JP3222091U - Reducer - Google Patents

Reducer Download PDF

Info

Publication number
JP3222091U
JP3222091U JP2019000917U JP2019000917U JP3222091U JP 3222091 U JP3222091 U JP 3222091U JP 2019000917 U JP2019000917 U JP 2019000917U JP 2019000917 U JP2019000917 U JP 2019000917U JP 3222091 U JP3222091 U JP 3222091U
Authority
JP
Japan
Prior art keywords
chamber
coating liquid
flow
coating
inflow hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000917U
Other languages
Japanese (ja)
Inventor
伸 大沢
伸 大沢
Original Assignee
総武機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 総武機械株式会社 filed Critical 総武機械株式会社
Priority to JP2019000917U priority Critical patent/JP3222091U/en
Application granted granted Critical
Publication of JP3222091U publication Critical patent/JP3222091U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)

Abstract

【課題】塗工装置の排出ポンプから脈動を伴った気泡流の状態で吐出される塗工液に対して、小型軽量、かつ簡単な構成で気泡を分離、除去し、脈動を低減し、塗工液の流れのエネルギを減勢して穏やかに液体容器に流し入れる減勢器を提供する。【解決手段】略側面に流入孔225を有する減勢器24の内部に、流入孔225から上側の空間を広く確保して流入孔225よりも広い通流面積を有し、円筒状にした空間241,243を流入孔225側と流出孔242側に設け、両空間241,243を連通する案内路246を曲壁状に設け、上部を密閉蓋245で塞ぎ、下部を貫通して密閉蓋245近くまで伸びる排気筒244を装備することによって、急拡損失、曲り損失及び渦損失により流速を減じ、管内脈動流から自由表面を伴って流れる低脈動流に変えるようにし、さらに、流出孔242から下に管体226を伸ばした。【選択図】図3To separate and remove air bubbles with a small size, light weight, and simple configuration with respect to a coating liquid discharged in a bubble flow state accompanied by pulsation from a discharge pump of a coating apparatus, and reduce pulsation, thereby reducing coating. A de-energizer for decelerating and gently flowing the fluid flow into the fluid container. A cylindrical space having a larger flow area than the inflow hole 225 by widely securing an upper space from the inflow hole 225 inside a decelerator 24 having an inflow hole 225 on a substantially side surface. A guide path 246 is provided in the form of a curved wall, and the upper portion is closed by a sealing lid 245, and the lower portion is penetrated to form a sealing lid 245. By equipping the exhaust pipe 244 which extends to near, the flow velocity is reduced by sudden expansion loss, bending loss and eddy loss, and it is made to change from pulsating flow in the pipe to low pulsating flow flowing with free surface, and further from outlet hole 242 The tube 226 was extended downward. [Selected figure] Figure 3

Description

本考案は、印刷機、ニスコータ、グラビアロールコータ又はその他の塗工装置に用いられる塗工液循環装置の塗工液排出流路に設置される減勢器に関するものである。   The present invention relates to a decelerator installed in a coating fluid discharge flow path of a coating fluid circulation device used for a printing machine, a varnish coater, a gravure roll coater or other coating device.

塗工液循環装置は、液体容器から塗工液チャンバに塗工液を供給する供給ポンプと、塗工液チャンバから塗工液を液体容器に排出する排出ポンプと、それぞれを連結する管路及びバルブ類とによって構成され、塗工液を循環する。主な塗工液には、印刷用インキ、ニス、接着剤、液状樹脂などがある。   The coating liquid circulation system includes a supply pump that supplies the coating liquid from the liquid container to the coating liquid chamber, a discharge pump that discharges the coating liquid from the coating liquid chamber to the liquid container, a pipe that connects each of them The coating solution is circulated by valves and the like. The main coating liquids include printing inks, varnishes, adhesives, and liquid resins.

塗工液は、塗工液チャンバ内に送給されて彫刻ローラを介して塗工処理に供せられるが、一方で塗工し終った分量に相当する量の空気を彫刻ローラ上のセルが取り込んで塗工液チャンバ内に戻ってくる。そのため、排出ポンプによって液体容器に排出される塗工液の中には、空気が気泡となって混入される。塗工液に気泡が混入すると、塗工の濃度や平滑性や光沢などの塗工品質が悪化するので、塗工液チャンバから液体容器までの間の塗工液排出流路内において、混入した気泡を分離、除去する必要がある。   The coating liquid is fed into the coating liquid chamber and is subjected to the coating processing through the engraving roller, while the cells on the engraving roller have an amount of air corresponding to the amount finished coating. It takes in and comes back into the coating liquid chamber. Therefore, air is mixed in the form of bubbles in the coating liquid discharged to the liquid container by the discharge pump. When air bubbles are mixed in the coating liquid, the coating quality such as the concentration, smoothness and gloss of the coating is deteriorated. Therefore, it was mixed in the coating liquid discharge flow path from the coating liquid chamber to the liquid container. It is necessary to separate and remove air bubbles.

塗工液循環装置には利便性の良さから往復動ポンプが用いられる。しかし、往復動ポンプは、往復運動により容積を変化させて吸引・吐出を繰り返すために、吐出量が脈動するという欠点を伴う。排出ポンプから圧送される塗工液に脈動があると、勢いよく液体容器の液面に向けて吹き出し、着液の際に液面にて跳ね上がったり、波立たせたりして新たな泡を発生させてしまう。液体容器内の液面に穏やかに流し入れるために、脈動を低減して流速を遅くする必要がある。脈動を減衰させる機器には、プラダ型又はダイヤフラム型の脈動減衰器や、ガスサージタンク方式の脈動減衰器があるが、これらの脈動減衰機器は、減衰効果を得るために、吐出側に所定の配管抵抗を伴う管路長さが必要で、小型化には向かないという欠点がある。   A reciprocating pump is used for the coating liquid circulation device for the convenience. However, the reciprocating pump has a drawback that the discharge amount pulsates because the volume is changed by the reciprocating motion to repeat suction and discharge. If there is pulsation in the coating liquid pumped from the discharge pump, it will vigorously blow out toward the liquid surface of the liquid container, and when it comes in contact with the liquid, it will spring up or rumble on the liquid surface to generate new bubbles. It will In order to flow gently into the liquid level in the liquid container, it is necessary to reduce the pulsation and slow the flow rate. The devices for damping pulsation include a pulsatile or diaphragm pulsating attenuator and a gas surge tank pulsator, but these pulsator damping devices have a predetermined value on the discharge side to obtain a damping effect. There is a disadvantage that a pipe length accompanied by piping resistance is required, and it is not suitable for miniaturization.

渦流による遠心力で気液分離を行う方法が特許文献2などで記載されている。ガスサージタンク方式の脈動減衰器を使用して脈動の減衰を計っている従来の塗工液循環装置では、脈動減衰器内の圧縮空気に気泡が取り込まれることで気泡の分離及び除去を同時に行っている。そのため、気泡による塗工品質への悪影響は排除できているものの、小型化はできなかった。   The method of performing gas-liquid separation by the centrifugal force by eddy current is described in patent document 2 etc. In a conventional coating fluid circulation system that measures pulsation damping using a gas surge tank type pulsation attenuator, bubbles are taken into compressed air in the pulsation attenuator to simultaneously separate and remove the bubbles. ing. Therefore, although the bad influence to the coating quality by air bubbles has been eliminated, miniaturization could not be performed.

特開昭59−230665号公報JP-A-59-230665 特開2000−117002号公報JP 2000-117002 A 特開2008−196848号公報JP, 2008-196848, A

空気と塗工液が共存する気液二相流は、塗工液チャンバから気泡流となって排出されてくる。本考案の目的は、排出ポンプから液体容器までの塗工液排出流路に取り付け可能であり、気泡流から混入している気泡を簡単に分離、除去し、かつ、塗工液の流れのエネルギを減勢して流速を減じさせることにより、液体容器内の液面に着液する際に、吹き出したり、跳ね上がったりして新たな泡を発生させることなく、塗工液を穏やかに液体容器に流し入れることができる減勢器を提供することにある。   The gas-liquid two-phase flow in which the air and the coating liquid coexist is discharged as a bubble flow from the coating liquid chamber. The object of the present invention is to attach to the coating liquid discharge flow path from the discharge pump to the liquid container, to easily separate and remove air bubbles mixed from the bubble flow, and the energy of the coating liquid flow The coating liquid is gently applied to the liquid container without causing blowout or splashing and generating new bubbles when the liquid is deposited on the liquid surface in the liquid container by reducing the flow velocity. The present invention is to provide a reducer which can be poured.

本考案は、
塗工装置から塗工液を排出させて液体容器に戻す塗工液排出流路に設置される減勢器であって、
塗工液排出流路を圧送されてくる塗工液の流入孔と、
下流側が開放された略円筒状の曲壁を有し、上流側にて円筒中心から偏心した位置に前記流入孔が形成され、上部及び下部が閉塞される受容室と、
受容室の下流側にて受容室と連通し、流れ方向を変更する曲壁を有し、上部及び下部が閉塞される少なくとも一つ以上の曲り流路室と、
曲り流路室の下流側にて曲り流路室と連通し、略円筒状の曲壁を有し、上部が閉塞される環流室と、
還流室の下部に形成される塗工液の流出孔と、
流出孔から下方に伸びる管体とを備え、
受容室から還流室に至る流路の断面積は、流入孔の断面積よりも大きい
減勢器である。
This invention is
A decelerator installed in a coating liquid discharge flow path for discharging a coating liquid from a coating apparatus and returning it to a liquid container,
An inflow hole of the coating liquid pressure-fed through the coating liquid discharge channel;
A receiving chamber having a substantially cylindrical curved wall whose downstream side is open, the upstream side being formed at a position eccentric from the center of the cylinder, and the upper and lower portions being closed;
At least one or more curved channel chambers having a curved wall in communication with the receiving chamber on the downstream side of the receiving chamber and changing the flow direction, the upper and lower portions being closed;
A reflux chamber in communication with the curved flow channel chamber on the downstream side of the curved flow channel chamber, having a substantially cylindrical curved wall, and closed at the top;
Outflow holes of the coating liquid formed in the lower part of the reflux chamber,
And a tube extending downward from the outlet hole;
The cross-sectional area of the flow passage from the receiving chamber to the reflux chamber is a de-energizer that is larger than the cross-sectional area of the inflow hole.

ここで、本考案に係る減勢器は、一態様として、
下降斜面を有し、管体の下方に配置される液案内部材をさらに備える
構成を採用することができる。
Here, the reducer according to the present invention is, as one aspect,
It is possible to adopt a configuration further including a liquid guide member having a descending slope and disposed below the tube.

また、本考案に係る減勢器は、他態様として、
流入孔の中心から前記上部までの高さは、流入孔の中心から前記下部までの高さよりも大きく、
前記上部との間に隙間を有して前記下部を貫通する排気筒をさらに備える
構成を採用することができる。
In addition, the energy reducer according to the present invention is, as another aspect,
The height from the center of the inflow hole to the upper portion is larger than the height from the center of the inflow hole to the lower portion,
It is possible to adopt a configuration further including an exhaust pipe which has a gap between the upper portion and the lower portion and which penetrates the lower portion.

また、本考案に係る減勢器は、別の態様として、
前記上部の接液側は、受容室から環流室まで延びる溝を備える
構成を採用することができる。
Further, as another aspect of the present invention, there is provided a reducer according to the present invention,
The upper wetted side may have a groove extending from the receiving chamber to the reflux chamber.

また、本考案に係る減勢器は、さらに別の態様として、
流出孔の断面積は、流入孔の断面積よりも大きい
構成を採用することができる。
In addition, as a further aspect, the reducer according to the present invention,
The cross-sectional area of the outlet can be larger than the cross-sectional area of the inlet.

また、本考案に係る減勢器は、さらに別の態様として、
曲り流路室における流路の断面積は、下流側に向かうにつれて大きくなる
構成を採用することができる。
In addition, as a further aspect, the reducer according to the present invention,
It is possible to adopt a configuration in which the cross-sectional area of the flow passage in the curved flow passage chamber becomes larger toward the downstream side.

塗工装置から塗工液排出流路を圧送されてくる塗工液に対し、拡大損失、曲り損失及び渦損失を生じせしめ、脈動流のエネルギを散逸させ、流速を低減させるとともに、流れがホースや継手などの壁面で囲まれ拘束されたクローズドタイプの管路流れから、開水路のような自由表面を伴う流れに様相を変えられるよう十分に広い容積があって、外気との通気手段を設けたオープンタイプの流路に流し変えることにより、脈動の低減を図る。さらに、渦流による遠心力で気液分離を行い、通気手段を介して気泡を排気、除去する。これらの効果が図れるよう、受容室、曲り流路室及び還流室の三つの室(空間)と、管体を設け、さらには、選択的に、排気筒及び/又は液案内部材を設ける。   With respect to the coating liquid pumped from the coating apparatus through the coating liquid discharge flow path, an expansion loss, a bending loss and an eddy loss are caused, the energy of the pulsating flow is dissipated, the flow velocity is reduced, and the flow is a hose There is a large enough volume to be able to change the aspect from a closed type pipeline flow confined by a wall or a joint etc. to a flow with a free surface such as an open channel, and a means of ventilating with the outside air is provided. Pulsation is reduced by changing the flow path to the open type flow path. Furthermore, gas-liquid separation is performed by centrifugal force due to swirling, and air bubbles are exhausted and removed through the aeration means. In order to achieve these effects, three chambers (spaces) including a receiving chamber, a curved flow passage chamber and a reflux chamber, and a tube are provided, and further, an exhaust pipe and / or a liquid guide member is optionally provided.

流入孔におけるホースや継手などの断面積よりも広い受容室を形成し、受容室は、略円筒状の曲壁で構成される。塗工液が受容室に流れ込むと、略円筒状の曲壁に沿って流れ方向が旋回し、渦を誘起させる。拡大損失及び渦損失により流速は減じられ、さらに、遠心力の作用によって混入した気泡が渦中心に集まり、分離させられる。受容室を経た流れは曲り流路室に連通する。単一又は多重の曲り流路室は、受容室から出た塗工液の流れ方向に対して傾斜する傾斜壁と、円弧壁とからなる曲壁で構成される。円弧壁によって流れ方向をさらに変向させ、曲り損失を与えて、塗工液をより一層減速させる。つぎに、曲り流路室を通った流れは還流室に入る。還流室は、その下部に、流入孔の断面積よりも大きい断面積を有する円形の流出孔を有しており、略円筒状の曲壁で構成される。還流室に入った塗工液は、流出孔の直前で流れを誘導的に環状の流線を有する環流に変えさせられることで、強制渦を生成し、流出孔から気柱を通して空気を吸い込む空気の渦ができやすい状態を作る。流出孔につながっている管体内の中心まで空気の渦が伸び、一方で、塗工液は、螺旋を描くように管体の内壁に沿って流下し、下降斜面を有する液案内部材に沿って液体容器内に穏やかに着液する。   A receiving chamber is formed that is wider than the cross-sectional area of the hose, the joint, or the like at the inflow hole, and the receiving chamber is formed of a substantially cylindrical curved wall. When the coating fluid flows into the receiving chamber, the flow direction swirls along the substantially cylindrical curved wall to induce a vortex. The expansion loss and the eddy loss reduce the flow velocity, and further, the action of the centrifugal force causes the mixed bubbles to be collected at the vortex center and separated. The flow through the receiving chamber bends and communicates with the flow passage chamber. The single or multiple curved flow path chambers are formed of curved walls comprising an inclined wall which is inclined with respect to the flow direction of the coating liquid which has exited from the receiving chamber and an arc wall. The arc wall further diverts the flow direction to give a bending loss to further slow down the coating liquid. Next, the flow passing through the curved flow passage chamber enters the reflux chamber. The reflux chamber has, at its lower portion, a circular outlet hole having a cross-sectional area larger than the cross-sectional area of the inlet hole, and is constituted by a substantially cylindrical curved wall. The coating liquid that has entered the reflux chamber is capable of generating a forced vortex by causing the flow to be inductively converted to an annular flow having an annular streamline just before the outlet hole, and air that sucks air from the outlet hole through the air column. Create a state in which the vortex of the The vortex of air extends to the center of the tube connected to the outflow hole, while the coating liquid flows down along the inner wall of the tube in a spiral, and along the liquid guide member having a descending slope Gently pour into the fluid container.

受容室、曲り流路室及び還流室のいずれかの位置に排気筒を設け、その上端を器内の上部の近くまで伸ばし、下端を液体容器の上部まで繋がる構成にする。さらに、空気が移動できるための空間として、減勢器の流入孔の中心よりも上側の空間を広く設ける。そうすることで、排気筒により、分離された気泡が減勢器内の上部を伝わり、排気筒の上端から液体容器へ排気できる。さらに、排気筒は、減勢器内と通気できることから、ホース内から流入する脈動流をオープンタイプの流れに変えることに貢献し、広く確保した容積及びエネルギ損失と相まって脈動低減が成される。   An exhaust pipe is provided at any position of the receiving chamber, the curved flow path chamber and the reflux chamber, and the upper end thereof is extended near the upper portion in the vessel and the lower end is connected to the upper portion of the liquid container. In addition, a space above the center of the inflow hole of the decelerator is widely provided as a space for the air to move. By doing so, the separated air bubbles can be transmitted through the upper part in the pressure reducing device by the exhaust stack, and can be exhausted from the upper end of the exhaust stack to the liquid container. Furthermore, since the exhaust cylinder can ventilate the interior of the pressure reducing device, it contributes to converting the pulsating flow flowing in from the inside of the hose into an open type flow, and pulsation reduction is achieved in combination with widely secured volume and energy loss.

本考案に係る減勢器は、流入孔の断面積よりも広く、各所を曲壁で連ねた内部空間に構成したことで、塗工液に拡大損失、曲り損失及び渦損失を与え、流れのエネルギを散逸させて、流速を遅くできる。また、渦現象を誘起させることにより、塗工液に混入している気泡を分離できる。   The energy absorber according to the present invention is wider than the cross-sectional area of the inflow hole, and by providing the coating liquid with expansion loss, bending loss and eddy loss, by configuring the space in an inner space connected with curved walls, the flow Energy can be dissipated to slow the flow rate. Moreover, the bubble mixed in the coating liquid can be isolate | separated by inducing a vortex phenomenon.

また、減勢器の流入孔の中心より上側に、広い空間を設け、かつ排気筒を設けた場合は、排気筒を利用して、渦現象によって分離された空気を除去できる。さらに、排気筒の通気と、減勢器内に広く確保した空間容積により、ホース内から流入する脈動流が自由表面を有するオープンタイプの流れに様相を変えることで、脈動を低減できる。流出孔に管体をつなげたことにより、管体内の中心に空気の渦を誘起でき、塗工液を螺旋を描くように管体の内壁に沿って流下させることができる。これにより、気泡と一緒に吹き出す現象は解消する。下降斜面を有する液案内部材を設ければ、管体の内壁に沿って流下してくる塗工液を液体容器内に穏やかに着液させることができる。   In addition, when a wide space is provided above the center of the inflow hole of the reducer and the exhaust pipe is provided, the air separated by the vortex phenomenon can be removed by using the exhaust pipe. Furthermore, pulsation can be reduced by changing the appearance of the pulsating flow flowing from the inside of the hose into an open type flow having a free surface by ventilating the exhaust stack and the space volume widely secured in the pressure reducing device. By connecting the tube to the outlet hole, a vortex of air can be induced in the center of the tube, and the coating liquid can flow down along the inner wall of the tube in a spiral. This eliminates the phenomenon of blowing out with the air bubbles. If a liquid guide member having a downward slope is provided, the coating liquid flowing down along the inner wall of the tube can be gently deposited in the liquid container.

以上により、本考案に係る減勢器は、脈動を伴った気泡流として送られてくる塗工液に対して、気泡を除去し、流速を遅くし、脈動を低減して穏やかに液面に着液させることができ、液体容器内で気泡をさらに増長させてしまうという問題も発生させない。また、小型軽量に簡単に構成できることから、液体容器の上部に配置でき、塗工液循環装置の小型化に寄与する。   As described above, the decelerator according to the present invention removes bubbles from the coating liquid sent as bubble flow accompanied by pulsation, slows down the flow velocity, reduces pulsation and gently reaches the liquid surface. The liquid can be deposited, and the problem of further increasing bubbles in the liquid container does not occur. In addition, since it can be easily configured to be small and light, it can be disposed on the top of the liquid container, which contributes to the miniaturization of the coating liquid circulation device.

本考案の一実施形態に係る塗工液循環装置が用いられる代表的な塗工装置の斜視図である。It is a perspective view of a representative coating device in which a coating fluid circulation device concerning one embodiment of the present invention is used. 塗工の様子を模式的に示した説明図である。It is explanatory drawing which showed the mode of coating typically. 同塗工液循環装置に設置される減勢器の平面図である。It is a top view of the energy-saving device installed in the coating fluid circulation device. 同減勢器の断面図である。It is a sectional view of the same energy reducer. 同減勢器の斜視図である。It is a perspective view of the same energy saving device. 同減勢器を装備した小型塗工液循環装置の正面図である。It is a front view of a small coating fluid circulation device equipped with the same energy saving device. 他の実施形態に係る減勢器の平面図である。FIG. 7 is a plan view of a reducer according to another embodiment. さらに他の実施形態に係る減勢器の断面図である。And FIG. 7 is a cross-sectional view of a decelerator according to yet another embodiment.

以下、本考案の実施の形態を図面を参酌しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、塗工装置1は、塗工液循環装置2内の供給ポンプ21から塗工液チャンバ3に供給される塗工液5を、回転する彫刻ローラ4の表面上に保有させ、被処理材表面(図示せず)に転移する装置である。図2に示すように、彫刻ローラ4は、その表面に微細なセルを有しており、塗工液チャンバ3内に供給される塗工液5がセル内に入り、塗工液5で満たされたセルは、塗工液チャンバ3から送り出されていく。彫刻ローラ4が塗工液皮膜51を転移すると、セル内には半減した塗工液5が残留した状態となる。転移後のセルが空気6とともに再び塗工液チャンバ3内に戻ってくると、空気6は塗工液チャンバ3内で気泡61となって塗工液5中に放出され、塗工液5の流速と圧力の作用により塗工液5と置き換わり、戻ってきたセルは、塗工液チャンバ3内で再び塗工液5で満たされる。なお、図1及び図2に示すセルは、説明しやすくするために模式的にかなり大きく表現しているが、実際には20〜130μm程度の大きさで、肉眼ではわからない微細な凹部である。塗工液チャンバ3内に気泡61が滞留して成長しないようにするため、一般に塗工液循環装置2には排出ポンプ22が装備され、塗工液チャンバ3から塗工液5を強制的に排出することで循環量を増やしている。気泡61は塗工液の濃度や平滑性や光沢などの塗工品質を悪化させる。塗工液循環装置2では、供給ポンプ21と排出ポンプ22によって塗工液5の循環量を増やすことで、気泡61を速やかにセルから排除して塗工品質の安定性を保っている。   As shown in FIG. 1, the coating apparatus 1 holds the coating liquid 5 supplied to the coating liquid chamber 3 from the supply pump 21 in the coating liquid circulation apparatus 2 on the surface of the rotating engraving roller 4. And transfer to the surface of the material to be treated (not shown). As shown in FIG. 2, the engraving roller 4 has fine cells on its surface, and the coating liquid 5 supplied into the coating liquid chamber 3 enters the cell and is filled with the coating liquid 5. The discharged cells are delivered from the coating liquid chamber 3. When the engraving roller 4 transfers the coating fluid film 51, the half of the coating fluid 5 remaining in the cell remains. When the cells after transfer return to the coating liquid chamber 3 again with the air 6, the air 6 becomes air bubbles 61 in the coating liquid chamber 3 and is released into the coating liquid 5. The cell replaced with the coating liquid 5 by the action of the flow velocity and the pressure and returned is filled again with the coating liquid 5 in the coating liquid chamber 3. The cells shown in FIG. 1 and FIG. 2 are schematically represented quite large for ease of explanation, but actually they are fine recesses of about 20 to 130 μm in size and which can not be seen with the naked eye. In order to prevent the air bubbles 61 from staying and growing in the coating liquid chamber 3, the coating liquid circulation device 2 is generally equipped with a discharge pump 22, and the coating liquid 5 is forced from the coating liquid chamber 3. The amount of circulation is increased by discharging. The air bubbles 61 deteriorate the coating quality such as the concentration, smoothness and gloss of the coating liquid. In the coating liquid circulation device 2, the circulation amount of the coating liquid 5 is increased by the supply pump 21 and the discharge pump 22 so that the air bubbles 61 are promptly removed from the cells to maintain the stability of the coating quality.

図3は、減勢器24の平面図であり、密閉蓋245を外した状態で示す。図4に断面図を示す。減勢器24は、受容室241、曲り流路室246及び環流室243の3室で構成されている。しかし、曲り流路室246をさらに増やして構成することもできる。運用される塗工液の流量範囲と粘度に応じて、曲り流路室246の数と曲壁の延長距離を設定することになる。   FIG. 3 is a plan view of the reducer 24 with the sealing lid 245 removed. FIG. 4 shows a cross sectional view. The energy reducer 24 is composed of three chambers, a receiving chamber 241, a curved flow passage chamber 246 and a reflux chamber 243. However, the curved flow path chamber 246 can be further increased. The number of curved flow path chambers 246 and the extension distance of the curved wall are set according to the flow rate range and viscosity of the coating liquid to be operated.

減勢器24の内部空間の流路全ては、流入孔225の断面積よりも大きい断面積を有するように形成している。受容室241は、下流側が開放されて略鉛直方向に伸びる円筒壁240からなる曲壁で構成される。受容室241は、塗工液を円筒壁240で受け入れると、円筒壁240に沿って流れ方向が略180°旋回し、渦10を誘起させる。渦の遠心力の作用により、混入した気泡が円筒面の中心に集まる。受容室241を経た流れは、曲り流路室246に連通する。曲り流路室246は、いずれも略鉛直方向に伸びる、受容室241から出た塗工液の流れ方向に対して傾斜する傾斜壁227と、円弧壁228とからなる曲壁で構成される。流れは、円弧壁228によって流れ方向をさらに変向させ、還流室243に入る。還流室243は、流入孔225の断面積よりも大きい断面積を有する円形の流出孔242を下面に有しており、環流を誘起させるため、流出孔242よりも大きく、略鉛直方向に伸びる円筒壁240からなる曲壁で構成される。還流室243に入った塗工液は、円筒壁240によって誘導的に環流14に変えさせられることで強制渦を生成し、流出孔242から渦15ができる。流出孔242につながっている管体226内の中心には渦15が伸び、塗工液は、螺旋を描くように管体226の内壁に沿って流下し、さらに下降斜面247を有する液案内部材248に沿って液体容器8内に穏やかに着液する。   All of the flow paths in the interior space of the reducer 24 are formed to have a cross-sectional area that is larger than the cross-sectional area of the inflow hole 225. The receiving chamber 241 is formed of a curved wall including a cylindrical wall 240 which is open on the downstream side and extends in a substantially vertical direction. When the coating liquid is received by the cylindrical wall 240, the receiving chamber 241 swirls in the flow direction approximately 180 ° along the cylindrical wall 240 and induces the vortex 10. Due to the action of the centrifugal force of the vortex, the mixed air bubbles gather at the center of the cylindrical surface. The flow passing through the receiving chamber 241 is in communication with the curved flow passage chamber 246. The curved flow path chamber 246 is formed of a curved wall including an inclined wall 227 and a circular arc wall 228 which extend in the substantially vertical direction and which is inclined with respect to the flow direction of the coating liquid coming out of the receiving chamber 241. The flow is further diverted in the flow direction by the arc wall 228 and enters the reflux chamber 243. The reflux chamber 243 has a circular outlet hole 242 having a cross-sectional area larger than the cross-sectional area of the inlet hole 225 on the lower surface, and is a cylinder that is larger than the outlet hole 242 and extends in a substantially vertical direction It comprises a curved wall consisting of walls 240. The coating liquid that has entered the reflux chamber 243 is inductively converted to the reflux 14 by the cylindrical wall 240 to generate a forced vortex, and a vortex 15 is generated from the outflow hole 242. A vortex 15 extends in the center of the tube 226 connected to the outlet hole 242, and the coating liquid flows down along the inner wall of the tube 226 in a spiral, and further a liquid guide member having a descending slope 247 Gently apply into liquid container 8 along H.248.

図3において、曲り流路室246における流路の流路幅は、下流側に向かうにつれて広く形成されており(曲り流路室246において傾斜壁277及び円弧壁228から離間して設けられる排気筒244と傾斜壁227との間の流路幅S1、及び排気筒244と円弧壁228との間の流路幅S2)、いわゆる曲がりディフューザの効果が得られ、流れにさらに断面積の拡大変化による損失を与えることができ、減勢効果を増加させる効果がある。   In FIG. 3, the channel width of the channel in the curved channel chamber 246 is formed wider toward the downstream side (an exhaust cylinder provided apart from the inclined wall 277 and the arc wall 228 in the curved channel chamber 246) The effect of a so-called curved diffuser is obtained by the passage width S1 between 244 and the inclined wall 227, and the passage width S2 between the exhaust cylinder 244 and the arc wall 228), and the flow is further changed by the change in cross sectional area. It can be lossy and has the effect of increasing the damping effect.

密閉蓋245は、塗工液が外に漏れない役目をする。排気筒244は、減勢器24内の曲り流路室246内にて、その上端を密閉蓋245近くまで伸ばし、減勢器24の下面を貫通して、液体容器8の上部空間まで通じている。しかし、排気筒244は、受容室241又は環流室243に設けるようにしてもよいし、一つではなく、複数設けるようにしてもよい。分離された空気は、密閉蓋245を伝わり、排気筒244を通って、液体容器8の上部空間へ排気される。そのために、減勢器24内の各室は、図4に符号bで示す流入孔225の中心から上側の空間がより広くなるよう形成されている。気泡の量によって排気筒244に塗工液が浸入する場合があるが、液体容器8の中に流れ出るので、漏れ出ることはない。   The sealing lid 245 serves to prevent the coating liquid from leaking out. The exhaust pipe 244 extends at the upper end near the sealing lid 245 in the curved flow path chamber 246 in the reducer 24, penetrates the lower surface of the reducer 24, and communicates with the upper space of the liquid container 8. There is. However, the exhaust cylinder 244 may be provided in the receiving chamber 241 or the reflux chamber 243, or may be provided in plurality instead of one. The separated air travels through the sealing lid 245 and is exhausted to the upper space of the liquid container 8 through the exhaust cylinder 244. To that end, each chamber in the decelerator 24 is formed such that the space above the center of the inflow hole 225 indicated by symbol b in FIG. 4 is wider. The coating liquid may intrude into the exhaust cylinder 244 depending on the amount of air bubbles, but since it flows into the liquid container 8, it does not leak out.

渦の発生状況は、混入する気泡の量と塗工液の流量、減勢器24内の各室空間の広さなどによって変わる。流量が少ない場合、受容室241にて気泡が集まった渦ができ、空気の渦の上端は排気筒244とつながる動きをする。この場合、還流室243での還流は勢いのある渦まで成長することなく、塗工液は流出孔242から緩やかな螺旋となって流れ落ちる。流量がやや多くなると、受容室241及び曲り流路室246にできた空気の渦は、環流室の流出孔242まで移動していき、流出孔242にて安定した渦となる。気泡の量が多くなると、空気の渦は大きくなり、渦上端が排気筒244とつながる動きをするので、排気筒244は、空気の渦で吸い込まれずに残った気泡の一部を排気する。さらに流量が増し、受容室241にて空気の渦を発生できる流量を超えた場合、還流室243の環流が勢いを増し、流出孔242に塗工液の渦流ができる。流量が多くなった場合でも、塗工液が管体226内を螺旋状に流下し、空気の渦が管体226の中心部に安定してできるように、流出孔242と管体226の直径を十分大きく設けることにより、渦下端は、管体226の下端まで安定して縦長に成長し、塗工液は、暴れたり、拡散したりすることなく、穏やかに流下する。気泡は流出孔242の円筒中心の渦によって液体容器8内の上部空間へ抜けていく。   The generation state of the vortex changes depending on the amount of air bubbles mixed, the flow rate of the coating liquid, the size of each chamber space in the attenuator 24, and the like. When the flow rate is low, a vortex in which air bubbles are collected is generated in the receiving chamber 241, and the upper end of the vortex of air moves to be connected to the exhaust pipe 244. In this case, the coating liquid flows as a gentle spiral from the outflow hole 242 and does not flow to the reflux chamber 243 without growing to a powerful vortex. When the flow rate is slightly increased, the air vortices formed in the receiving chamber 241 and the curved channel chamber 246 move to the outflow hole 242 of the reflux chamber, and become a stable vortex at the outflow hole 242. As the amount of air bubbles increases, the air vortices become larger, and the upper end of the vortices moves in communication with the exhaust cylinder 244, so the exhaust cylinder 244 exhausts part of the air bubbles that are not absorbed by the air vortex. When the flow rate further increases and exceeds the flow rate at which the air vortex can be generated in the receiving chamber 241, the reflux of the reflux chamber 243 increases its momentum, and a vortex of the coating liquid occurs in the outflow hole 242. Even when the flow rate increases, the diameter of the outflow hole 242 and the tube 226 is such that the coating liquid spirals down in the tube 226 and the air vortex is stably generated at the center of the tube 226. The bottom end of the vortex is stably and vertically grown to the lower end of the tubular body 226, and the coating liquid flows gently without runaway or diffusion. The air bubbles escape into the upper space in the liquid container 8 by the vortex at the cylinder center of the outflow hole 242.

図5に、密閉蓋245に設けられた溝249を示す。溝249を設けることで、空気の渦10が流量の多少によって位置を移動しても排気筒244につながりやすくする働きをする。   FIG. 5 shows a groove 249 provided in the sealing lid 245. By providing the groove 249, the air vortex 10 can be easily connected to the exhaust cylinder 244 even if the position thereof is moved depending on the flow rate.

図6に、減勢器24を装備した塗工液循環装置2を示す。脈動減衰器25は、エアチャンバであり、供給ポンプ21から吐出される塗工液に対して脈動を緩衝する。その後、塗工液は、塗工液供給側ホース接続口235から塗工液チャンバ3に向けて送給される。一方、排出ポンプ22は、塗工液排出側ホース接続口223を介して塗工液チャンバから気泡を伴った塗工液を吸引する。その後、塗工液は、減勢器24に入り、状態を整えられて液体容器8に流れ込む。脈動減衰器25は、塗工液供給側ホース接続口235から塗工液チャンバ3までのホースにて、所定の配管抵抗を伴う管路長さが得られるので、所定の減衰効果が得られる。排出側に同様の脈動減衰器25を装備するよりも代わりに減勢器24を用いることで、小型でかつ液体容器8直前に設置することができ、塗工液循環装置2の小型化を可能にしている。   FIG. 6 shows the coating liquid circulation system 2 equipped with the energy reducer 24. The pulsation attenuator 25 is an air chamber and buffers pulsations to the coating liquid discharged from the supply pump 21. Thereafter, the coating liquid is fed from the coating liquid supply side hose connection port 235 toward the coating liquid chamber 3. On the other hand, the discharge pump 22 sucks the coating liquid with air bubbles from the coating liquid chamber via the coating liquid discharge side hose connection port 223. Thereafter, the coating liquid enters the decelerator 24, is conditioned and flows into the liquid container 8. The pulsation attenuator 25 can obtain a predetermined attenuation effect because a pipe length with a predetermined pipe resistance can be obtained by the hose from the coating liquid supply side hose connection port 235 to the coating liquid chamber 3. Instead of equipping the discharge side with the same pulsation attenuator 25, instead of using the energy reducer 24, it can be compact and can be installed just before the liquid container 8, and the coating liquid circulation system 2 can be miniaturized. I have to.

図7に、減勢器24の他の実施例を示す。上記の減勢器24と同じ3室の構成であるが、曲り流路室246の曲壁を略180°に拡げた例である。   FIG. 7 shows another embodiment of the energy reducer 24. Although the configuration of the three chambers is the same as that of the above-described attenuator 24, this is an example in which the curved wall of the curved flow channel chamber 246 is expanded to approximately 180 °.

図8に、減勢器24のさらに他の実施例を示す。流出孔242と管体226の中を通る排気筒260を有する構成例である。塗工液の粘性の違いによって、排気筒260を流出孔242に設けたほうが気泡の除去が行いやすくなる場合がある。   Referring to FIG. 8, yet another embodiment of the energy reducer 24 is shown. It is a structural example which has the exhaust pipe | tube 260 which passes through the outflow hole 242 and the pipe body 226. FIG. Depending on the difference in viscosity of the coating liquid, it may be easier to remove air bubbles if the exhaust cylinder 260 is provided in the outflow hole 242.

なお、本考案に係る減勢器は、今まで説明してきたものに限定されるものではなく、本考案の要旨を逸脱しない範囲で種々の変更が可能である。   In addition, the damping device which concerns on this invention is not limited to what was demonstrated until now, A various change is possible in the range which does not deviate from the summary of this invention.

1 塗工装置
2 塗工液循環装置
3 塗工液チャンバ
4 彫刻ローラ
5 塗工液
6 空気
8 液体容器
9 液体容器用導管
10 渦
14 環流
15 渦
21 供給ポンプ
22 排出ポンプ
24 減勢器(塗工液排出ポンプ用減勢器)
31 塗工液チャンバ供給側ホース継手
32 塗工液チャンバ排出側分岐ホース継手
33 塗工液チャンバ排出側ホース継手
41 塗工液で満たされたセル
42 転移後のセル
51 彫刻ローラから転移された塗工液皮膜
61 気泡
223 塗工液排出側ホース接続口
224 塗工液排出管
225 流入孔
226 管体(短管)
227 傾斜壁
228 円弧壁
235 塗工液供給側ホース接続口
240 円筒壁
241 受容室
242 流出孔
243 還流室
244 排気筒
245 密閉蓋
246 曲り流路室
247 下降斜面
248 液案内部材
249 溝
260 排気筒
DESCRIPTION OF SYMBOLS 1 Coating apparatus 2 Coating liquid circulation apparatus 3 Coating liquid chamber 4 Engraving roller 5 Coating liquid 6 Air 8 Liquid container 9 Liquid container conduit 10 Vortex 14 Recirculation 15 Vortex 21 Supply pump 22 Discharge pump 24 Decompression device (paint Decompressor for industrial fluid discharge pump)
31 Coating liquid chamber supply side hose joint 32 Coating liquid chamber discharge side branch hose joint 33 Coating liquid chamber discharge side hose joint 41 Cell filled with coating liquid 42 Cell after transfer 51 Coating transferred from engraving roller Working fluid film 61 Bubbles 223 Coating fluid discharge side hose connection port 224 Coating fluid discharge pipe 225 Inflow hole 226 Tube body (short pipe)
227 inclined wall 228 arc wall 235 coating liquid supply side hose connection port 240 cylindrical wall 241 receiving chamber 242 outflow hole 243 reflux chamber 244 exhaust cylinder 245 closed lid 246 curved channel chamber 247 descending slope 248 liquid guide member 249 groove 260 exhaust cylinder

また、本考案に係る減勢器は、他態様として、
流入孔の中心から受容室、曲り流路室及び環流室の各上部までの高さは、流入孔の中心から受容室、曲り流路室及び環流室の各下部までの高さよりも大きく、
受容室、曲り流路室又は環流室のいずれかに、上部との間に隙間を有して下部を貫通する排気筒を備える
構成を採用することができる。
In addition, the energy reducer according to the present invention is, as another aspect,
The height from the center of the inlet to the top of each of the receiving chamber, the curved channel and the reflux chamber is greater than the height from the center of the inlet to the lower portion of the receiving chamber, the curved channel and the reflux chamber ,
Receiving chamber, to any of the curved flow passage chamber or reflux chamber, can be employed Bei obtain an exhaust tube penetrating the lower portion with a gap between the upper.

また、本考案に係る減勢器は、別の態様として、
受容室、曲り流路室及び環流室の上部の接液側は、受容室から環流室まで延びる溝を備える
構成を採用することができる。
Further, as another aspect of the present invention, there is provided a reducer according to the present invention,
The liquid contact side of the receiving chamber, the curved flow passage chamber and the upper portion of the reflux chamber may be configured to include a groove extending from the receiving chamber to the reflux chamber.

Claims (6)

塗工装置から塗工液を排出させて液体容器に戻す塗工液排出流路に設置される減勢器であって、
塗工液排出流路を圧送されてくる塗工液の流入孔と、
下流側が開放された略円筒状の曲壁を有し、上流側にて円筒中心から偏心した位置に前記流入孔が形成され、上部及び下部が閉塞される受容室と、
受容室の下流側にて受容室と連通し、流れ方向を変更する曲壁を有し、上部及び下部が閉塞される少なくとも一つ以上の曲り流路室と、
曲り流路室の下流側にて曲り流路室と連通し、略円筒状の曲壁を有し、上部が閉塞される環流室と、
還流室の下部に形成される塗工液の流出孔と、
流出孔から下方に伸びる管体とを備え、
受容室から還流室に至る流路の断面積は、流入孔の断面積よりも大きい
減勢器。
A decelerator installed in a coating liquid discharge flow path for discharging a coating liquid from a coating apparatus and returning it to a liquid container,
An inflow hole of the coating liquid pressure-fed through the coating liquid discharge channel;
A receiving chamber having a substantially cylindrical curved wall whose downstream side is open, the upstream side being formed at a position eccentric from the center of the cylinder, and the upper and lower portions being closed;
At least one or more curved channel chambers having a curved wall in communication with the receiving chamber on the downstream side of the receiving chamber and changing the flow direction, the upper and lower portions being closed;
A reflux chamber in communication with the curved flow channel chamber on the downstream side of the curved flow channel chamber, having a substantially cylindrical curved wall, and closed at the top;
Outflow holes of the coating liquid formed in the lower part of the reflux chamber,
And a tube extending downward from the outlet hole;
The cross-sectional area of the flow passage from the receiving chamber to the reflux chamber is larger than the cross-sectional area of the inflow hole.
下降斜面を有し、管体の下方に配置される液案内部材をさらに備える
請求項1に記載の減勢器。
The energy reducer according to claim 1, further comprising a liquid guide member having a descending slope and disposed below the tube.
流入孔の中心から前記上部までの高さは、流入孔の中心から前記下部までの高さよりも大きく、
前記上部との間に隙間を有して前記下部を貫通する排気筒をさらに備える
請求項1又は請求項2に記載の減勢器。
The height from the center of the inflow hole to the upper portion is larger than the height from the center of the inflow hole to the lower portion,
The reducer according to claim 1, further comprising: an exhaust pipe having a gap between the upper portion and the lower portion and having a gap.
前記上部の接液側は、受容室から環流室まで延びる溝を備える
請求項1ないし請求項3のいずれか1項に記載の減勢器。
The dehumidifier according to any one of claims 1 to 3, wherein the liquid contact side of the upper portion includes a groove extending from the receiving chamber to the reflux chamber.
流出孔の断面積は、流入孔の断面積よりも大きい
請求項1ないし請求項4のいずれか1項に記載の減勢器。
The reducer according to any one of claims 1 to 4, wherein the cross-sectional area of the outflow hole is larger than the cross-sectional area of the inflow hole.
曲り流路室における流路の断面積は、下流側に向かうにつれて大きくなる
請求項1ないし請求項5のいずれか1項に記載の減勢器。
The reducer according to any one of claims 1 to 5, wherein the cross-sectional area of the flow passage in the curved flow passage chamber increases toward the downstream side.
JP2019000917U 2019-03-14 2019-03-14 Reducer Active JP3222091U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000917U JP3222091U (en) 2019-03-14 2019-03-14 Reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000917U JP3222091U (en) 2019-03-14 2019-03-14 Reducer

Publications (1)

Publication Number Publication Date
JP3222091U true JP3222091U (en) 2019-07-11

Family

ID=67212006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000917U Active JP3222091U (en) 2019-03-14 2019-03-14 Reducer

Country Status (1)

Country Link
JP (1) JP3222091U (en)

Similar Documents

Publication Publication Date Title
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP6483303B2 (en) Gas-liquid dissolution tank and fine bubble generator
JP2011224571A (en) Venturi apparatus
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2009240988A (en) Gas-liquid separator of fine air bubble supply device
FI96388B (en) Gas solution and method
JP3222091U (en) Reducer
JP4313541B2 (en) Fluid transfer device
JP4943482B2 (en) Underwater aerator
CN211274260U (en) Agitating unit of emulsion paint liquid
JP4162894B2 (en) Vacuum pump device
JP3221487U (en) Coating fluid circulation system
CA2122608C (en) Liquid reservoir
JP2020157191A (en) Air bubble separation/removal device
JP2002113488A (en) Method and apparatus for treating liquid
JP2007289958A (en) Degassing apparatus
TWM566209U (en) Cascaded aerator
US20240165542A1 (en) Hydrocyclone degassing device
JPH03249906A (en) Disoxidizing device of pure water producing device
JP2006123143A (en) Mist supply device for processing
KR200364175Y1 (en) Pipe fitting for separating gas from fluid
WO2018193795A1 (en) Method for adjusting intake amount of ejector, and ejector used in said method
KR101826124B1 (en) Membrane air suction device and generator of micro bubble comprising the same
JP2006170051A (en) Ejector
SU1139713A1 (en) Liquid aeration device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 3222091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250