JP3221574B2 - Supercritical fluid chromatographic separation method - Google Patents
Supercritical fluid chromatographic separation methodInfo
- Publication number
- JP3221574B2 JP3221574B2 JP31010991A JP31010991A JP3221574B2 JP 3221574 B2 JP3221574 B2 JP 3221574B2 JP 31010991 A JP31010991 A JP 31010991A JP 31010991 A JP31010991 A JP 31010991A JP 3221574 B2 JP3221574 B2 JP 3221574B2
- Authority
- JP
- Japan
- Prior art keywords
- supercritical
- solute
- chromatographic separation
- liquid
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Extraction Or Liquid Replacement (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、被分離溶液を超臨界状
態の二酸化炭素を移動相としてクロマト分離したのち、
分離した溶質を回収する超臨界流体クロマト分離方法に
関する。BACKGROUND OF THE INVENTION The present invention relates to a method for separating a solution to be separated by chromatography using supercritical carbon dioxide as a mobile phase.
The present invention relates to a supercritical fluid chromatography separation method for recovering separated solutes.
【0002】[0002]
【従来の技術】従来、超臨界流体を溶媒として固体や液
体中の有用或いは有害な成分等を抽出分離する一つの方
法として、超臨界抽出法が用いられている。この方法
は、液体と同様な抽出能力をもちながら、気体に近い拡
散能力を持つ超臨界流体を用いるため、抽出効率が高
く、又温度や圧力を適宜に選択することによって、容易
に抽出能力を制御でき、更に溶媒を少ないエネルギ−で
容易且つ完全に分離することができる。従って、抽出物
中の残留溶媒が問題となる食品添加物や医薬品原料等の
抽出に対して特に有効性が認められている。2. Description of the Related Art Conventionally, a supercritical extraction method has been used as one method for extracting and separating useful or harmful components in a solid or liquid using a supercritical fluid as a solvent. This method uses a supercritical fluid that has a diffusion capacity close to that of a gas while having the same extraction capacity as a liquid, so the extraction efficiency is high, and the extraction capacity can be easily increased by appropriately selecting the temperature and pressure. It can be controlled, and the solvent can be easily and completely separated with little energy. Therefore, it is recognized that it is particularly effective for extraction of food additives, pharmaceutical raw materials, and the like in which the residual solvent in the extract is problematic.
【0003】更に、超臨界流体による抽出物の工業的回
収や分析に、超臨界流体を移動相として用いた超臨界流
体クロマト法も周知となっている。この方法は、前記特
性を持つ超臨界流体を移動相とするため、移動相の速度
が大きくとれ、単位時間当りの分離能力も高く、又分離
の難しい高沸点化合物等の迅速分離に適した方法であ
る。Further, a supercritical fluid chromatography method using a supercritical fluid as a mobile phase has been known for industrial recovery and analysis of an extract using a supercritical fluid. Since this method uses a supercritical fluid having the above characteristics as a mobile phase, the speed of the mobile phase can be increased, the separation capability per unit time is high, and the method is suitable for rapid separation of high-boiling compounds that are difficult to separate. It is.
【0004】本発明は、前記超臨界流体クロマト分離方
法における移動相として、引火性がないとともに無害で
あるため、安全な運転操作ができ、又熱変性や残留のお
それがなく溶質と簡単に分離できる二酸化炭素(以下C
O2 と称する)を用いる方法に関し、特にクロマト分離
したのちの溶質を回収する方法に特徴を有する。従来の
回収方法は、クロマト分離工程からの溶質含有CO2 を
そのまま捕集工程に導入し、昇温及び減圧によってCO
2 を直接気化し析出する溶質を液体又は固体で回収した
り、他の物に吸収、吸着させる方法や、溶質含有CO2
全体を直接液化又は固化して液体又は固体状態で捕集し
たのち、CO2 を気化して溶質を回収する方法がある。According to the present invention, the mobile phase in the supercritical fluid chromatographic separation method has no flammability and is harmless, so that safe operation can be performed, and the mobile phase can be easily separated from solutes without fear of thermal denaturation or residue. Carbon dioxide (hereinafter C
O 2 ), in particular, a method of recovering solutes after chromatographic separation. In the conventional recovery method, the solute-containing CO 2 from the chromatographic separation step is directly introduced into the capture step, and the temperature is increased and the pressure is reduced.
(2) a method of directly collecting a solute that is vaporized and deposited as a liquid or solid, absorbing or adsorbing it to another substance, and solute-containing CO 2
There is a method in which the whole is directly liquefied or solidified and collected in a liquid or solid state, and then CO 2 is vaporized to collect a solute.
【0005】[0005]
【発明が解決しようとする課題】前記CO2 を直接気化
し液体又は固体として溶質を回収する気体回収方法は、
回収率が低く、特に低沸点化合物においては著しく低く
なる欠点があり、又溶質含有CO2 全体を直接液体状態
で捕集し溶質を回収する液体回収方法は、捕集工程のC
O2 導入量の変動に対しても影響が少なく回収率も高い
が、各段の分離に対しCO2 の分離速度を速くすると、
溶質の回収率が低下するため、CO2 を効率のよい速さ
で分離排出できず、分離回収時間が長くなる問題があ
る。The gas recovery method for directly vaporizing CO 2 and recovering a solute as a liquid or a solid is as follows.
The liquid recovery method has a drawback that the recovery rate is low, and particularly low-boiling compounds are extremely low. The liquid recovery method for directly collecting the solute-containing CO 2 in a liquid state and recovering the solute is as follows:
Although the recovery rate is high with little effect on the variation of the O 2 introduction amount, if the separation speed of CO 2 is increased for the separation in each stage,
Since the solute recovery rate is reduced, CO 2 cannot be separated and discharged at an efficient speed, and there is a problem that the separation and recovery time becomes longer.
【0006】溶質含有CO2 全体を直接固体状態で捕集
し溶質を回収する固体回収方法は、溶質の回収率が捕集
工程のCO2 導入量の変動に大きく影響される問題があ
る。従って回収率を一定に維持するためには、クロマト
分離工程での超臨界CO2 の流速を一定に設定し捕集工
程へのCO2 導入量を一定に保持するか、過剰な冷却能
力に設定しておくか、又は前記CO2 流速変更の都度、
捕集工程の冷却能力を変更する必要があるが、CO2 流
速を一定にすると汎用性が少なくなり、又流速を変更す
ると操作が煩雑となると共に、捕集工程へのCO2 導入
弁が閉塞する可能性が生じる等の問題がある。本発明
は、溶質回収工程におけるCO2 導入量の制御が容易
で、且つ溶質が高い回収率で得られると共に、CO2 を
短時間に分離して溶質を回収することができる方法を提
供することを目的としてなされたものである。[0006] The solid recovery method of directly collecting the solute-containing CO 2 in a solid state and recovering the solute has a problem that the recovery rate of the solute is greatly affected by fluctuations in the amount of CO 2 introduced in the capturing step. Therefore, in order to keep the recovery rate constant, the flow rate of supercritical CO 2 in the chromatographic separation step is set to be constant, and the amount of CO 2 introduced into the collecting step is kept constant, or the cooling capacity is set to be excessive. Or each time the CO 2 flow rate changes,
It is necessary to change the cooling capacity of the trapping process. However, if the CO 2 flow rate is constant, the versatility is reduced, and if the flow rate is changed, the operation becomes complicated, and the CO 2 introduction valve to the trapping step is closed. There is a problem that there is a possibility that the operation will be performed. An object of the present invention is to provide a method capable of easily controlling the amount of CO 2 introduced in a solute recovery step, obtaining a high solute recovery rate, and separating CO 2 in a short time to recover a solute. It was made for the purpose of.
【0007】[0007]
【課題を解決するための手段】本発明の要旨は、被分離
液を超臨界状態の二酸化炭素を移動相としてクロマト分
離したのち、分離した溶質を回収する超臨界流体クロマ
ト分離方法において、(イ)被分離液を超臨界状態の二
酸化炭素を移動相としてクロマト分離するクロマト分離
工程と、(ロ)クロマト分離工程で分離したのちの溶質
を含有する超臨界二酸化炭素を超臨界状態又は液体状態
で捕集する第一捕集工程と、(ハ)第一捕集工程で捕集
した超臨界状態又は液体状態の二酸化炭素を固体状態に
状態変化させる低温雰囲気中に導入して固体状態で捕集
する第二捕集工程と、(ニ)第二捕集工程で捕集した超
臨界状態又は液体状態の二酸化炭素を加温して二酸化炭
素を気化排出し、溶質を回収する溶質回収工程からなる
ことを特徴とする超臨界流体クロマト分離方法である。SUMMARY OF THE INVENTION The gist of the present invention is to provide a supercritical fluid chromatographic separation method in which a liquid to be separated is subjected to chromatographic separation using carbon dioxide in a supercritical state as a mobile phase, and the separated solute is recovered. ) A chromatographic separation step in which the liquid to be separated is chromatographically separated using carbon dioxide in a supercritical state as a mobile phase, and (b) supercritical carbon dioxide containing solutes separated in the chromatographic separation step in a supercritical state or a liquid state. A first trapping step of trapping, and (c) a supercritical state or a liquid state of the carbon dioxide collected in the first trapping step is introduced into a low-temperature atmosphere in which the state of the carbon dioxide changes to a solid state and collected in a solid state. (D) a supercritical state or a liquid state of the carbon dioxide collected in the second collection step is heated to evaporate and discharge the carbon dioxide and collect a solute. Characterized by It is a critical fluid chromatographic separation methods.
【0008】[0008]
【作用】被分離溶液は超臨界CO2 と共にクロマト分離
工程へ供給され、超臨界CO2 を移動相としてクロマト
分離される。分離した溶質を含有する超臨界CO2 は超
臨界状態を保ったまま捕集されるか、又は超臨界状態か
ら液体状態に状態変化する温度及び圧力、即ち臨界温度
以下及び臨界圧力以下になるよう設定された第一捕集工
程に導入されて液体CO2 として捕集される。溶質含有
の超臨界CO2 又は液体CO2は流量制御されて、凝固
温度以下の低温になるよう設定された固体捕集工程に導
入され、固体CO2 として捕集される。更に、固体捕集
工程を室温雰囲気中にさらす等して加温し、CO2 を気
化排出することにより、溶質を液体又は固体として回収
することができる。The solution to be separated is supplied to the chromatographic separation step together with the supercritical CO 2 , and is chromatographed using the supercritical CO 2 as a mobile phase. Or supercritical CO 2 containing the separated solute is collected while maintaining a supercritical state, or temperature and pressure changes state from a supercritical state to the liquid state, i.e. below the critical temperature and the critical pressure to become as follows It is introduced into the set first collection step and collected as liquid CO 2 . The solute-containing supercritical CO 2 or liquid CO 2 is controlled in flow rate, introduced into a solid collecting step set to a low temperature below the solidification temperature, and collected as solid CO 2 . The solute can be recovered as a liquid or a solid by heating the solid collecting step by, for example, exposing it to an atmosphere at room temperature and vaporizing and discharging CO 2 .
【0009】[0009]
【実施例】図1は本発明の超臨界流体クロマト分離方法
の一実施例に適用される装置の系統図である。1は移動
相としての超臨界CO2 を供給するポンプ、2は被分離
溶液を注入したのち流路切り換えにより前記超臨界CO
2と共に被分離溶液をクロマト分離工程に供給するイン
ジェクタである。FIG. 1 is a system diagram of an apparatus applied to one embodiment of a method for separating a supercritical fluid chromatograph according to the present invention. 1 is a pump for supplying supercritical CO 2 as a mobile phase, and 2 is a supercritical CO 2 by injecting the solution to be separated and switching the flow path.
2 is an injector that supplies the solution to be separated together with 2 to the chromatographic separation step.
【0010】3は分離成分によって適宜選定される吸着
剤が充填され、吸着された溶質を超臨界CO2 を移動相
としてクロマト分離する分離カラム、4は分離した溶質
を含有する超臨界CO2 を超臨界CO2 又は液体CO2
として捕集する捕集槽、5は超臨界CO2 又は液体CO
2 を固体CO2 として捕集したのち、加温して気化排出
し目的の溶質を回収する回収槽であり、複数の溶質を分
画分取する場合には、複数の槽を設け順次切り換えられ
るように構成される。Reference numeral 3 denotes a separation column packed with an adsorbent appropriately selected according to the separation component and chromatographically separates the adsorbed solute using supercritical CO 2 as a mobile phase. 4 denotes supercritical CO 2 containing the separated solute. Supercritical CO 2 or liquid CO 2
5 is supercritical CO 2 or liquid CO
2 is collected as solid CO 2 , heated and then vaporized and discharged to collect a desired solute.In the case of fractionating and separating a plurality of solutes, a plurality of tanks can be provided and sequentially switched. It is configured as follows.
【0011】前記回収槽5から排出される気体CO2 が
少量の場合には、通常は大気中に放出されるが、大量の
場合等には超臨界CO2 生成工程に循環するのが好まし
い。前記捕集槽4の液体状態で捕集する場合の冷却は、
通常20°C以下の冷却水を用いて行われ、又回収槽5
の冷却は、ドライアイス/メタノ−ル又は液体窒素等が
用いられる。尚分離カラム3の後段に溶質成分を検出す
る成分検出器6を設けるのが好ましい。When the amount of gaseous CO 2 discharged from the recovery tank 5 is small, it is normally released to the atmosphere, but when the amount is large, it is preferable to circulate it to the supercritical CO 2 generation step. Cooling when collecting in the liquid state of the collecting tank 4 is as follows.
This is usually performed using cooling water at a temperature of 20 ° C. or less.
For cooling, dry ice / methanol or liquid nitrogen is used. Preferably, a component detector 6 for detecting a solute component is provided downstream of the separation column 3.
【0012】次に前記構成の装置を用いて本発明の方法
を実施した一実施例と、溶質を含有するCO2 を直接液
体、気体、又は固体で捕集し、CO2 を気化して溶質を
回収する回収法の比較例について説明する。尚比較例で
使用した装置は、液体及び気体回収法では回収槽5を除
去し捕集槽4が回収槽を兼ね、又固体回収法では捕集槽
4を除去し回収槽5が捕集槽を兼ねた構成とした。Next, an embodiment in which the method of the present invention was carried out using the apparatus having the above-mentioned configuration, and CO 2 containing a solute was directly collected as a liquid, gas, or solid, and CO 2 was vaporized to form a solute. A comparative example of a recovery method for recovering phenol is described. In the apparatus used in the comparative example, the collecting tank 5 was removed and the collecting tank 4 also served as the collecting tank in the liquid and gas collecting method, and the collecting tank 4 was removed and the collecting tank 5 was used in the solid collecting method. The configuration was also used.
【0013】被分離溶液としては、n−ヘキサン、n−
オクタン、及びn−デカン(以下順にC6 、C8 、及び
C10と称する)を各々アセトンで希釈して別個に用いて
テストした。又溶液の濃度分析は一定量の試料をアセト
ンで希釈しガスクロマトグラフィで定量した。As the solution to be separated, n-hexane, n-hexane
Octane and n- decane (hereinafter C 6 sequentially, C 8, and referred to as C 10) was tested using separately by each diluted with acetone. In the analysis of the concentration of the solution, a fixed amount of the sample was diluted with acetone and quantified by gas chromatography.
【0014】[0014]
実験条件 クロマト分離工程:圧力200Kg/cm2 、温度40
°C、CO2 流速20ml/min 液体CO2 捕集工程:圧力50Kg/cm2 、温度15
°C、捕集時間3分 固体CO2 捕集工程:圧力常圧、温度−78°C 溶質回収工程:温度室温、CO2 分離時間10分 前記条件での溶質回収率はC6 :55%、C8 :84
%、及びC10:97%であった。Experimental conditions Chromatographic separation step: pressure 200 kg / cm 2 , temperature 40
° C, CO 2 flow rate 20 ml / min Liquid CO 2 trapping step: pressure 50 kg / cm 2 , temperature 15
° C, capture time 3 minutes Solid CO 2 capture step: normal pressure, temperature -78 ° C Solute recovery step: temperature room temperature, CO 2 separation time 10 minutes The solute recovery rate under the above conditions is C 6 : 55% , C 8 : 84
%, And C 10: it was 97%.
【0015】[0015]
【比較例1】 液体回収法の実験条件 クロマト分離工程:圧力200Kg/cm2 、温度40
°C、CO2 流速20ml/min 液体CO2 捕集工程:圧力50Kg/cm2 、温度15
°C、捕集時間3分 溶質回収工程:温度15°C、CO2 分離時間50分 前記条件での溶質回収率はC6 :55%、C8 :85
%、及びC10:99%であった。[Comparative Example 1] Experimental conditions for liquid recovery method Chromatographic separation step: pressure 200 kg / cm 2 , temperature 40
° C, CO 2 flow rate 20 ml / min Liquid CO 2 trapping step: pressure 50 kg / cm 2 , temperature 15
° C, collection time 3 minutes Solute recovery step: temperature 15 ° C, CO 2 separation time 50 minutes Under the above conditions, the solute recovery rate was C 6 : 55%, C 8 : 85
%, And C 10: it was 99%.
【0016】[0016]
【比較例2】 液体回収法の実験条件 CO2 分離時間を15分とした以外は比較例1に同じで
ある。前記条件での溶質回収率はC6 :48%、C8 :
73%、及びC10:89%であった。Comparative Example 2 Experimental Conditions of Liquid Recovery Method Same as Comparative Example 1 except that the CO 2 separation time was 15 minutes. Solute recovery in the condition C 6: 48%, C 8 :
73%, and C 10: was 89%.
【0017】[0017]
【比較例3】 気体回収法の実験条件 クロマト分離工程:圧力200Kg/cm2 、温度40
°C、CO2 流速20ml/min 気体CO2 捕集工程:圧力70Kg/cm2 、温度40
°C、捕集時間3分 溶質回収工程:温度40°C、CO2 分離時間20分 前記条件での溶質回収率はC6 :9%、C8 :34%、
及びC10:53%であった。Comparative Example 3 Experimental Conditions for Gas Recovery Method Chromatographic separation step: pressure 200 kg / cm 2 , temperature 40
° C, CO 2 flow rate 20 ml / min Gaseous CO 2 capture process: pressure 70 kg / cm 2 , temperature 40
° C, collection time 3 minutes Solute recovery step: temperature 40 ° C, CO 2 separation time 20 minutes The solute recovery rate under the above conditions is C 6 : 9%, C 8 : 34%,
And C 10 : 53%.
【0018】[0018]
【比較例4】 固体回収法の実験条件 クロマト分離工程:圧力200Kg/cm2 、温度40
°C、CO2 流速2ml/min 気体CO2 捕集工程:圧力常圧、温度−78°C、捕集
時間3分 溶質回収工程:温度室温、CO2 分離時間10分 前記条件での溶質回収率はC6 :55%、C8 :79
%、及びC10:91%であった。Comparative Example 4 Experimental Conditions for Solid Recovery Method Chromatographic separation step: pressure 200 kg / cm 2 , temperature 40
° C, CO 2 flow rate 2 ml / min Gaseous CO 2 capture step: normal pressure, temperature −78 ° C., capture time 3 minutes Solute recovery step: temperature room temperature, CO 2 separation time 10 minutes Solute recovery under the above conditions the rate C 6: 55%, C 8 : 79
%, And C 10: it was 91%.
【0019】[0019]
【比較例5】 固体回収法の実験条件 クロマト分離工程でのCO2 流速を25ml/minと
した以外は比較例4に同じである。前記条件での溶質回
収率はC6 :23%、C8 :63%、及びC10:77%
であった。[Comparative Example 5] Experimental conditions of solid recovery method Same as Comparative Example 4 except that the CO 2 flow rate in the chromatographic separation step was 25 ml / min. Solute recovery in the condition C 6: 23%, C 8 : 63%, and C 10: 77%
Met.
【0020】前記の通り、液体回収法における比較例1
では、溶質回収率において本発明の一実施例と同様な良
好結果を示しているが、CO2 分離時間が極めて遅く分
離に時間がかかり、又比較例2のように分離時間を速く
すると溶質回収率が低下する。本発明の方法では溶質回
収工程での温度を更に高め分離時間を短くすることも可
能である。比較例3の気体回収法では溶質回収率が極め
て低い事がわかる。更に比較例4及び5の固体回収法で
は溶質回収率がCO2 流速により相違しており、捕集工
程での冷却固化能力の差によって溶質回収率が変化する
ことが理解される。As described above, Comparative Example 1 in the liquid recovery method
Shows the same good results in the solute recovery rate as in the example of the present invention, but the CO 2 separation time is extremely slow and the separation takes a long time. The rate drops. In the method of the present invention, the temperature in the solute recovery step can be further increased to shorten the separation time. It can be seen that the solute recovery rate is extremely low in the gas recovery method of Comparative Example 3. Further, in the solid recovery methods of Comparative Examples 4 and 5, the solute recovery rate differs depending on the CO 2 flow rate, and it is understood that the solute recovery rate changes due to the difference in cooling and solidifying ability in the collection step.
【0021】[0021]
【発明の効果】本発明の方法によれば下記の効果が得ら
れる。 イ)クロマト分離された溶質を含有する超臨界CO2 を
超臨界又は液体状態で捕集したのち溶質回収工程へ導入
するため、クロマト分離工程でのCO2 流速に影響され
ずに回収工程導入流量の制御が可能であり、高い溶質回
収率が得られると共に、回収工程ヘのCO2 導入弁が閉
塞する心配もない。 ロ)回収溶質と移動相である多量のCO2 との分離を短
時間に行うことができ、超臨界クロマト分離方法の利点
である迅速分離回収性を更に生かすことができる。According to the method of the present invention, the following effects can be obtained. B) Supercritical CO 2 containing solutes separated by chromatography is collected in a supercritical or liquid state and then introduced into the solute recovery step. Therefore, the flow rate of the CO 2 introduced into the recovery step is not affected by the CO 2 flow rate in the chromatographic separation step. Can be controlled, a high solute recovery rate can be obtained, and there is no fear that the CO 2 introduction valve to the recovery step is closed. B) Separation of the recovered solute from a large amount of CO 2 as a mobile phase can be performed in a short time, and the rapid separation and recovery, which is an advantage of the supercritical chromatography separation method, can be further utilized.
【図1】本発明の一実施例に適用される装置の系統図FIG. 1 is a system diagram of an apparatus applied to an embodiment of the present invention.
1:ポンプ 2:インジェクタ 3:分離カラム 4:捕集槽 5:回収槽 6:成分検出器 1: Pump 2: Injector 3: Separation column 4: Collection tank 5: Recovery tank 6: Component detector
Claims (1)
相としてクロマト分離したのち、分離した溶質を回収す
る超臨界流体クロマト分離方法において、下記工程から
なることを特徴とする超臨界流体クロマト分離方法。 (イ)被分離液を超臨界状態の二酸化炭素を移動相とし
てクロマト分離するクロマト分離工程と、 (ロ)クロマト分離工程で分離したのちの溶質を含有す
る超臨界二酸化炭素を超臨界状態又は液体状態で捕集す
る第一捕集工程と、 (ハ)第一捕集工程で捕集した超臨界状態又は液体状態
の二酸化炭素を固体状態に状態変化させる低温雰囲気中
に導入して固体状態で捕集する第二捕集工程と、 (ニ)第二捕集工程で捕集した超臨界状態又は液体状態
の二酸化炭素を加温して二酸化炭素を気化排出し、溶質
を回収する溶質回収工程 1. A supercritical carbon dioxide is transferred to a liquid to be separated.
After chromatographic separation as a phase, recover the separated solutes.
In the supercritical fluid chromatographic separation method,
A supercritical fluid chromatographic separation method characterized by comprising: (A) Using the liquid to be separated as carbon dioxide in the supercritical state as the mobile phase
A chromatographic separation step of chromatographic separation Te, to contain solutes after separating at (b) chromatographic separation step
Supercritical carbon dioxide in supercritical or liquid state
A first absorption step that, (iii) a supercritical or liquid state was collected in the first absorption step
In a low-temperature atmosphere that changes the state of carbon dioxide into a solid state
A second trapping step for trapping in the solid state is introduced into, (d) the supercritical or liquid state and collected in the second absorption step
The carbon dioxide is heated to evaporate and emit carbon dioxide, solute
Solute recovery process
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31010991A JP3221574B2 (en) | 1991-10-30 | 1991-10-30 | Supercritical fluid chromatographic separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31010991A JP3221574B2 (en) | 1991-10-30 | 1991-10-30 | Supercritical fluid chromatographic separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05115703A JPH05115703A (en) | 1993-05-14 |
JP3221574B2 true JP3221574B2 (en) | 2001-10-22 |
Family
ID=18001290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31010991A Expired - Fee Related JP3221574B2 (en) | 1991-10-30 | 1991-10-30 | Supercritical fluid chromatographic separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3221574B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006181416A (en) * | 2004-12-27 | 2006-07-13 | Daikin Ind Ltd | Method for regenerating adsorbent and method for recovering fluorine-containing surfactant |
WO2016046990A1 (en) * | 2014-09-26 | 2016-03-31 | 株式会社島津製作所 | Sample collection device, supercritical fluid device, and sample collection method |
JP6406358B2 (en) * | 2014-12-05 | 2018-10-17 | 株式会社島津製作所 | Sample recovery mechanism and supercritical fluid apparatus equipped with the sample recovery mechanism |
JP6844621B2 (en) * | 2016-07-11 | 2021-03-17 | コニカミノルタ株式会社 | Coating liquid, its manufacturing method, ink for manufacturing electronic devices, electronic devices, organic electroluminescence elements, and photoelectric conversion elements |
-
1991
- 1991-10-30 JP JP31010991A patent/JP3221574B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05115703A (en) | 1993-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3444888B2 (en) | Separation of solutes in gaseous solvents | |
Lee et al. | Analytical supercritical fluid chromatography and extraction | |
US8246834B2 (en) | High pressure flash chromatography | |
US20060074254A1 (en) | Process for extracting taxanes | |
Smith et al. | Supercritical fluid extraction and gas chromatographic determination of the sesquiterpene lactone parthenolide in the medicinal herb feverfew (Tanacetum parthenium) | |
EP0415822A1 (en) | Continuous process and apparatus of chromatographic separation of a mixture of at least three components into three purified effluents by means of one solvent at two different temperatures and/or pressures | |
US11806640B2 (en) | Liquid carbon dioxide and cosolvent biomass extraction method and system | |
US7776218B2 (en) | System for liquid extraction, and methods | |
JPS60156504A (en) | Method of separating substance mixture containing organic component | |
JPH06102124B2 (en) | Separation and collection method of sample by supercritical fluid | |
US4101297A (en) | Process for recovering a solvent vapor | |
JP3221574B2 (en) | Supercritical fluid chromatographic separation method | |
US7780763B2 (en) | Method of desorbing a volatile component from a spent adsorbent with rotating packed bed and method of recovering 2,2,3,3-tetrafluro-1-propanol from a gas stream by adsorption | |
JP3010099B2 (en) | Supercritical fluid extraction device | |
US6755893B2 (en) | Method for high-pressure gas separation | |
GB2353731A (en) | Solvent steam stripping of biomass. | |
King et al. | Problems associated with the development of gas extraction and similar processes | |
Levy et al. | Considerations in off-line collection after SFE | |
JP2513423B2 (en) | Sample concentrator-trap device | |
Birtigh et al. | New method for supercritical fluid regeneration | |
JPH0650950A (en) | Specimen concentration-trap device | |
JPH05219889A (en) | Method for decaffeinizing original coffee | |
JPH07163803A (en) | Method for separating component of liquid mixture | |
US4562165A (en) | Regenerating sorbents | |
JPS6316030A (en) | Recovery of solvent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090817 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |