JP3218920U - Apparatus for regenerating a battery containing a fluid electrolyte - Google Patents

Apparatus for regenerating a battery containing a fluid electrolyte Download PDF

Info

Publication number
JP3218920U
JP3218920U JP2018003468U JP2018003468U JP3218920U JP 3218920 U JP3218920 U JP 3218920U JP 2018003468 U JP2018003468 U JP 2018003468U JP 2018003468 U JP2018003468 U JP 2018003468U JP 3218920 U JP3218920 U JP 3218920U
Authority
JP
Japan
Prior art keywords
electrolyte
functional
container
battery
functional electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018003468U
Other languages
Japanese (ja)
Inventor
暁萱 沈
暁萱 沈
國興 張
國興 張
中平 ▲頼▼
中平 ▲頼▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGT Materials Ltd
Original Assignee
BGT Materials Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGT Materials Ltd filed Critical BGT Materials Ltd
Priority to JP2018003468U priority Critical patent/JP3218920U/en
Application granted granted Critical
Publication of JP3218920U publication Critical patent/JP3218920U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】劣化した電池を細かく分解することなく再生できる流体電解質を含む電池の再生装置を提供すること。【解決手段】電池のコア構造Cが収容される容器10と、複数のセンサー21を含むセンサーユニット20と、異なる機能性電解液が保存される複数の機能性電解液保存槽30A〜30Cを備え、ポンプ40が管路Pを介して容器10と機能性電解液保存槽30A〜30Cに連接され、コントローラ50がポンプ40を制御して固体電解質界面膜の除去に適した機能性電解液を容器10に注入させ、コア構造Cが浸漬されている容器10中の機能性電解液の特性パラメータをセンサー21が測定し、コントローラ50が測定された特性パラメータに基づきポンプ40を制御して、容器10の機能性電解液の特性パラメータが正常な電池の特性パラメータに合致したとき、機能性電解液の注入を停止させる。【選択図】図1An object of the present invention is to provide a battery regenerator including a fluid electrolyte that can be regenerated without finely disassembling a degraded battery. SOLUTION: A container 10 in which a core structure C of a battery is accommodated, a sensor unit 20 including a plurality of sensors 21, and a plurality of functional electrolyte storage tanks 30A to 30C in which different functional electrolytes are stored. The pump 40 is connected to the container 10 and the functional electrolyte storage tanks 30A to 30C through the conduit P, and the controller 50 controls the pump 40 to store a functional electrolyte suitable for removing the solid electrolyte interface film. 10, the sensor 21 measures the characteristic parameters of the functional electrolyte in the vessel 10 in which the core structure C is immersed, and the controller 50 controls the pump 40 on the basis of the measured characteristic parameters. When the characteristic parameters of the functional electrolyte match the characteristic parameters of the normal battery, the injection of the functional electrolyte is stopped. [Selected figure] Figure 1

Description

本考案は、電気化学式蓄電部材の再生装置に関し、特に、リチウム、アルミニウム、硫黄電池等の流体電解質を含む電池の再生装置に関する。   The present invention relates to a regeneration device for an electrochemical storage member, and more particularly to a regeneration device for a battery containing a fluid electrolyte such as a lithium, aluminum or sulfur battery.

リチウム電池、リチウムイオン電池、及び高性能リチウムイオンキャパシタは電気化学式蓄電の主流であり、リチウム電池の製造コストが年々低下してバッテリー産業の速やかな発展が促され、さまざまな応用分野で経済的な優位性を備えている。
リチウムイオン電池をコアとする蓄電システムは電動自動車の重要動力システムである。電動自動車が世界的に広く普及するにつれ、蓄電システムの回収は急ぎ解決が必要な問題となっている。
Lithium batteries, lithium ion batteries, and high-performance lithium ion capacitors are the mainstream of electrochemical storage, and the manufacturing cost of lithium batteries is reduced year by year, promoting the rapid development of the battery industry, which is economical in various application fields Has an advantage.
A storage system having a lithium ion battery as a core is an important power system of an electric vehicle. With the widespread use of electric vehicles worldwide, the recovery of storage systems has become an urgent issue that needs to be solved.

残念ながら、これら古い廃棄リチウム電池を回収する方法は非常に少なく、よく見受けられる方法には、機械処理(machanical processes)、乾式製錬法(pyrometallurgical processes、略称PP)、湿式製錬法(hydrometallurgy processes、略称HP)などがある。
機械処理は基本的に物理方式を採用して粉砕、収集、分類の手順で古い廃棄リチウム電池の材料を回収するもので、磁選、エアバリスティック分離、篩分が含まれる。
乾式製錬法は高温を使用して材料を回収するもので、熱融解、製錬、蒸留、精錬を含む。但し、リチウムと有機化合物はこのような方法を使用して回収することはできない。
湿式製錬法は通常、機械処理を行い、粉砕した後の材料に酸またはアルカリを使用して溶液中で浸出させ、精製して抽出する。既知の古い廃棄リチウム電池の回収技術について、以下で簡単に説明する。
Unfortunately, there are very few methods to recover these old waste lithium batteries, and there are few common methods such as mechanical processes, pyrometallurgical processes (abbr. PP), hydrometallurgy processes , Or abbreviated HP).
The mechanical processing basically uses a physical method to recover the material of the old waste lithium battery in the procedure of crushing, collection and classification, and includes magnetic separation, air ballistic separation and sieving.
Dry smelting processes use high temperatures to recover materials, including thermal melting, smelting, distillation, and refining. However, lithium and organic compounds can not be recovered using such methods.
The hydrosmelting process is usually machined and the ground material is leached in solution using acid or alkali, purified and extracted. The known old waste lithium battery recovery techniques are briefly described below.

すでに公開されている特許文献1は、正極活物質と硫化物固体電解質材料を分離し、かつ、正極活物質と硫化物固体電解質材料に含まれるリチウムを回収できる電池部材の処理方法を提供している。
この処理方法は、上記電池部材および処理液を接触させることにより、硫化水素を発生させるとともに、上記硫化物固体電解質材料に含まれるリチウムを上記処理液に溶解させる接触工程と、上記リチウムが溶解した処理液から、不溶成分である上記正極活物質を回収する正極活物質回収工程と、上記不溶成分である正極活物質を回収した処理液から、リチウム化合物を回収するリチウム化合物回収工程と、を有することを特徴とする。
Patent Document 1 already disclosed discloses a method for treating a battery member capable of separating a positive electrode active material and a sulfide solid electrolyte material and recovering lithium contained in the positive electrode active material and the sulfide solid electrolyte material. There is.
In this treatment method, hydrogen sulfide is generated by bringing the battery member and the treatment liquid into contact with each other, and a contact step in which lithium contained in the sulfide solid electrolyte material is dissolved in the treatment liquid, and lithium is dissolved. It has a positive electrode active material recovery step of recovering the positive electrode active material which is an insoluble component from the treatment liquid, and a lithium compound recovery step which recovers a lithium compound from the treatment liquid which is the positive electrode active material which is the insoluble component. It is characterized by

また、特許文献2は、廃棄リチウムイオン電池からの陰極材料を有用な元素であるCo(コバルト)、Ni(ニッケル)、Mn(マンガン)、Li(リチウム)、Fe(鉄)を抽出するための溶液中に溶解させ、新しい電池に用いる活性陰極材料を生産するリチウムイオン電池の回収に用いる方法と設備を提供している。
特許文献3は、湿式粉砕した金属ケース入りアルカリ乾電池から二酸化マンガン、水酸化亜鉛/酸化物と鋼鉄を回収する、アルカリ電池の回収処理技術を提供している。
また別にアルカリ乾電池の電極に直接用いることができる鋼鉄と高純度二酸化マンガンを回収する方法もある。
さらに、特許文献4は、リチウムイオン電池の正極材料を回収する方法の例示を提供している。一例において、正極材料が圧力下で、濃縮水酸化リチウム溶液中で加熱される。 加熱後、正極材料が濃縮水酸化リチウム溶液中から分離される。分離後、アルカリ溶液中で該正極材料が洗浄される。洗浄後、該正極材料が乾燥され、焼結される。
Further, Patent Document 2 is for extracting cathode materials from waste lithium ion batteries from useful elements such as Co (cobalt), Ni (nickel), Mn (manganese), Li (lithium) and Fe (iron). It provides methods and equipment used for recovery of lithium ion batteries which are dissolved in solution and produce active cathode materials for use in new batteries.
Patent Document 3 provides an alkaline battery recovery processing technology for recovering manganese dioxide, zinc hydroxide / oxide and steel from a wet-ground metal-cased alkaline dry battery.
There are also methods of recovering steel and high purity manganese dioxide that can be used directly for electrodes of alkaline batteries.
Further, Patent Document 4 provides an example of a method of recovering a positive electrode material of a lithium ion battery. In one example, the positive electrode material is heated in concentrated lithium hydroxide solution under pressure. After heating, the positive electrode material is separated from the concentrated lithium hydroxide solution. After separation, the positive electrode material is washed in an alkaline solution. After washing, the positive electrode material is dried and sintered.

前述の従来技術は基本的に物理過程または化学反応のリサイクルと回復過程を含む。物理過程では例えば古い廃棄リチウム電池のハードウェア部分の破砕である。化学過程では例えばアルカリ性と酸性の薬剤を使用して古い廃棄リチウム電池の内部材料(粉末材料など)を溶解する。物理過程と化学過程はいずれも原有の電池モジュールの破壊であり、かつ要するエネルギーが多すぎて廃棄物回収の環境負担を招く。このほか、これらの過程は最終的に材料の回収を完了させるために数多くの工程を経なければならない。
古い廃棄リチウム電池を分解する技術は、分解過程で廃ガス、廃液、廃棄物等の汚染が発生し、生態環境に対する隠れた危険を引き起こしたり、さらには健康に有害となる恐れもあるが、回収と処理を行わないと資源の無駄となることは理解できる。実務上、リチウム電池の回収コストは非常に高く、例えば回収過程で消費されるエネルギーコストと時間コストによって、回収コストが回収して得られる材料の価値を上回ってしまう可能性がある。
The prior art described above basically involves the recycling and recovery process of physical processes or chemical reactions. The physical process is, for example, the destruction of the hardware part of old waste lithium batteries. Chemical processes, for example, use alkaline and acidic agents to dissolve the inner materials (such as powder material) of old waste lithium batteries. Both physical and chemical processes are destruction of the original battery module, and too much energy is required, resulting in environmental burden of waste collection. Besides these, these processes have to go through a number of steps to finally complete the recovery of the material.
Technology for disassembling old waste lithium batteries causes pollution of waste gas, waste liquid, wastes, etc. in the decomposition process, causing hidden hazards to the ecological environment, and may even be harmful to health, but recovery It is understandable that it will be a waste of resources if it does not process. In practice, the cost of lithium battery recovery is very high, for example, the energy costs and time costs consumed in the recovery process can cause the recovery cost to outweigh the value of the recovered material.

米国特許US8557412B2号明細書U.S. Pat. No. 5,857,412 B2 米国特許US20130302226A1号明細書US Patent US20130302226A1 米国特許US8728419B1号明細書U.S. Pat. No. 8,728,419 B1 米国特許US20160043450A1号明細書US Patent US20160043450A1 Specification

本考案が解決しようとする課題は、劣化した電池を細かく分解することなく再生できる流体電解質を含む電池の再生装置を提供することにある。   The problem to be solved by the present invention is to provide a battery regenerator including a fluid electrolyte that can be regenerated without finely disassembling a degraded battery.

本考案の流体電解質を含む電池の再生装置は、容器と、センサーユニットと、複数の機能性電解液保存槽と、少なくとも1つのポンプ及びコントローラを含み、前記容器がパッケージハウジング除去済みの電池のコア構造を収容するために用いられ、前記機能性電解液保存槽にそれぞれ異なる機能性電解液が保存され、前記ポンプが管路を介して前記容器と機能性電解液保存槽に連接され、前記コントローラが前記センサーユニットとポンプに電気的に接続され、前記コントローラが前記ポンプを制御して異なる機能性電解液のうち固体電解質界面膜の除去に適した機能性電解液を容器に注入させて、前記コア構造を該機能性電解液中に浸漬させ、前記センサーユニットが複数のセンサーを含み、前記コア構造が機能性電解液に浸漬されている時、該センサーが前記容器中の機能性電解液の特性パラメータを測定し、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき前記ポンプを制御して、前記機能性電解液保存槽中のいずれか適した機能性電解液を前記容器に注入させ、該容器中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、機能性電解液の注入を停止させる。   An apparatus for regenerating a battery containing a fluid electrolyte according to the present invention comprises a container, a sensor unit, a plurality of functional electrolyte storage tanks, at least one pump and a controller, wherein the container is a core of a battery whose package housing has been removed. The functional electrolyte storage tank stores different functional electrolytes, the pump is connected to the container and the functional electrolyte storage tank through a pipeline, and the controller is used to store the structure. Is electrically connected to the sensor unit and the pump, and the controller controls the pump to inject a functional electrolyte suitable for removing the solid electrolyte interface film out of different functional electrolytes into the container, A core structure is immersed in the functional electrolyte, the sensor unit includes a plurality of sensors, and the core structure is immersed in the functional electrolyte. When the sensor measures a characteristic parameter of the functional electrolyte in the container, and the controller controls the pump based on the characteristic parameter obtained by the measurement by the sensor, the functional electrolyte storage tank The functional electrolyte is injected into the container, and the characteristic parameters of the functional electrolyte in the container match the characteristic parameters of the electrolyte used in the normal battery. Stop the injection.

好ましくは、前記機能性電解液が、イオン濃度が異なる数種類の機能性電解液と、該機能性電解液に適した溶剤を含む。
好ましくは、前記容器が入口と出口を備え、前記ポンプが管路を介して該容器の入口と機能性電解液保存槽に連接され、前記コントローラが該ポンプを制御して機能性電解液を入口から前記容器に注入させ、前記センサーユニットが管路を介して前記容器の出口に連接され、前記容器の出口から流出する機能性電解液の特性パラメータを測定するために用いられ、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき、前記ポンプを制御して前記機能性電解液保存槽中のいずれか適した機能性電解液を入口から前記容器に注入させる。
Preferably, the functional electrolyte contains several types of functional electrolytes having different ion concentrations, and a solvent suitable for the functional electrolyte.
Preferably, the container comprises an inlet and an outlet, and the pump is connected to the inlet of the container and the functional electrolyte storage tank via a pipeline, and the controller controls the pump to inlet the functional electrolyte And the sensor unit is connected to the outlet of the container through a conduit and used to measure the characteristic parameter of the functional electrolyte flowing out of the outlet of the container, and the controller is used to measure the characteristic parameter of the functional electrolyte. The pump is controlled based on the characteristic parameter obtained by the measurement by the sensor to inject any suitable functional electrolyte in the functional electrolyte storage tank into the container from the inlet.

あるいは、前記容器が入口と出口を備え、前記ポンプが多流路制御弁と管路を介して該容器の入口と前記機能性電解液保存槽に連接され、前記コントローラが前記ポンプと多流路制御弁を制御して機能性電解液を入口から前記容器に注入させ、前記センサーユニットが管路を介して前記容器の出口に連接され、該容器の出口から流出する機能性電解液の特性パラメータを測定するために用いられ、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき、前記ポンプと多流路制御弁を制御して前記機能性電解液保存槽中のいずれか適した機能性電解液を入口から前記容器に注入させる。
この場合、前記容器の出口が管路を介して前記多流路制御弁に連接され、前記容器中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、前記コントローラが前記多流路制御弁を制御して前記容器の出口から排出された機能性電解液を前記機能性電解液保存槽のうちの1つに戻し、保存させることがある。
Alternatively, the container comprises an inlet and an outlet, and the pump is connected to the inlet of the container and the functional electrolyte storage tank through a multi-pass control valve and a pipeline, and the controller is provided with the pump and the multi-pass The control valve is controlled to inject functional electrolyte into the container from the inlet, and the sensor unit is connected to the outlet of the container through a conduit, and the characteristic parameter of the functional electrolyte flowing out of the outlet of the container And the controller controls the pump and the multi-pass control valve based on the characteristic parameters obtained by the measurement by the sensor to use any suitable function in the functional electrolyte storage tank. Electrolyte is injected into the vessel from the inlet.
In this case, the outlet of the container is connected to the multi-channel control valve through a pipeline, and the characteristic parameters of the functional electrolyte in the container match the characteristic parameters of the electrolyte used in the normal battery. At the same time, the controller may control the multi-channel control valve to return the functional electrolyte discharged from the outlet of the container to one of the functional electrolyte storage tanks for storage.

好ましくは、パッケージハウジング除去済みの電池の前記コア構造に電気的に接続された電力出力回路を含み、パッケージハウジング除去済みの電池の前記コア構造に該電力出力回路が電圧を印加し、該電圧範囲が0V〜5Vの間である。
好ましくは、パッケージハウジング除去済みの電池のコア構造に電気的に接続された容量測定回路を含み、該容量測定回路がパッケージハウジング除去済みの電池のコア構造の容量を測定するために用いられ、該容量が正常な範囲の容量に達したとき、機能性電解液の注入が停止される。
Preferably, the power output circuit includes a power output circuit electrically connected to the core structure of the package housing removed battery, and the power output circuit applies a voltage to the core structure of the package housing removed battery; Is between 0V and 5V.
Preferably, the package measurement circuit includes a capacitance measurement circuit electrically connected to the core structure of the battery whose package housing has been removed, and the capacitance measurement circuit is used to measure the capacitance of the core structure of the battery whose package housing has been removed. When the capacity reaches the normal range of capacity, the injection of the functional electrolyte is stopped.

本考案の効果は、ダメージを受けた電池も、細かく分解することなく、異なる機能性電解液を利用して固体電解質界面(SEI)膜を除去し、有用な電解質に交換して電池に活性を回復させることができることにある。   The effect of the present invention is that even with a damaged battery, a solid electrolyte interface (SEI) film is removed using a different functional electrolyte without finely disassembling, and the battery is activated by replacing it with a useful electrolyte. It is about being able to recover.

本考案の流体電解質を含む電池の再生装置の実施例を示すブロック図である。FIG. 1 is a block diagram illustrating an embodiment of a battery regeneration device including a fluid electrolyte according to the present invention. 本考案の流体電解質を含む電池の再生装置の別の実施例を示すブロック図である。FIG. 6 is a block diagram showing another embodiment of a battery regeneration device including a fluid electrolyte according to the present invention. 本考案の流体電解質を含む電池の再生装置のさらに別の実施例を示すブロック図である。FIG. 6 is a block diagram showing still another embodiment of a battery regeneration device including a fluid electrolyte according to the present invention.

以下、本考案の実施例を図面に基づいて詳細に説明する。以下の説明において、上下左右を含む位置関係は、特別に記載がなければ、いずれも図面の方向に準じる。
リチウムイオン電池を例として説明する。
リチウムイオン電池では、初回の充放電時にリチウムイオンが正極の活物質中から放出され、セパレーターを通過してさらに電解液に進入し、最後に負極カーボン材料の層状空隙中に取り込まれ、リチウムイオンの1回の放出・取り込みの挙動が完了される。このとき、正極から電子が回路に沿って出て、負極カーボン材料中に進入する。
電解液は一部の電子を得た後還元反応を発生し、リチウムイオンと結合反応して厚さが約100〜120nmの界面膜を生成する。この界面膜が固体電解質界面(solid electrolyte interphase、SEI)膜であり、以下では略してSEI膜と呼ぶ。SEI膜は通常電極材料と電解液の間に形成される固液相界面膜である。電子、電解液中の溶剤及びリチウムイオンの間に酸化還元反応が発生し、溶剤分子が電子を受け取った後、リチウムイオンと結合してSEI膜を形成し、かつH2、CO、CH2=CH2等の気体を生成する。SEI膜の厚さが大きくなると、電子が通過できなくなり、鈍化層が形成され、酸化還元反応の継続が抑制される。
Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. In the following description, the positional relationship including upper, lower, left, and right will conform to the direction of the drawings unless otherwise specified.
A lithium ion battery will be described as an example.
In a lithium ion battery, lithium ions are released from the active material of the positive electrode at the first charge and discharge, pass through the separator and further enter the electrolytic solution, and are finally taken into the layered voids of the negative electrode carbon material to The behavior of one release and uptake is completed. At this time, electrons are emitted from the positive electrode along the circuit and enter the negative electrode carbon material.
After obtaining some electrons, the electrolytic solution generates a reduction reaction and bonds with lithium ions to form an interfacial film having a thickness of about 100 to 120 nm. This interface film is a solid electrolyte interphase (SEI) film and is hereinafter abbreviated as a SEI film. The SEI film is usually a solid-liquid phase interface film formed between the electrode material and the electrolyte. An oxidation-reduction reaction occurs between the electron, the solvent in the electrolytic solution and the lithium ion, and after the solvent molecule receives the electron, it combines with the lithium ion to form a SEI film, and H2, CO, CH2 = CH2, etc. To produce a gas. As the thickness of the SEI film increases, electrons can not pass through, a blunting layer is formed, and the continuation of the redox reaction is suppressed.

古い廃棄リチウム電池の大部分の減衰原因は負極上に形成されたSEI膜の不規則性により引き起こされており、電解液中のリチウムイオンの損失によって容量が減衰し、正極と負極の容量がアンバランスになる。このほか、厚すぎるSEI膜はリチウムイオンがSEI層に嵌入し、電荷交換を行うことを阻害する。その結果、電池の容量が極度に低下したり、抵抗(電圧が低い)が高すぎたりする。
本考案の流体電解質を含む電池の再生方法は、電池に悪影響があるSEI膜を適度に除去することができる。また再生過程において濃度と導電率をテストする必要性があることも説明できる。
Most of the decaying cause of old waste lithium batteries is caused by the irregularity of the SEI film formed on the negative electrode, the loss of lithium ions in the electrolyte reduces the capacity, and the positive and negative electrodes have Be in balance. Besides, an excessively thick SEI film prevents lithium ions from being inserted into the SEI layer and performing charge exchange. As a result, the capacity of the battery may be extremely reduced, or the resistance (low voltage) may be too high.
The method of regenerating a battery containing a fluid electrolyte according to the present invention can appropriately remove the SEI film which has an adverse effect on the battery. It can also be explained that there is a need to test concentration and conductivity in the regeneration process.

図1は、本考案の流体電解質を含む電池の再生装置の実施例を示す。
流体電解質を含む電池の再生装置は、容器10と、センサーユニット20と、複数の機能性電解液保存槽30A〜30Cと、少なくとも1つのポンプ40と、コントローラ50を含む。
FIG. 1 shows an embodiment of a battery regeneration device including a fluid electrolyte of the present invention.
An apparatus for regenerating a battery including a fluid electrolyte includes a container 10, a sensor unit 20, a plurality of functional electrolyte storage tanks 30A to 30C, at least one pump 40, and a controller 50.

容器10はパッケージハウジング除去済みの電池のコア構造Cを収容するために用いられ、フレームまたは固定手段を利用し、コア構造Cを容器10内に固定することが好ましい。
異なる電池には異なる機能性電解液が適用されるため、異なる機能性電解液保存槽30A〜30Cの中に電池の再生過程に使用するタイプの異なる機能電解液を保存する必要があり、異なる機能性電解液が該機能性電解液保存槽30A〜30Cにそれぞれ保存される。
ポンプ40は管路Pを介して容器10と機能性電解液保存槽30A〜30Cに連接される。
コントローラ50はセンサーユニット20とポンプ40に電気的に接続され、コントローラ50がポンプ40を制御して該異なる機能性電解液のうちSEI膜の除去に適した機能性電解液(例えば機能性電解液保存槽30A中に保存された機能性電解液)を容器10に注入し、コア構造Cを機能性電解液中に浸漬させる。
The container 10 is used to accommodate the core structure C of the battery from which the package housing has been removed, and it is preferable to secure the core structure C in the container 10 using a frame or fixing means.
Since different functional electrolytes are applied to different batteries, it is necessary to store different functional electrolytes of different types used in the battery regeneration process in different functional electrolyte storage tanks 30A to 30C, and thus different functions. The functional electrolyte is stored in the functional electrolyte storage tanks 30A to 30C.
The pump 40 is connected to the container 10 and the functional electrolyte storage tanks 30A to 30C through a conduit P.
The controller 50 is electrically connected to the sensor unit 20 and the pump 40, and the controller 50 controls the pump 40 so that a functional electrolyte suitable for removing the SEI film among the different functional electrolytes (for example, functional electrolyte) The functional electrolytic solution (stored in the storage tank 30A) is injected into the container 10, and the core structure C is immersed in the functional electrolytic solution.

固体電解質界面(SEI)膜の除去に適した機能性電解液は、炭酸塩及び(または)アルコール及び(または)ケトン基を有する典型的な機能性電解質であり、機能性電解液は官能基を有する化学品、例えば炭酸エステルで組成され、R1 O−CO−O R2(そのうちR1、R2=H(水素基)、メチル基、エチル基、環状環)で表され、水溶液はアルコール類とケトン類を含む。 典型的な化学式は次のとおりである。   A functional electrolyte suitable for removing a solid electrolyte interface (SEI) film is a typical functional electrolyte having carbonate and / or alcohol and / or ketone groups, and the functional electrolyte has functional groups. Containing chemicals such as carbonic acid ester, represented by R1 O-CO-O R2 (of which R1, R2 = H (hydrogen group), methyl group, ethyl group, cyclic ring), and the aqueous solution is alcohol and ketone including. The typical chemical formula is as follows.

Figure 0003218920
Figure 0003218920

センサーユニット20は複数のセンサー21を含み、コア構造Cが機能性電解液に浸漬されている間にセンサー21で容器10内の機能性電解液の特性パラメータを測定する。
コントローラ50はセンサー21で測定して得られた特性パラメータに基づきポンプ40を制御し、機能性電解液保存槽30A〜30C中のいずれか適した機能性電解液を容器10に注入させる。これは機能性電解液の成分調整を目的としており、容器10中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、機能性電解液の注入が停止される。機能性電解液は、イオン濃度が異なる数種類の機能性電解液と、機能性電解液に適した溶剤を含む。
The sensor unit 20 includes a plurality of sensors 21. The sensor 21 measures characteristic parameters of the functional electrolyte in the container 10 while the core structure C is immersed in the functional electrolyte.
The controller 50 controls the pump 40 based on the characteristic parameter obtained by the measurement by the sensor 21 to inject any suitable functional electrolytic solution in the functional electrolytic solution storage tanks 30A to 30C into the container 10. This is intended to adjust the components of the functional electrolyte, and when the characteristic parameters of the functional electrolyte in the container 10 match the characteristic parameters of the electrolyte used in the normal battery, the injection of the functional electrolyte is It is stopped. The functional electrolyte contains several types of functional electrolytes having different ion concentrations, and a solvent suitable for the functional electrolyte.

機能性電解液の特性パラメータを測定する目的は、測定で得られた特性パラメータ中の濃度(例えばリチウムイオン電池の電解液のリチウムイオン濃度)と導電率を通じ、機能性電解液の適用性を判断することにある。つまり、測定された濃度が低すぎたり、高すぎたりする場合、異なる濃度の機能性電解液を注入して調整し、機能性電解液を正常に使用可能な状態の濃度に回復させることができる。導電率も機能性電解液の重要な測定指標の1つであり、機能性電解液の導電率が低すぎると電池に高性能の充放電を行わせることができないため、機能性電解液の濃度と導電率を測定することを通じ、他の適した機能性電解液を注入することにより、電池に正常な状態を回復させることができる。   The purpose of measuring the characteristic parameters of the functional electrolyte is to determine the applicability of the functional electrolyte through the concentration in the characteristic parameters obtained by the measurement (for example, the lithium ion concentration of the lithium ion battery electrolyte) and the conductivity. It is to do. That is, when the measured concentration is too low or too high, functional electrolytes of different concentrations can be injected and adjusted to restore the functional electrolyte to a concentration that allows normal use. . The conductivity is also one of the important measurement indexes of the functional electrolyte, and when the conductivity of the functional electrolyte is too low, the battery can not be charged and discharged with high performance, so the concentration of the functional electrolyte is By measuring the conductivity and measuring the conductivity, the battery can be restored to its normal state by injecting another suitable functional electrolyte.

好ましくは、コア構造Cが容器10に入れられ、機能性電解液に浸漬された後、機能性電解液の流動を保持することで、SEI膜を洗い流して除去する効果を高めることができる。
流動を実現するには、例えば、図2に示す別の実施例のように、容器10が入口11と出口12を備え、ポンプ40が管路Pを介して容器10の入口11と複数の機能性電解液保存槽30A〜30Cに連接され、コントローラ50がポンプ40を制御して機能性電解液を入口11から容器10に注入させる。
センサーユニット20が管路Pを介して容器10の出口12に連接され、容器10の出口12から流出する機能性電解液の特性パラメータを測定し、コントローラ50がセンサー21により測定して得られた特性パラメータに基づきポンプ40を制御し、機能性電解液保存槽30A〜30Cのうちのいずれか適した機能性電解液を入口11から容器10に注入させる。これによりコア構造Cを浸漬した機能性電解液の流動を保持することができる。
Preferably, the core structure C is placed in the container 10, and after being immersed in the functional electrolyte, the flow of the functional electrolyte can be maintained to enhance the effect of washing and removing the SEI film.
To realize the flow, for example, as in the alternative embodiment shown in FIG. 2, the vessel 10 comprises an inlet 11 and an outlet 12 and the pump 40 via the line P the inlet 11 of the vessel 10 and several functions. The controller 50 controls the pump 40 to inject functional electrolyte from the inlet 11 into the vessel 10, which is connected to the alkaline electrolyte storage tanks 30A to 30C.
The sensor unit 20 is connected to the outlet 12 of the container 10 through the conduit P, and the characteristic parameter of the functional electrolyte flowing out of the outlet 12 of the container 10 is measured, and the controller 50 is obtained by measurement by the sensor 21 The pump 40 is controlled based on the characteristic parameter, and any one of the functional electrolyte storage tanks 30A to 30C is injected into the container 10 through the inlet 11. Thereby, the flow of the functional electrolyte in which the core structure C is immersed can be maintained.

図3に、本考案の流体電解質を含む電池の再生装置のさらに別の実施例を示す。
この実施例では、容器10は入口11と出口12を備え、ポンプ40が多流路制御弁60と管路Pを介して容器10の入口11と機能性電解液保存槽30A〜30Dに連接され、コントローラ50がポンプ40と多流路制御弁60を制御して機能性電解液を入口11から容器10に注入させる。
また、センサーユニット20が管路Pを介して容器10の出口12に連接され、容器10の出口12から流出する該機能性電解液の特性パラメータを測定するために用いられる。
コントローラ50はセンサー21による測定で得られた特性パラメータに基づき、ポンプ40と多流路制御弁60を制御して機能性電解液保存槽30A〜30D中のいずれか適した機能性電解液を入口11から容器10に注入させる。
FIG. 3 shows still another embodiment of a battery regeneration device containing a fluid electrolyte according to the present invention.
In this embodiment, the container 10 has an inlet 11 and an outlet 12, and a pump 40 is connected to the inlet 11 of the container 10 and the functional electrolyte storage tanks 30A to 30D through the multi-channel control valve 60 and the pipe line P. The controller 50 controls the pump 40 and the multi-channel control valve 60 to inject functional electrolyte from the inlet 11 into the vessel 10.
Also, a sensor unit 20 is connected to the outlet 12 of the container 10 through the pipe line P, and is used to measure characteristic parameters of the functional electrolyte flowing out of the outlet 12 of the container 10.
The controller 50 controls the pump 40 and the multi-channel control valve 60 based on the characteristic parameters obtained by the measurement by the sensor 21 to enter any suitable functional electrolyte in the functional electrolyte storage tanks 30A to 30D. 11 to inject into container 10

本考案の流体電解質を含む電池の再生装置の一実施例において、容器10の出口12が管路Pを介して多流路制御弁60に連接され、容器10中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、コントローラ50が多流路制御弁60を制御して容器10の出口12から排出された該機能性電解液を機能性電解液保存槽30A〜30Dのうちの1つに戻し、保存させる。
例えば固体電解質界面(SEI)膜の除去に適した機能性電解液を元の同じ機能性電解液保存槽30Aに戻したり、その他機能性電解液の回収専用の機能性電解液保存槽30Dに戻してもよい。つまり、このように機能性電解液保存槽30Aに回収した機能性電解液は再度バランスが取れた電解液であり、例えばリチウムイオン電池で使用されるリチウム含有電解液は、適したリチウムイオン濃度と導電率を有し、このような機能性電解液保存槽30Aに回収した機能性電解液は復元したコア構造Cの新しいパッケージハウジングの中に直接注入し、再生した電池とすることができる。
In one embodiment of the device for regenerating a battery containing a fluid electrolyte according to the present invention, the outlet 12 of the container 10 is connected to the multi-pass control valve 60 through the conduit P, and the characteristic parameters of the functional electrolyte in the container 10 The controller 50 controls the multi-pass control valve 60 to match the functional electrolyte discharged from the outlet 12 of the container 10 with the functional electrolyte when the characteristic parameter of the normal battery is matched with the characteristic parameter of the electrolyte used in the battery. It is returned to one of the storage tanks 30A to 30D and stored.
For example, the functional electrolyte suitable for removing the solid electrolyte interface (SEI) film is returned to the same functional electrolyte storage tank 30A, or is returned to the functional electrolyte storage tank 30D dedicated to recovery of other functional electrolytes. May be That is, the functional electrolyte recovered in the functional electrolyte storage tank 30A in this way is a rebalanced electrolyte, for example, a lithium-containing electrolyte used in a lithium ion battery has a suitable lithium ion concentration and the like. The functional electrolyte which has conductivity and is recovered in such a functional electrolyte storage tank 30A can be directly injected into a new package housing of the restored core structure C to make a regenerated battery.

図1に示す実施例は、コア構造Cに電気的に接続された電力出力回路70を含み、電力出力回路70がコア構造Cに電圧を印加し、コア構造Cが機能性電解液に浸漬されている間のSEI膜除去をサポートするために用いられる。該電圧の範囲は0V〜5Vの間である。   The embodiment shown in FIG. 1 includes a power output circuit 70 electrically connected to the core structure C, wherein the power output circuit 70 applies a voltage to the core structure C, and the core structure C is immersed in the functional electrolyte. Used to support SEI membrane removal during operation. The voltage range is between 0V and 5V.

また、コア構造Cに電気的に接続された容量測定回路80を含むこともある。
容量測定回路80はコア構造Cが機能性電解液に浸漬されている間にコア構造Cの容量を測定するために用いられ、容量が正常な範囲の容量に達したとき、該機能性電解液の注入が停止される。
In addition, it may include a capacitance measurement circuit 80 electrically connected to the core structure C.
The capacity measuring circuit 80 is used to measure the capacity of the core structure C while the core structure C is immersed in the functional electrolyte, and when the capacity reaches the capacity in the normal range, the functional electrolyte Injection is stopped.

なお、以上は、あくまでも本考案の好適な実施例を示すものであって、本考案の権利範囲はこれら実施例に限定されるものではなく、実用新案登録請求の範囲を逸脱しない変更と修飾はいずれも、本考案の権利範囲内に含まれる。   The above shows only preferred embodiments of the present invention, and the scope of rights of the present invention is not limited to these embodiments, and changes and modifications that do not deviate from the claims of the utility model registration Both are included in the scope of the present invention.

10 容器
11 入口
12 出口
20 センサーユニット
21 センサー
30A〜30D 機能性電解液保存槽
40 ポンプ
50 コントローラ
60 多流路制御弁
70 電力出力回路
80 容量測定回路
C コア構造
P 管路
DESCRIPTION OF SYMBOLS 10 container 11 inlet 12 outlet 20 sensor unit 21 sensor 30A-30D functional electrolyte storage tank 40 pump 50 controller 60 multi-pass control valve 70 electric power output circuit 80 capacity measurement circuit C core structure P pipe line

Claims (7)

流体電解質を含む電池の再生装置であって、容器と、センサーユニットと、複数の機能性電解液保存槽と、少なくとも1つのポンプ及びコントローラを含み、前記容器がパッケージハウジング除去済みの電池のコア構造を収容するために用いられ、前記機能性電解液保存槽にそれぞれ異なる機能性電解液が保存され、前記ポンプが管路を介して前記容器と機能性電解液保存槽に連接され、前記コントローラが前記センサーユニットとポンプに電気的に接続され、前記コントローラが前記ポンプを制御して異なる機能性電解液のうち固体電解質界面膜の除去に適した機能性電解液を容器に注入させて、前記コア構造を該機能性電解液中に浸漬させ、前記センサーユニットが複数のセンサーを含み、前記コア構造が機能性電解液に浸漬されている時、該センサーが前記容器中の機能性電解液の特性パラメータを測定し、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき前記ポンプを制御して、前記機能性電解液保存槽中のいずれか適した機能性電解液を前記容器に注入させ、該容器中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、機能性電解液の注入を停止させることを特徴とする、流体電解質を含む電池の再生装置。   An apparatus for regenerating a battery containing a fluid electrolyte, comprising: a container, a sensor unit, a plurality of functional electrolyte storage tanks, at least one pump and a controller, wherein the container has a package housing-removed battery core structure Are used to store different functional electrolytes in the functional electrolyte storage tank, the pump is connected to the container and the functional electrolyte storage tank via a pipeline, and the controller is used to store the functional electrolyte storage tank. The core is electrically connected to the sensor unit and the pump, and the controller controls the pump to inject a functional electrolyte suitable for removing a solid electrolyte interface film out of different functional electrolytes into the container, and the core The structure is immersed in the functional electrolyte, the sensor unit comprises a plurality of sensors, and the core structure is immersed in the functional electrolyte The sensor measures a characteristic parameter of the functional electrolyte in the container, and the controller controls the pump on the basis of the characteristic parameter obtained by the measurement by the sensor; Injection of a functional electrolyte when any suitable functional electrolyte is injected into the container and the characteristic parameters of the functional electrolyte in the container match the characteristic parameters of the electrolyte used in the normal battery An apparatus for regenerating a battery containing a fluid electrolyte, comprising: 前記機能性電解液が、イオン濃度が異なる数種類の機能性電解液と、該機能性電解液に適した溶剤を含むことを特徴とする、請求項1に記載の流体電解質を含む電池の再生装置。   The apparatus for regenerating a battery containing a fluid electrolyte according to claim 1, wherein the functional electrolyte comprises two or more kinds of functional electrolytes having different ion concentrations, and a solvent suitable for the functional electrolyte. . 前記容器が入口と出口を備え、前記ポンプが管路を介して該容器の入口と機能性電解液保存槽に連接され、前記コントローラが該ポンプを制御して機能性電解液を入口から前記容器に注入させ、前記センサーユニットが管路を介して前記容器の出口に連接され、前記容器の出口から流出する機能性電解液の特性パラメータを測定するために用いられ、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき、前記ポンプを制御して前記機能性電解液保存槽中のいずれか適した機能性電解液を入口から前記容器に注入させることを特徴とする、請求項1に記載の流体電解質を含む電池の再生装置。   The container comprises an inlet and an outlet, and the pump is connected to the inlet of the container and the functional electrolyte storage tank through a pipeline, and the controller controls the pump to supply the functional electrolyte from the inlet to the container , And the sensor unit is connected to the outlet of the container through a pipeline, and is used to measure the characteristic parameter of the functional electrolyte flowing out of the outlet of the container, and the controller measures the sensor 2. The method according to claim 1, further comprising controlling the pump to inject any suitable functional electrolyte in the functional electrolyte storage tank into the container from the inlet based on the characteristic parameter obtained in An apparatus for the regeneration of a battery comprising the described fluid electrolyte. 前記容器が入口と出口を備え、前記ポンプが多流路制御弁と管路を介して該容器の入口と前記機能性電解液保存槽に連接され、前記コントローラが前記ポンプと多流路制御弁を制御して機能性電解液を入口から前記容器に注入させ、前記センサーユニットが管路を介して前記容器の出口に連接され、該容器の出口から流出する機能性電解液の特性パラメータを測定するために用いられ、前記コントローラが前記センサーによる測定で得られた特性パラメータに基づき、前記ポンプと多流路制御弁を制御して前記機能性電解液保存槽中のいずれか適した機能性電解液を入口から前記容器に注入させることを特徴とする、請求項1に記載の流体電解質を含む電池の再生装置。   The container comprises an inlet and an outlet, and the pump is connected to the inlet of the container and the functional electrolyte storage tank through a multi-pass control valve and a pipeline, and the controller is the multi-pass control valve Control electrolyte is injected into the container through the inlet, and the sensor unit is connected to the outlet of the container through a conduit to measure characteristic parameters of the functional electrolyte flowing out of the outlet of the container And the controller controls the pump and the multi-pass control valve based on the characteristic parameters obtained by the measurement by the sensor to use the controller to control the pump and the multi-flow path control valve. The apparatus for regenerating a battery containing a fluid electrolyte according to claim 1, wherein the solution is injected into the vessel from an inlet. 前記容器の出口が管路を介して前記多流路制御弁に連接され、前記容器中の機能性電解液の特性パラメータが正常な電池で使用される電解液の特性パラメータに合致したとき、前記コントローラが前記多流路制御弁を制御して前記容器の出口から排出された機能性電解液を前記機能性電解液保存槽のうちの1つに戻し、保存させることを特徴とする、請求項4に記載の流体電解質を含む電池の再生装置。   The outlet of the container is connected to the multi-channel control valve through a conduit, and when the characteristic parameter of the functional electrolyte in the container matches the characteristic parameter of the electrolyte used in the normal battery, The controller is characterized in that the controller controls the multi-channel control valve to return the functional electrolyte discharged from the outlet of the container to one of the functional electrolyte storage tanks for storage. An apparatus for regenerating a battery comprising the fluid electrolyte according to 4. パッケージハウジング除去済みの電池の前記コア構造に電気的に接続された電力出力回路を含み、パッケージハウジング除去済みの電池の前記コア構造に該電力出力回路が電圧を印加し、該電圧範囲が0V〜5Vの間であることを特徴とする、請求項1に記載の流体電解質を含む電池の再生装置。   The power output circuit includes a power output circuit electrically connected to the core structure of the package housing removed battery, and the power output circuit applies a voltage to the core structure of the package housing removed battery, and the voltage range is 0 V to An apparatus for regenerating a battery comprising a fluid electrolyte according to claim 1, characterized in that it is between 5V. パッケージハウジング除去済みの電池のコア構造に電気的に接続された容量測定回路を含み、該容量測定回路がパッケージハウジング除去済みの電池のコア構造の容量を測定するために用いられ、該容量が正常な範囲の容量に達したとき、機能性電解液の注入が停止されることを特徴とする、請求項1に記載の流体電解質を含む電池の再生装置。   It includes a capacitance measurement circuit electrically connected to the core structure of the battery whose package housing has been removed, and the capacitance measurement circuit is used to measure the capacitance of the core structure of the battery whose package housing has been removed, and the capacitance is normal The apparatus for regenerating a battery containing a fluid electrolyte according to claim 1, wherein the injection of the functional electrolyte is stopped when the capacity of the range is reached.
JP2018003468U 2018-09-05 2018-09-05 Apparatus for regenerating a battery containing a fluid electrolyte Expired - Fee Related JP3218920U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003468U JP3218920U (en) 2018-09-05 2018-09-05 Apparatus for regenerating a battery containing a fluid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003468U JP3218920U (en) 2018-09-05 2018-09-05 Apparatus for regenerating a battery containing a fluid electrolyte

Publications (1)

Publication Number Publication Date
JP3218920U true JP3218920U (en) 2018-11-15

Family

ID=64268576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003468U Expired - Fee Related JP3218920U (en) 2018-09-05 2018-09-05 Apparatus for regenerating a battery containing a fluid electrolyte

Country Status (1)

Country Link
JP (1) JP3218920U (en)

Similar Documents

Publication Publication Date Title
Arshad et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries
US20100068605A1 (en) Rejuvenation and reuse of degraded lithium ion battery cells
CN102160220B (en) Recycling batteries having basic electrolytes
CN103825064A (en) Demonstration process for recovering waste and old dynamic lithium iron phosphate cell in environmental protection mode
KR20210095900A (en) Method and system for scalable direct recycling of batteries
CN104810566A (en) Environmentally friendly recovery and treatment method of waste and old lithium iron phosphate power cells
JP2008257947A (en) Mobile unit
US20210091426A1 (en) Lithium-ion battery recycling processes and systems
JP2015002107A (en) Method for extracting electrolytic solution from organic electrolytic battery
CN110534835B (en) Supercritical CO2Method for recovering waste lithium ion battery electrolyte by using fluid
US10777859B2 (en) Method and apparatus for regenerating battery containing fluid electrolyte
JP3218920U (en) Apparatus for regenerating a battery containing a fluid electrolyte
US5429887A (en) Process for treating AB5 nickel-metal hydride battery scrap
Shi et al. Li2CO3 recovery through a carbon-negative electrodialysis of lithium-ion battery leachates
JP6971940B2 (en) Recycling method and regenerating device for batteries containing fluid electrolyte
KR101808121B1 (en) Waste lithium battery rare metal recovery method
Liu et al. Simultaneous peeling of precious metals in cathode and anode of spent ternary batteries using electrolysis
CN110257631B (en) Method for separating lithium and other metals in anode of waste lithium ion battery
US10003097B2 (en) Process for operating a redox flow battery system
CN106252770A (en) A kind of separating waste, worn anode material for lithium-ion batteries and the method for collector
CN106299525A (en) A kind of method separating and recovering waste lithium iron phosphate battery electrolyte
CN114317970B (en) Recovery method of waste lithium cobalt oxide battery
CN208806338U (en) The regenerating unit of battery comprising fluid electrolyte
EP3627616A1 (en) Method and apparatus for regenerating battery containing fluid electrolyte
CN110767953A (en) Method and apparatus for regenerating battery containing fluid electrolyte

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3218920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees