点像の分離が
1次元であるため水晶フィルターを用いるのと同じ欠点
を有している。
The method using a wedge prism has the same disadvantage as using a quartz filter because the point image is one-dimensionally separated.

【0009】更に高次の球面収差を利用する方法は、比
較的安価で、2次元のローパス効果が得られる。しかし
光軸近傍の光線は、高次の収差の影響をあまり受けな
い。そのために高周波成分を完全に除去できず、水晶フ
ィルターほど良好なローパス効果を得ることは困難であ
る。
The method utilizing higher order spherical aberration is relatively inexpensive and can provide a two-dimensional low-pass effect. However, rays near the optical axis are not significantly affected by higher-order aberrations. Therefore, high-frequency components cannot be completely removed, and it is difficult to obtain a good low-pass effect as compared with a quartz filter.

【0010】又円錐形のプリズムは、2次元のローパス
効果が得られ、楔プリズムや水晶フィルターのようにス
ペースを必要とせず、更に光軸近傍の光線もプリズムに
よって分離されるので高次の球面収差を用いる方法のよ
うに高周波成分が残ることがない。しかし、デフォーカ
スによって最小錯乱円径がほとんど変わらずに点像強度
分布の中心の強度が増し、結果的にMTFが上がり、良
好なローパス効果が得られない。また光学系の収差によ
り良好な点像の分離が得られない。
The conical prism has a two-dimensional low-pass effect, does not require a space like a wedge prism or a quartz filter, and furthermore, the light near the optical axis is separated by the prism. High frequency components do not remain unlike the method using aberration. However, the center diameter of the point image intensity distribution increases without substantially changing the minimum diameter of the circle of confusion due to defocusing, and as a result, the MTF increases, and a good low-pass effect cannot be obtained. Further, good point image separation cannot be obtained due to aberrations of the optical system.

【0011】本発明の目的は、安価で優れたローパス効
果の得られる屈折面を有する光学系を備えた撮像装置を
提供することにある。
An object of the present invention is to provide an image pickup apparatus provided with an optical system having a refracting surface which is inexpensive and has an excellent low-pass effect.

【0012】[0012]

【課題を解決するための手段】本発明の撮像装置は、撮
像面上の光強度をサンプリングして撮像する撮像素子の
撮像面上に像を形成する光学系を備えていて、光軸方向
をz、光軸に垂直な方向をrとした時、式(1)中の2
次以上の項のうち少なくとも一つが0でなく、且つ面の
中心部と周辺部で微係数の異なる屈折面を含むことを特
徴とする。 z=C0+C1r+C22+C33+・・・+Cnn (C1≠0)(1) ただしr2=x2+y2 、r≧0である。
Imaging apparatus of the present invention SUMMARY OF THE INVENTION is by sampling the light intensity on the image plane has an optical system for forming an image on the imaging surface of the imaging device for imaging the optical axis direction
Is z and r is the direction perpendicular to the optical axis, 2 in the equation (1)
At least one of the following terms is not 0 and
It is special to include refraction surfaces with different derivatives at the center and at the periphery.
Sign. z = C 0 + C 1 r + C 2 r 2 + C 3 r 3 +... + C n r n (C 1 ≠ 0) (1) where r 2 = x 2 + y 2 and r ≧ 0.

【0013】本発明の装置は、例えば図1に示すような
構成で、1は接眼レンズ1aを含む内視鏡の一部である
接眼部、2は前記の光学系を含んでいるアダプター、3
はテレビカメラ、4は撮像面、5はカバーガラスで、こ
の図1に示す実施例では、このカバーガラスに前記の屈
折面が形成されている。尚6,7は夫々水晶フィルタ
ー、赤外カットフィルターである。
The apparatus according to the present invention has a structure as shown in FIG. 1, for example, 1 is an eyepiece which is a part of an endoscope including an eyepiece 1a, 2 is an adapter including the optical system, 3
Is a television camera, 4 is an imaging surface, and 5 is a cover glass. In the embodiment shown in FIG. 1, the above-mentioned refraction surface is formed on this cover glass. Reference numerals 6 and 7 are a quartz filter and an infrared cut filter, respectively.

【0014】この本発明の装置に含まれる光学系に設け
られる前記の微係数が不連続な点(あるいは線)を含む
屈折面は、前記従来例の特開昭47−38001号公報
に示される楔プリズムや円錐プリズムとは異なり、例え
ば図3に示すように、面の中心部と周辺部とで微係数の
異なる形状の屈折面である。
The refracting surface provided in the optical system included in the apparatus of the present invention, which includes a point (or line) at which the differential coefficient is discontinuous, is disclosed in Japanese Patent Application Laid-Open No. 47-38001. Unlike a wedge prism or a conical prism, for example, as shown in FIG. 3, the refraction surface has a shape with different coefficients at the center and the periphery of the surface.

【0015】図15に示すように前記公開公報に示され
たプリズムにおいては、図16のように輪帯状の強度分
布がデフォーカスにより輪帯の径がほとんど変わらずに
輪帯中心部の強度が増すためにMTFが上がってしま
う。そして一般にピント調整の際最も解像の良いところ
にピントを合わせるために、良好なカットオフが得られ
ずモアレが発生してしまう。
As shown in FIG. 15, in the prism disclosed in the above-mentioned publication, as shown in FIG. MTF rises to increase. In general, since the focus is adjusted to a position where the resolution is the best during the focus adjustment, a good cutoff cannot be obtained and moire occurs.

【0016】これに対して本発明の装置では、前記のよ
うな屈折面を配置して、例えば図4に示すように光軸に
近い部分を通る光束と光軸から遠い部分を通る光束とで
結像位置を変えることによってデフォーカスを生じこれ
によりMTFが上がらないようにした。
On the other hand, in the apparatus of the present invention, the refracting surface as described above is arranged so that a light beam passing through a portion near the optical axis and a light beam passing through a portion far from the optical axis as shown in FIG. 4, for example. Defocusing was caused by changing the imaging position, thereby preventing the MTF from increasing.

【0017】上記のような面形状は、一般に複数の多項
式非球面の組合わせによって表わされる。又奇数次を含
む非球面式で表わさせる場合もあり、前記の式(1)で
表わされる。
The surface shape as described above is generally represented by a combination of a plurality of polynomial aspheric surfaces. In some cases, the expression may be expressed by an aspherical expression including an odd order, and is expressed by the above expression (1).

【0018】上記の式(1)において、C≠0の場合は
光軸上で面が滑らかに接続しない、つまり面の微係数が
不連続な点あるいは線を含むための条件である。またC
n(n≧2)がすべて0の場合、式(1)は直線になる
が、一つ以上の項が0でなければ一般に曲線になり最適
な分離像を得るための設計の自由度が増し好ましい。こ
れによって撮像面上に結像する像のMTFは、撮像素子
のナイキスト限界付近か、あるいはイメージガイド等の
サンプリング像伝送系を備えており、このサンプリング
像伝送系によって伝送された像を撮像素子上に結像させ
る場合は、サンプリング像伝送系の撮像素子上での投影
像の周波数の付近とのいずれかにカットオフをもてばよ
い。
In the above equation (1), when C ≠ 0, the condition is that the surfaces are not connected smoothly on the optical axis, that is, the surface contains a discontinuous point or line with a differential coefficient. Also C
If n (n ≧ 2) is all 0, equation (1) is a straight line, but if one or more terms are not 0, it generally becomes a curve and the degree of freedom in designing to obtain an optimal separated image increases. preferable. Thus, the MTF of an image formed on the image pickup surface is near the Nyquist limit of the image pickup device, or provided with a sampling image transmission system such as an image guide. In the case where the image is formed on the imaging device of the sampling image transmission system, a cutoff may be made at any one of the vicinity of the frequency of the projected image on the imaging device.

【0019】前記の屈折面で分割された光束は、撮像面
上で多重像(あるいは輪帯像)を作るのでローパス効果
がはたらき、モアレを防止することが出来る。この時輪
帯像が、ナイキスト限界でカットオフをはたらかせるた
めの条件は下記の通りである。 a≒0.77p ここで、aは輪帯の半径、pは撮像素子のサンプリング
のピッチである。
The light beam split by the refracting surface forms a multiple image (or an annular image) on the image pickup surface, so that a low-pass effect works and moiré can be prevented. At this time, the condition for the annular image to cut off at the Nyquist limit is as follows. a ≒ 0.77p Here, a is the radius of the annular zone, and p is the sampling pitch of the image sensor.

【0020】したがって光軸近傍での屈折面の傾き角θ
は下記の式で表わすことが出来る。 |θ|=a/{f2 ・(n−1)}={2・fn ・f2 ・(n−1)}-1 ただしnは媒質の屈折率、θは図5の(A),(B)に
示す微係数が不連続な点(あるいは線)を含む屈折面の
光軸近傍での傾き角で通常微小角でありsinθ≒θ、fn
は撮像素子またはサンプリング像伝送系のナイキスト
限界(fn =1/2p)、f2 は微係数が不連続な点
(あるいは線)を含む屈折面と撮像素子との間の光学系
の焦点距離である。
Therefore, the inclination angle θ of the refracting surface near the optical axis
Can be represented by the following equation. | Θ | = a / {f 2 · (n-1)} = {2 · f n · f 2 · (n-1)} -1 where n is the refractive index of the medium and θ is (A) in FIG. , (B) is the inclination angle near the optical axis of the refraction surface including the point (or line) where the derivative is discontinuous, which is usually a small angle, sin θ ≒ θ, f n
Is the Nyquist limit (f n = 1 / p) of the image sensor or the sampling image transmission system, and f 2 is the focal length of the optical system between the refraction surface including a point (or line) where the derivative is discontinuous and the image sensor. It is.

【0021】このときθは、あくまで光軸近傍の光線と
ナイキスト限界との関係を表わすもので、光学系全体の
カットオフ周波数を表わすものではないが光学系で発生
する収差を考慮しても、θは次の式(2)を満足するこ
とが望ましい。 {0.2・fn・f2・(n−1)}-1≧|θ|≧{10・fn・f2・(n−1)}-1 (2) 通常、θは微小であるので、瞳径の小さい光学系の場
合、面の隆起の高さあるいはくぼみの深さが非常に小に
なり製造が困難であったり、ばらつきにより精度を確保
できない場合がある。このような場合、上記の微係数が
不連続な点(あるいは線)を含む屈折面を平面あるいは
曲面との接合面にすれば、式(2)の(n−1)が(n
−nb )となり、θの値が大きくなるため、面の隆起の
高さあるいはくぼみの深さを大にすることができ望まし
い。尚nb は、接着剤の屈折率である。
At this time, θ merely represents the relationship between the light near the optical axis and the Nyquist limit, and does not represent the cutoff frequency of the entire optical system. θ desirably satisfies the following equation (2). {0.2 ・ f n・ f 2・ (n-1)} −1 ≧ │θ│ ≧ {10 ・ f n・ f 2・ (n−1)} −1 (2) Since θ is usually small, In the case of an optical system having a small pupil diameter, the height of the protuberance on the surface or the depth of the depression becomes extremely small, which makes it difficult to manufacture, or the accuracy cannot be ensured due to variations. In such a case, if the refraction surface including a point (or line) at which the above-mentioned differential coefficient is discontinuous is set as a joint surface with a flat surface or a curved surface, (n-1) of the equation (2) becomes (n).
−n b ), and the value of θ increases, so that the height of the protuberance of the surface or the depth of the depression can be increased, which is desirable. Note that n b is the refractive index of the adhesive.

【0022】又θと式(1)におけるC1 との間には、
ほぼ次の関係が成立つ。 C1 =tan θ≒θ 更に、上記の微係数が不連続な点(あるいは線)を含む
屈折面を瞳近傍に配置すると、全画面にわたって良好な
ローパス効果が働き望ましい。この時、上記微係数が不
連続な点(あるいは線)を含む屈折面、または前記の屈
折面を含むプリズム(レンズ)は、光軸に対し多少偏芯
していてもよい。それは、瞳近傍で多少偏芯していても
点像の分離にはそれ程大きな影響を与えることはなく、
ゴーストの防止にもなるからである。
Also, between θ and C 1 in equation (1),
Almost the following relationship holds. C 1 = tan θ ≒ θ Further, if a refraction surface including a point (or line) where the above-mentioned differential coefficient is discontinuous is arranged in the vicinity of the pupil, a favorable low-pass effect works over the entire screen, which is desirable. At this time, the refracting surface including a point (or line) at which the differential coefficient is discontinuous or the prism (lens) including the refracting surface may be slightly eccentric with respect to the optical axis. That is, even if it is slightly eccentric near the pupil, it does not significantly affect the separation of point images,
This is because it also prevents ghosts.

【0023】又この微係数が不連続な点(あるいは線)
を含む屈折面が回転対称であれば、2次元的にMTFを
操作することが出来、ローパスフィルターの枚数を削減
することが出来る。
A point (or line) at which the derivative is discontinuous
If the refraction surface including is rotationally symmetric, the MTF can be operated two-dimensionally, and the number of low-pass filters can be reduced.

【0024】また水平方向と垂直方向のナイキスト限界
の異なる撮像素子を使用する場合は、図6に示されるよ
うなアナモルフィックなローパスフィルターを使用する
ことにより1枚のローパスフィルターで水平方向と垂直
方向のナイキスト限界付近にカットオフを与えることが
出来効果的である。尚図6において光軸方向をz軸とし
た時(A)はyz断面(垂直断面)、(B)はxz断面
(水平断面)である。 このアナモフィックな面は、次
の式で表わされる。 z=A0 +A1 x+B1 y+A22 +B22 +A33 +B33 +・・・Ann +Bnn (A1 ≠0またはB1 ≠0) 上記の屈折面は、必要に応じて光軸のまわりに回転させ
て用いてもよい。
When an image sensor having a different Nyquist limit between the horizontal direction and the vertical direction is used, an anamorphic low-pass filter as shown in FIG. It is effective to provide a cutoff near the Nyquist limit in the direction. In FIG. 6, when the optical axis direction is the z-axis, (A) is a yz section (vertical section) and (B) is an xz section (horizontal section). This anamorphic surface is represented by the following equation. z = A 0 + A 1 x + B 1 y + A 2 x 2 + B 2 y 2 + A 3 x 3 + B 3 y 3 + ··· A n x n + B n y n (A 1 ≠ 0 or B 1 ≠ 0) above refraction The surface may be rotated around the optical axis as needed.

【0025】ファイバースコープにテレビカメラを取付
けてテレビモニター上の像を観察するシステムの場合、
一般にファイバースコープによってイメージガイドが異
なるためにテレビカメラの撮像素子上に結像されるイメ
ージガイドの周波数が異なる。そのため使用するファイ
バースコープのすべてに対してモアレを除去出来るよう
にすることは困難である。
In the case of a system in which a television camera is attached to a fiberscope and an image on a television monitor is observed,
Generally, since the image guide differs depending on the fiberscope, the frequency of the image guide formed on the image sensor of the television camera differs. Therefore, it is difficult to remove moiré from all the fiberscopes used.

【0026】上記のようなシステムにおいては、ファイ
バースコープとテレビカメラの組合わせに応じて最適な
ローパスフィルターを使うことが望ましい。そのために
例えばファイバースコープとテレビカメラとを接続する
アダプターを交換可能にし、アダプター内にイメージガ
イドの周波数に合わせた本発明のローパスフィルターを
配置すればよい。又ファイバースコープ内にそのイメー
ジファイバーに適したローパスフィルターを配置しても
よい。
In the above system, it is desirable to use an optimum low-pass filter according to the combination of the fiberscope and the television camera. For this purpose, for example, the adapter for connecting the fiberscope and the television camera can be exchanged, and the low-pass filter of the present invention that matches the frequency of the image guide can be arranged in the adapter. Further, a low-pass filter suitable for the image fiber may be arranged in the fiber scope.

【0027】またリレーレンズを備えた硬性鏡とファイ
バースコープとを同じシステムで使用する場合、ファイ
バースコープ用のローパスフィルターを硬性鏡で用いる
と、必要以上に画質を低下させることになる。逆に硬性
鏡用のローパスフィルターを、ファイバースコープと組
合わせて使用すると、モアレが発生してしまう。
When a rigid scope having a relay lens and a fiberscope are used in the same system, the use of a low-pass filter for the fiberscope in the rigid scope will lower the image quality more than necessary. Conversely, when a low-pass filter for a rigid endoscope is used in combination with a fiberscope, moire occurs.

【0028】したがって、本発明のローパスフィルター
を交換可能とするか、又は本発明のローパスフィルター
を含むアダプターを交換可能にすれば、同一システム内
で、硬性鏡とファイバースコープとを最適な画質で使い
分けることが可能になる。更に、アダプター内かテレビ
カメラ内に配置された本発明のモアレ除去フィルターを
交換可能に配置すれば、安価で最適なシステムが得られ
る。
Therefore, if the low-pass filter of the present invention can be replaced or the adapter including the low-pass filter of the present invention can be replaced, the rigid endoscope and the fiberscope can be properly used in the same system with optimum image quality. It becomes possible. Furthermore, if the moiré removal filter of the present invention disposed in the adapter or the television camera is replaceably disposed, an inexpensive and optimal system can be obtained.

【0029】本発明のローパスフィルターは、複数枚同
時に使用することや水晶フィルター等の他のローパスフ
ィルターと組合わせて使用することも可能である。これ
は必要なローパス効果が、使用するシステムによって異
なっているためで、特にイメージガイドなどでサンプリ
ングされた像を撮像素子上に結像させる場合等は、サン
プリング周波数が異なるため、多くのローパスフィルタ
ーを要するためである。例えば、カラーモザイクフィル
ター付きCCD等は、モアレが出る周波数が方向性を有
する。そのため強いモアレがでる水平方向の色のサンプ
リング周波数付近は、水晶フィルターでMTFを落と
し、また6方稠密イメージガイドのサンプリング周波数
は、60゜刻みで同位相なので、本発明によるローパス
フィルターで、MTFを落とせば効果的であり、イメー
ジガイドの繊維間距離φとCとの関係はほぼ下記の式
で表わせる。 0.5×φ×sin(π/3)×β=C×f×(n−1)×2 ここで、βは撮像素子上への投影倍率である。又前述の
ようにローパスフィルター(屈折面)が接合面の時は、
上記式で(n−1)は(n−n)になる。
The low-pass filter of the present invention can be used simultaneously with a plurality of filters, or can be used in combination with another low-pass filter such as a crystal filter. This is because the required low-pass effect differs depending on the system used.In particular, when an image sampled by an image guide or the like is formed on an image sensor, the sampling frequency is different. This is necessary. For example, in a CCD or the like with a color mosaic filter, the frequency at which moiré is emitted has directionality. Therefore, near the sampling frequency of the horizontal color where strong moiré appears, the MTF is dropped by the crystal filter, and the sampling frequency of the six-way dense image guide is in phase at intervals of 60 °, so that the MTF is reduced by the low-pass filter according to the present invention. Otose if an effective, expressed in almost the following equation the relationship between fiber distance φ and C 1 of the image guide. 0.5 × φ × sin (π / 3) × β = C 1 × f 2 × (n−1) × 2 where β is a projection magnification on the image sensor. Also, as mentioned above, when the low-pass filter (refractive surface) is the joint surface,
In the above equation, (n-1) becomes (n- nb ).

【0030】ローパス効果は、光学系の収差の影響も受
けるためC1の値は、上記式を厳密に満たす必要はな
く、実用上は、下記の式を満足すればよい。 5×φ×sin(π/3) ×β=C1×f2 ×(n-1)×2≧0.1×φ×sin(π/3) ×β また、本発明のローパスフィルターをレンズと一体化す
れば、更に価格の減少になり望ましい。
The low-pass effect, the value of C 1 to receive the influence of the aberration of the optical system, it is not necessary to meet strict the formula, practically, it is sufficient to satisfy the following equation. 5 × φ × sin (π / 3) × β = C 1 × f 2 × (n-1) × 2 ≧ 0.1 × φ × sin (π / 3) × β Also, the low-pass filter of the present invention is integrated with the lens. It is desirable to further reduce the price.

【0031】[0031]

【実施例】次に、本発明の実施例を示す。Next, examples of the present invention will be described.

【0032】図1は、本発明の実施例の構成を示すもの
で、例えば内視鏡(接眼部1)とテレビカメラ3との間
に着脱可能に配置されたアダプター2で、この内視鏡用
テレビアダプターに図7に示す断面形状を持つ回転対称
なローパスフィルターを使用したものである。この図7
に示すローパスフィルターは、光軸上以外の面が滑らか
なので光の散乱が少なくフレアーが発生しにくく好まし
い。
FIG. 1 shows a configuration of an embodiment of the present invention. For example, an adapter 2 which is detachably mounted between an endoscope (eyepiece 1) and a television camera 3 is used for the endoscope. The mirror television adapter uses a rotationally symmetric low-pass filter having the cross-sectional shape shown in FIG. This FIG.
The low-pass filter shown in (1) is preferable because the surface other than on the optical axis is smooth, so that light scattering is small and flare hardly occurs.

【0033】又テレビカメラ3内には、図8又は図9に
示すようなトラップライン10を持つ水晶フィルターが
配置されている。又アダプター中の光学素子のローパス
フィルターは、第1レンズ(カバーガラス)で、その屈
折面には、奇数次を含む非球面形状の回転対称な面にな
っている。このローパスフィルターによる撮像面におけ
る周波数空間でのトラップラインは、図10に示すよう
に、撮像面上に投影されるイメージガイド端面のサンプ
リング周波数に一致している。尚図中11がイメージガ
イドのサンプリングポイント、12がトップラインであ
る。
A quartz filter having a trap line 10 as shown in FIG. 8 or 9 is arranged in the television camera 3. The low-pass filter of the optical element in the adapter is a first lens (cover glass), and the refraction surface of the low-pass filter has an aspherical shape including odd-numbered orders. As shown in FIG. 10, the trap line in the frequency space on the imaging plane by the low-pass filter matches the sampling frequency of the end face of the image guide projected on the imaging plane. In the figure, 11 is the sampling point of the image guide, and 12 is the top line.

【0034】このような構成にすれば、異なるサンプリ
ング周波数を持つ内視鏡と組合わせた場合でも、最適な
カットオフ周波数を持つアダプターと組合わせることが
出来るので望ましい。またローパスフィルター(カバー
ガラス)が交換可能であれば、一つのアダプターで複数
の内視鏡に対応出来るので更に望ましい。
Such a configuration is desirable because it can be combined with an adapter having an optimum cutoff frequency even when combined with an endoscope having a different sampling frequency. If the low-pass filter (cover glass) is replaceable, it is more preferable because one adapter can be used for a plurality of endoscopes.

【0035】この実施例のアダプターは、ズーム機能を
備えており、ズーミングにより撮像面上でのイメージガ
イドのサンプリング周波数が変わる。この場合、ローパ
スフィルターを変倍光学系よりも前に配置すれば、撮像
面上でのイメージガイドのサンプリング周波数と、ロー
パスフィルターによるトップラインとは常に一致し、ど
の倍率でもモアレの出にくい好適なシステムになし得
る。
The adapter of this embodiment has a zoom function, and the sampling frequency of the image guide on the imaging surface changes by zooming. In this case, if the low-pass filter is arranged before the variable-power optical system, the sampling frequency of the image guide on the imaging surface always coincides with the top line by the low-pass filter, so that moiré is less likely to occur at any magnification. System can do.

【0036】図11,図12は、夫々実施例1のワイド
端およびテレ端におけるMTFを示す。ただし水晶フィ
ルターは考慮していない。
FIGS. 11 and 12 show MTFs at the wide end and the telephoto end, respectively, according to the first embodiment. However, the crystal filter is not considered.

【0037】この実施例で用いるローパスフィルター
は、上記の図7に示すもののほか、図3、図6、図13
に示すものが用いられる。又、図14のようなローパス
フィルターも考えられる。
The low-pass filters used in this embodiment are the same as those shown in FIG.
The following are used. Further, a low-pass filter as shown in FIG. 14 is also conceivable.

【0038】図2は、本発明の実施例2の構成を示す。
この実施例は、テレビカメラの対物レンズ中の絞りの後
に前述の屈折面を設けた例で、図3,図6,図7等のい
ずれのタイプのローパスフィルターを用いてもよい。
FIG. 2 shows the configuration of the second embodiment of the present invention.
This embodiment is an example in which the aforementioned refracting surface is provided after the stop in the objective lens of the television camera, and any type of low-pass filter shown in FIGS. 3, 6, and 7 may be used.

【0039】次に実施例1およびこの実施例で用いる各
ローパスフィルターのデーターを示す。 実施例1 f=22.636〜42.793 ,F/4.9 〜9.3 ,物体距離=-1000 r1 =∞(絞り) d1 =0.484 r2 =∞ d2 =0.8 n2 =1.51633 ν2 =64.15 r3 =∞ d3 =2.8 r4 =∞ d4 =1 n4 =1.51633 ν4 =64.15 r5 =∞ d5 =3.1 r6 =13.71 d6 =1.37 n6 =1.72 ν6 =50.25 r7 =-13.71 d7 =1 n7 =1.78472 ν7 =25.71 r8 =∞ d8 =5.134 〜7.703 r9 =-6.812 d9 =1.5 n9 =1.84666 ν9 =23.78 r10=-3.705 d10=0.8 n10=1.62374 ν10=47.1 r11=8.719 d11=7.527 〜1.251 r12=18.929 d12=2.76 n12=1.62041 ν12=60.06 r13=-13.442 d13=0.2 r14=9.197 d14=4.71 n14=1.51633 ν14=64.15 r15=-9.197 d15=0.8 n15=1.85026 ν15=32.28 r16=23.081 d16=2.171 〜5.879 r17=∞ d17=1 n17=1.51633 ν17=64.15 r18=∞ 屈折面(r5 )の形状 (A)[図3に対応するローパスフィルターのデータ] 0<r≦1 ,C0 = 0 ,C1 =8.2 ×10-4 ,1<r≦2 C0 =8.2 ×10-4 ,C1 =-8.2×10-4 (B)[図7に対応するローパスフィルターのデータ1] 0<r≦2.2 ,C0 = 0 ,C1 = 6.21340780482349713×10-42 =-1.11831431665536618×10-3 ,C3 = 1.72326254774251052×10-24 =-7.4947015797950739 ×10-2 ,C5 = 0.15375365501776678 C6 =-0.17470277510871939 ,C7 = 0.11630783747263494 C8 =-4.52714464390924533×10-2 ,C9 = 9.56245557825196896×10-310=-8.48110854637978561×10-4 (C)[図7に対応するローパスフィルターのデータ2] 0<r≦1.9 ,C0 = 0 ,C1 = 6.98116188060607758×10-42 = 3.16776369268199085×10-5 ,C3 =-2.53997915527410557×10-44 = 1.69910819567360878×10-3 ,C5 =-1.00618592831366177×10-26 = 2.59231882276316659×10-2 ,C7 =-3.17627108805453862×10-28 = 1.9706279862760988 ×10-2 ,C9 =-6.01906185353107658×10-310= 7.21487026929249018×10-4 (D)[図7に対応するローパスフィルターのデータ3] 0<r≦1.9 ,C0 = 0 ,C1 = 5.98410923155050407×10-42 = 2.67892063030759041×10-5 ,C3 =-2.15027456191388931×10-44 = 1.4457242736981412 ×10-3 ,C5 =-8.60047940280224323×10-36 = 2.21876770919958392×10-2 ,C7 =-2.7198850592359095 ×10-28 = 1.6878252736166768 ×10-2 ,C9 =-5.15576206337112989×10-310= 6.180304607001828×10-4 (E)[図7に対応するローパスフィルターのデータ4] 0<r≦2.2 ,C0 = 0 ,C1 = 5.99973411495760274×10-42 = 7.24078912223179768×10-7 ,C3 =-9.50298609445933418×10-64 = 1.28239522689032291×10-4 ,C5 =-1.09084425624676046×10-36 = 3.41265021400184634×10-3 ,C7 =-4.60857251099639799×10-38 = 2.9131337750895013 ×10-3 ,C9 =-8.65112114233603337×10-410= 9.80516170458266827×10-5 (F)[図7に対応するローパスフィルターのデータ5] 0<r≦2.2 ,C0 = 0 ,C1 =-6.21386025668877481×10-42 = 1.11903042234138932×10-3 ,C3 =-1.72370859561942237×10-24 = 7.49614215496832575×10-2 ,C5 =-0.153780579745271 C6 = 0.17473340572566055 ,C7 =-0.1163293334441247 C8 = 4.52805238737387303×10-2 ,C9 =-9.56456858123039266×10-310= 8.48319025793002385×10-4 (G)[図7に対応するローパスフィルターのデータ6] 0<r≦1.9 ,C0 = 0 ,C1 = 7.29467950111891425×10-42 =-7.20406256342096506×10-3 ,C3 = 0.11227931692366647 C4 =-0.48029263512608256 ,C5 = 0.97855628529132503 C6 =-1.1214666672199971 ,C7 = 0.76512149197889504 C8 =-0.30918978501733992 ,C9 = 6.84811578855889364×10-210=-6.41739833484116645×10-3 (H)[図6に対応するローパスフィルターのデータ] 0<r≦1 ,A0 = 0 ,A1 = 0.5×10-3 ,B1 =0.45×10-3 1<r≦2 ,A0 =z(x2 +y2 =1の時) ,A1 =-0.5×10-31 =-0.45 ×10-3 (I)[図13に対応するローパスフィルターのデータ] 0<r≦2.2 ,C0 = 0 ,C1 = 1.18202302586474311×10-32 = 1.02432495935523004×10-3 ,C3 =-6.20002963466144939×10-34 = 1.52073827862137124×10-2 ,C5 =-1.88737777155327342×10-26 = 1.30665516375023426×10-2 ,C7 =-5.32356937854670548×10-38 = 1.27413320587890262×10-3 ,C9 =-1.66204863233887403×10-410= 9.1386676289853178 ×10-6 上記データー中r1 ,r2 ,・・・は各面の曲率半径、
1 ,d2 ,・・・は面間隔、n1 ,n2 ,・・・はレ
ンズ等の媒質の屈折率、ν1 ,ν2 ,・・・は同じくア
ッベ数である。又r5 は微係数が不連続な点(あるいは
線)を含む屈折面、r1 〜r3 は内視鏡の出射端側のデ
ーターである。
Next, data of the low pass filter used in the first embodiment and this embodiment will be shown. Example 1 f = 22.636 to 42.793, F / 4.9 to 9.3, object distance = -1000 r 1 = ∞ (aperture) d 1 = 0.484 r 2 = ∞ d 2 = 0.8 n 2 = 1.51633 ν 2 = 64.15 r 3 = D d 3 = 2.8 r 4 = ∞ d 4 = 1 n 4 = 1.51633 ν 4 = 64.15 r 5 = ∞ d 5 = 3.1 r 6 = 13.71 d 6 = 1.37 n 6 = 1.72 ν 6 = 50.25 r 7 = -13.71 d 7 = 1 n 7 = 1.78472 v 7 = 25.71 r 8 = ∞ d 8 = 5.134 to 7.703 r 9 = -6.812 d 9 = 1.5 n 9 = 1.84666 v 9 = 23.78 r 10 = -3.705 d 10 = 0.8 n 10 = 1.62374 ν 10 = 47.1 r 11 = 8.719 d 11 = 7.527 ~1.251 r 12 = 18.929 d 12 = 2.76 n 12 = 1.62041 ν 12 = 60.06 r 13 = -13.442 d 13 = 0.2 r 14 = 9.197 d 14 = 4.71 n 14 = 1.51633 ν 14 = 64.15 r 15 = -9.197 d 15 = 0.8 n 15 = 1.85026 ν 15 = 32.28 r 16 = 23.081 d 16 = 2.171 to 5.879 r 17 = ∞ d 17 = 1 n 17 = 1.51633 ν 17 = 64.15 r 18 = ∞ shape of refraction surface (r 5 ) (A) [corresponding to FIG. Low-pass filter data] 0 <r ≦ 1, C 0 = 0, C 1 = 8.2 × 10 −4 , 1 <r ≦ 2 C 0 = 8.2 × 10 −4 , C 1 = −8.2 × 10 −4 ( B) [Data 1 of low-pass filter corresponding to FIG. 7] 0 <r ≦ 2.2, C 0 = 0, C 1 = 6.21340780482349713 × 10 -4 C 2 = −1.11831431665536618 × 10 -3 , C 3 = 1.72326254774251052 × 10 − 2 C 4 = -7.4947015797950739 × 10 -2 , C 5 = 0.15375365501776678 C 6 = -0.17470277510871939, C 7 = 0.11630783747263494 C 8 = -4.52714464390924533 × 10 -2 , C 9 = 9.56245557825196896 × 10 -3 C 10 = -8.481108546 -4 (C) [Low-pass filter data 2 corresponding to FIG. 7] 0 <r ≦ 1.9, C 0 = 0, C 1 = 6.98116188060607758 × 10 -4 C 2 = 3.176776369268199085 × 10 -5 , C 3 = -2.53997915527410557 × 10 -4 C 4 = 1.69910819567360878 × 10 -3 , C 5 = -1.00618592831366177 × 10 -2 C 6 = 2.59231882276316659 × 10 -2 , C 7 = -3.1762710880 5453862 × 10 -2 C 8 = 1.9706279862760988 × 10 -2 , C 9 = -6.01906185353107658 × 10 -3 C 10 = 7.21487026929249018 × 10 -4 (D) [Low-pass filter data 3 corresponding to FIG. 7] 0 <r ≦ 1.9, C 0 = 0, C 1 = 5.98410923155050407 × 10 -4 C 2 = 2.67892063030759041 × 10 -5, C 3 = -2.15027456191388931 × 10 -4 C 4 = 1.4457242736981412 × 10 -3, C 5 = -8.60047940280224323 × 10 - 3 C 6 = 2.21876770919958392 × 10 -2 , C 7 = -2.7198850592359095 × 10 -2 C 8 = 1.6878252736166768 × 10 -2 , C 9 = -5.15576206337112989 × 10 -3 C 10 = 6.180304607001828 × 10 -4 (E) [Figure] Lowpass filter data 4 corresponding to 7] 0 <r ≦ 2.2, C 0 = 0, C 1 = 5.99973411495760274 × 10 -4 C 2 = 7.24078912223179768 × 10 -7 , C 3 = -9.50298609445933418 × 10 -6 C 4 = 1.28239522689032291 × 10 -4 , C 5 = -1.09084425624676046 × 10 -3 C 6 = 3.41265021400184634 × 10 -3 , C 7 = -4.60857251099639799 × 10 -3 C 8 = 2.9131337750895013 × 10 -3 , C 9 = -8.65112114233603337 × 10 -4 C 10 = 9.80516170458266827 × 10 -5 (F) [Low-pass filter data 5 corresponding to FIG. 7] 0 <r ≦ 2.2, C 0 = 0, C 1 = -6.21386025668877481 × 10 -4 C 2 = 1.11903042234138932 × 10 -3 , C 3 = -1.72370859561942237 × 10 -2 C 4 = 7.49614215496832575 × 10 -2 , C 5 = -0.153780579745271 C 6 = 0.17473340572566055, C 7 = −0.1163293334441247 C 8 = 4.52805238737387303 × 10 −2 , C 9 = −9.56456858123039266 × 10 −3 C 10 = 8.48319025793002385 × 10 −4 (G) [Low-pass filter data 6 corresponding to FIG. 7] 0 <r ≦ 1.9, C 0 = 0, C 1 = 7.29467950111891425 × 10 -4 C 2 = -7.20406256342096506 × 10 -3, C 3 = 0.11227931692366647 C 4 = -0.48029263512608256, C 5 = 0.97855628529132503 C 6 = -1.1214666672199971, C 7 = 0.76512149197889504 C 8 = -0.30918978501733992, C 9 = 6.84811578855889364 × 10 -2 10 = -6.41739833484116645 × 10 -3 (H ) [ data of the low-pass filter corresponding to FIG. 6] 0 <r ≦ 1, A 0 = 0, A 1 = 0.5 × 10 -3, B 1 = 0.45 × 10 -3 1 <r ≦ 2, A 0 = z (when x 2 + y 2 = 1), A 1 = −0.5 × 10 −3 B 1 = −0.45 × 10 −3 (I) [Low-pass filter corresponding to FIG. 0 <r ≦ 2.2, C 0 = 0, C 1 = 1.18202302586474311 × 10 -3 C 2 = 1.02432495935523004 × 10 -3 , C 3 = -6.20002963466144939 × 10 -3 C 4 = 1.52073827862137124 × 10 -2 , C 5 = -1.88737777155327342 × 10 -2 C 6 = 1.30665516375023426 × 10 -2 , C 7 = -5.32356937854670548 × 10 -3 C 8 = 1.27413320587890262 × 10 -3 , C 9 = -1.66204863233887403 × 10 -4 C 10 = 9.1386676289853178 × 10 -6 In the above data, r 1 , r 2 , ... are the curvature radii of each surface,
d 1, d 2, ··· surface separation, n 1, n 2, ··· is a refractive index of a medium such as a lens, ν 1, ν 2, ··· is also Abbe number. The r 5 is a refractive surface derivative contains a discontinuous point (or line), r 1 ~r 3 is a data of the exit end of the endoscope.

【0040】上記実施例の撮像素子の画素ピッチはPx
=0.0096(水平方向)、Py =0.0099(垂
直方向)である。
The pixel pitch of the image sensor of the above embodiment is Px
= 0.0096 (horizontal direction) and Py = 0.0099 (vertical direction).

【0041】又使用するローパスフィルターの屈折面の
例として(A)〜(I)の9種類示してあり、いずれも
良好なローパス効果が得られる。
Nine types of refraction surfaces (A) to (I) are shown as examples of the refraction surface of the low-pass filter to be used, and a good low-pass effect can be obtained in each case.

【0042】[0042]

【発明の効果】本発明の撮像装置は、安価なローパスフ
ィルターを用いたもので使用するシステムに応じた最適
なローパス効果が得られる。
According to the image pickup apparatus of the present invention, an inexpensive low-pass filter is used, and an optimum low-pass effect according to a system to be used can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の構成を示す図FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】本発明の実施例2の構成を示す図FIG. 2 is a diagram showing a configuration of a second embodiment of the present invention.

【図3】本発明で用いるローパスフィルターの断面図FIG. 3 is a cross-sectional view of a low-pass filter used in the present invention.

【図4】上記ローパスフィルターを用いた時の結像状況
を示す図
FIG. 4 is a diagram showing an image formation state when the above low-pass filter is used.

【図5】上記ローパスフィルターの不連続点付近の傾き
角を示す図
FIG. 5 is a diagram showing an inclination angle near a discontinuous point of the low-pass filter.

【図6】本発明で用いる他のローパスフィルターの断面
FIG. 6 is a sectional view of another low-pass filter used in the present invention.

【図7】本発明の実施例1で用いる他のローパスフィル
ターの断面図
FIG. 7 is a sectional view of another low-pass filter used in Embodiment 1 of the present invention.

【図8】テレビカメラ内に配置された水晶フィルターの
トップラインを示す図
FIG. 8 is a diagram showing a top line of a crystal filter arranged in a television camera.

【図9】テレビカメラ内に配置された他の水晶フィルタ
ーのトップラインを示す図
FIG. 9 is a diagram showing a top line of another crystal filter arranged in the television camera.

【図10】本発明で用いるローパスフィルターのトップ
ラインを示す図
FIG. 10 is a diagram showing a top line of a low-pass filter used in the present invention.

【図11】実施例1のワイド端におけるMTFを示す図FIG. 11 is a diagram illustrating an MTF at a wide end according to the first embodiment.

【図12】実施例1のテレ端におけるMTFを示す図FIG. 12 is a diagram illustrating an MTF at a telephoto end according to the first embodiment.

【図13】本発明で用いる他のローパスフィルターの図FIG. 13 is a diagram of another low-pass filter used in the present invention.

【図14】本発明で用いる更に他のローパスフィルター
の図
FIG. 14 is a diagram of still another low-pass filter used in the present invention.

【図15】従来の楔プリズムを用いた時の結像状況を示
す図
FIG. 15 is a diagram showing an image forming situation when a conventional wedge prism is used.

【図16】上記プリズムを用いた時の空間周波数特性を
示す図
FIG. 16 is a diagram showing a spatial frequency characteristic when the above prism is used.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 27/46 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 27/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光強度をサンプリングして撮像する撮像
素子の撮像面上に像を形成する光学系を含む撮像装置に
おいて、前記光学系中に以下の式で表わされるアナモル
フィックな屈折面を有し、該屈折面により点像を分離す
ることを特徴とする撮像装置。 z=A0 +A1 x+B1 y+A22 +B22 +A33 +B33 +・・・+Ann+Bnn (A1 ≠0かつ1 ≠0) ただし、zは光軸方向、x、yは光軸に垂直な方向であ
る。
1. A imaging apparatus including an optical system which samples the light intensity to form an image on the imaging surface of the imaging device for imaging, the anamorphic refractive surface represented by the following formula in the optical system An imaging apparatus, comprising: a point image separated by the refraction surface. z = A 0 + A 1 x + B 1 y + A 2 x 2 + B 2 y 2 + A 3 x 3 + B 3 y 3 + ··· + A n x n + B n y n (A 1 ≠ 0 and B 1 ≠ 0) However, z Is an optical axis direction, and x and y are directions perpendicular to the optical axis.
【請求項2】 光強度をサンプリングして撮像する撮像
素子の撮像面上に像を形成する光学系を含む撮像装置に
用いられる光学素子であって、以下の式で表わされるア
ナモルフィックな屈折面を有し、該屈折面により点像を
分離することを特徴とする光学素子。 z=A0 +A1 x+B1 y+A22 +B22 +A33 +B33 +・・・+Ann+Bnn (A1 ≠0かつ1 ≠0) ただし、zは光軸方向、x、yは光軸に垂直な方向であ
る。
2. An optical element used in an image pickup apparatus including an optical system for forming an image on an image pickup surface of an image pickup element which samples light intensity and picks up an image, wherein the anamorphic refraction is represented by the following equation: An optical element having a surface and separating a point image by the refraction surface. z = A 0 + A 1 x + B 1 y + A 2 x 2 + B 2 y 2 + A 3 x 3 + B 3 y 3 + ··· + A n x n + B n y n (A 1 ≠ 0 and B 1 ≠ 0) However, z Is an optical axis direction, and x and y are directions perpendicular to the optical axis.
JP26697991A 1991-09-19 1991-09-19 Imaging device Expired - Fee Related JP3222164B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26697991A JP3222164B2 (en) 1991-09-19 1991-09-19 Imaging device
US08/322,371 US5444574A (en) 1991-09-19 1994-10-13 Electronic image pickup apparatus equipped with means for eliminating moire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26697991A JP3222164B2 (en) 1991-09-19 1991-09-19 Imaging device

Publications (2)

Publication Number Publication Date
JPH0580275A JPH0580275A (en) 1993-04-02
JP3222164B2 true JP3222164B2 (en) 2001-10-22

Family

ID=17438375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26697991A Expired - Fee Related JP3222164B2 (en) 1991-09-19 1991-09-19 Imaging device

Country Status (1)

Country Link
JP (1) JP3222164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459030B (en) 2008-02-15 2014-11-01 Omnivision Tech Inc Imaging optics, optical imaging system and computer-based method for providing non-monotonic wavefront phase
JP4743553B2 (en) * 2008-09-29 2011-08-10 京セラ株式会社 Lens unit, imaging device, and electronic device
JP2010145614A (en) * 2008-12-17 2010-07-01 Nikon Corp Optical low pass filter and camera
CN112731638B (en) * 2020-12-31 2022-08-16 上海澳华内镜股份有限公司 Endoscope optical system

Also Published As

Publication number Publication date
JPH0580275A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US5936773A (en) Image-forming optical apparatus having a decentered optical surface
US7692863B2 (en) Zoom lens system, imaging device and camera
JP4509559B2 (en) Wide-angle imaging optical system, wide-angle imaging device including the same, surveillance imaging device, in-vehicle imaging device, and projection device
JP5151068B2 (en) Lens system and optical apparatus having the same
JP6882087B2 (en) Lens device and imaging device
JP2000267002A (en) Optical system
EP1394591B1 (en) Zoom lens and image pickup apparatus
JP2009186791A (en) Imaging optical system and imaging apparatus comprising the same
JP2582435B2 (en) Imaging optical system
JPH1039207A (en) Image forming lens
JPH05323186A (en) Endoscope
JPH06317744A (en) Optical system for endoscopic objective lens
JP2002296497A (en) Image fetch lens
JP2582144B2 (en) Shooting lens
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP2006084886A (en) Lens device
JP3222164B2 (en) Imaging device
KR100278683B1 (en) Aberration correction plate for interchangeable lens
JP7030536B2 (en) Imaging optical system and imaging device
JP2001133684A (en) Photographic lens
JP3105600B2 (en) Endoscope
JP4442834B2 (en) Near-infrared optical imaging device
JP2008008978A (en) Zoom lens system and optical apparatus with the same
JPH07199069A (en) Aspherical zoom lens and video camera
JP2939637B2 (en) Imaging optical system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010807

LAPS Cancellation because of no payment of annual fees