JP3218864B2 - Carbon film quality evaluation method - Google Patents

Carbon film quality evaluation method

Info

Publication number
JP3218864B2
JP3218864B2 JP13974994A JP13974994A JP3218864B2 JP 3218864 B2 JP3218864 B2 JP 3218864B2 JP 13974994 A JP13974994 A JP 13974994A JP 13974994 A JP13974994 A JP 13974994A JP 3218864 B2 JP3218864 B2 JP 3218864B2
Authority
JP
Japan
Prior art keywords
film
quality
protective film
evaluating
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13974994A
Other languages
Japanese (ja)
Other versions
JPH087257A (en
Inventor
昌彦 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13974994A priority Critical patent/JP3218864B2/en
Publication of JPH087257A publication Critical patent/JPH087257A/en
Application granted granted Critical
Publication of JP3218864B2 publication Critical patent/JP3218864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、固定磁気ディスク装
置などに搭載される磁気ディスクなどの磁気記録媒体
保護膜として用いられるカーボン膜の膜質評価方法
する。
BACKGROUND OF THE INVENTION This invention is related <br/> to the carbon film quality evaluation method used as <br/> protective film of the magnetic recording medium such as a magnetic disk to be mounted on a rigid magnetic disk drive .

【0002】[0002]

【従来の技術】コンピュータなどの情報処理装置の外部
記憶装置として固定磁気ディスク装置が多く用いられて
いる。固定磁気ディスク装置においては、磁気記録媒体
である磁気ディスクを回転させながら磁気ヘッドにより
情報の記録・再生行われるが、その場合、通常、情報の
記録・再生が行われる装置稼働時には、磁気ヘッドは回
転しているディスク上を僅かに浮上して走行し、装置停
止時には磁気ヘッドは停止しているディスク表面に接触
して停止しているCSS(Contact Start
Stop)方式が採用されている。
2. Description of the Related Art A fixed magnetic disk device is often used as an external storage device of an information processing apparatus such as a computer. In a fixed magnetic disk device, information is recorded / reproduced by a magnetic head while rotating a magnetic disk serving as a magnetic recording medium.In this case, the magnetic head is usually operated when the device for recording / reproducing information is operated. When the apparatus stops, the magnetic head comes into contact with the surface of the stopped disk and stops at a stop (CSS (Contact Start).
Stop) system is employed.

【0003】この方式では、ディスクの回転開始時と回
転停止時にはディスク表面と磁気ヘッドは過渡的に摺動
状態となるため、ディスク表面の耐磨耗性や潤滑性が不
十分な場合、このような摺動が繰り返されることによっ
てディスク表面が磨滅し、磨滅の程度が酷い場合には磁
性層が損傷を受け、クラッシュ状態となる。この対策と
して、ディスクの耐磨耗性を向上させる目的で磁性層上
に保護膜が形成され、さらに、潤滑性を向上させる目的
で保護膜上に潤滑層を設けることが行われている。すな
わち、磁気ディスクは、一般に、図2に示すように、デ
ィスク状の非磁性基板1の両面に非磁性金属下地層,例
えばCr下地層2、強磁性合金,例えばCo合金からな
る薄膜の磁性層3、保護膜4、潤滑層5が順次形成され
て構成されている。
In this method, the disk surface and the magnetic head transitionally slide at the start and stop of rotation of the disk. Therefore, when the disk surface has insufficient wear resistance and lubricity, such a situation occurs. By repeated repeated sliding, the disk surface is worn, and when the degree of wear is severe, the magnetic layer is damaged and a crash state occurs. As a countermeasure, a protective film is formed on the magnetic layer for the purpose of improving the wear resistance of the disk, and a lubricating layer is provided on the protective film for the purpose of improving the lubricity. That is, as shown in FIG. 2, a magnetic disk generally has a nonmagnetic metal underlayer such as a Cr underlayer 2 and a thin magnetic layer made of a ferromagnetic alloy such as a Co alloy on both surfaces of a disk-shaped nonmagnetic substrate 1. 3, a protective film 4, and a lubricating layer 5 are sequentially formed.

【0004】スパッタ法で作製される合金薄膜磁性層を
備えた磁気ディスクでは、磁性層の保護膜としてカーボ
ンを純Arガス雰囲気中でスパッタ成膜したアモルファ
スカーボン(a−C)膜が広く用いられてきた。a−C
保護膜は、従来のMn−Znフェライトヘッド(ビッカ
ース硬度約650)に対しては充分な耐磨耗性を有し、
良好な耐CSS特性を有していた。しかし、最近になり
固定磁気ディスク装置に対して高記録密度化の要求が高
まり、Mn−Znフェライトヘッドに代わって薄膜ヘッ
ドやMIGヘッドが用いられるようになってきた。これ
らのヘッドのスライダーにはAl2 3 −TiCやCa
TiO3 といった硬質セラミック(ビッカース硬度約2
000程度)が用いられているが、a−C保護膜はこれ
らの硬質セラミックに比較して硬度が低いために薄膜ヘ
ッドやMIGヘッドでは磨耗を引き起こしやすく、より
高い耐磨耗性を有する保護膜が求められるようになって
きた。
In a magnetic disk having an alloy thin film magnetic layer produced by a sputtering method, an amorphous carbon (aC) film formed by sputtering carbon in a pure Ar gas atmosphere is widely used as a protective film for the magnetic layer. Have been. a-C
The protective film has sufficient abrasion resistance to a conventional Mn-Zn ferrite head (Vickers hardness: about 650),
It had good CSS resistance. However, recently, there has been an increasing demand for higher recording densities for fixed magnetic disk drives, and thin film heads and MIG heads have been used instead of Mn-Zn ferrite heads. The sliders of these heads include Al 2 O 3 —TiC and Ca
Hard ceramics such as TiO 3 (Vickers hardness about 2
However, since the aC protective film has a lower hardness than these hard ceramics, it tends to cause abrasion in a thin film head or a MIG head, and has a higher abrasion resistance. Has been required.

【0005】これに対して、a−C保護膜に代わるもの
として、ArガスにCH4 などを混合したガス雰囲気中
でカーボンをスパッタ成膜して膜中に水素を含有させて
ダイヤモンド性を付与したダイヤモンド状カーボン(D
iamond Like Carbon:以下DLCと
称する)膜を形成し、この膜を保護膜とすることが提案
され、実用化が進められている。
[0005] On the other hand, as an alternative to the aC protective film, carbon is formed by sputtering in a gas atmosphere in which Ar gas is mixed with CH 4 or the like, and hydrogen is contained in the film to impart diamond properties. Diamond-like carbon (D
iamond Like Carbon (hereinafter referred to as DLC) film is proposed to be used as a protective film, and its practical use is being promoted.

【0006】DLC膜は成膜条件により様々な膜質を示
し、ある特定の膜質(グラファイト結合状態よりもダイ
ヤモンド結合状態およびポリマー性結合状態の占める比
率が高い膜質)のときにはa−C膜に比して優れた耐磨
耗性を有するため薄膜ヘッドやMIGヘッドに対しても
充分な耐磨耗性を示す。しかし、それ以外の膜質の場合
には逆に耐磨耗性がa−C膜よりも低くなってしまい、
耐CSS特性が悪いために、DLC膜を磁気記録媒体の
保護膜として使用する場合には、膜質を正確に評価し、
適正な膜質管理を行うことが必要となる。
[0006] The DLC film exhibits various film qualities depending on the film forming conditions. When the specific film qualities (the film occupied by the diamond-bonded state and the polymer-bonded state are higher than the graphite-bonded state), the DLC film is different from the aC film. Since it has excellent wear resistance, it shows sufficient wear resistance even for thin film heads and MIG heads. However, in the case of other film quality, on the contrary, the abrasion resistance is lower than that of the a-C film,
When the DLC film is used as a protective film of a magnetic recording medium due to poor CSS resistance, the film quality is accurately evaluated,
It is necessary to perform appropriate film quality management.

【0007】膜の耐磨耗性は、主に硬度と柔軟性により
決まる。磁気記録媒体の保護膜としてのDLC膜の膜質
もこれらが適正値でなければならない。膜の硬度は圧子
による微小硬度測定により測定される。一方、DLC膜
の柔軟性は膜中の水素量に関係し水素量が多いほど柔軟
性が増すことが知られており、その量は、通常、IRス
ペクトル分析などで測定される。
[0007] The abrasion resistance of a film is mainly determined by its hardness and flexibility. The quality of the DLC film as a protective film of the magnetic recording medium must also be an appropriate value. The hardness of the film is measured by microhardness measurement using an indenter. On the other hand, the flexibility of a DLC film is related to the amount of hydrogen in the film, and it is known that the flexibility increases as the amount of hydrogen increases, and the amount is usually measured by IR spectrum analysis or the like.

【0008】また、磁気記録媒体の保護膜としてのDL
C膜の膜質評価方法としては、直接耐CSS特性を評価
する指標としてCSSを2万回行った後の摩擦係数を測
定する方法も採られている。また、DLC膜の膜質評価
方法として、膜のラマン分光による方法が知られてい
る。図3はDLC膜のラマンスペクトルの一例を示す線
図であり、波数900cm-1〜1800cm-1にDLC
膜に特有のピーク(DLCピーク)が見られる。図4は
そのピークの部分を拡大して示す線図であるが、このピ
ークの部分について、図5に示すように蛍光によるバッ
クグラウンド(蛍光強度)を直線近似で除去して補正
し、ガウス関数を用いてグラファイトピーク(G−ピー
ク)とダイヤモンドピーク(D−ピーク)の二つのピー
クに波形分離し、高周波側のピークであるG−ピークの
ラマンシフトやG−ピークの強度Ig と低周波側のピー
クであるD−ピークの強度Id とのピーク強度比Id
g により、組成的に膜質を評価する方法である。
Also, a DL as a protective film for a magnetic recording medium is used.
As a method for evaluating the film quality of the C film, a method of directly measuring the coefficient of friction after performing 20,000 times of CSS as an index for directly evaluating CSS resistance characteristics is also employed. As a method for evaluating the quality of a DLC film, a method based on Raman spectroscopy of the film is known. Figure 3 is a diagram showing an example of a Raman spectrum of DLC film, DLC wavenumber 900cm -1 ~1800cm -1
A peak unique to the film (DLC peak) is observed. FIG. 4 is an enlarged diagram showing the peak portion. The peak portion is corrected by removing the background (fluorescence intensity) due to fluorescence by linear approximation as shown in FIG. two peaks in waveform separation, the Raman shift and G- peak of G- peaks at the peak of the high frequency side intensity I g and the low frequency of the graphite peak (G- peak) and diamond peak (D-peak) with peak intensity to be at the peak of the side D- peak intensity I d ratio I d /
The I g, a method of evaluating the quality compositionally.

【0009】また、膜の比抵抗を測定することにより、
組成的に膜質を評価する方法も知られている。
Further, by measuring the specific resistance of the film,
There is also known a method for evaluating the film quality compositionally.

【0010】[0010]

【発明が解決しようとする課題】磁気記録媒体の保護膜
は膜厚数百Å以下の薄膜として形成される。このような
薄膜の正確な微小硬度測定は技術的に難しい。また、膜
中の水素量の測定は大がかりな装置を必要とし時間,費
用ともに多くを必要とする。従って、微小硬度および水
素含有量により膜質を評価し管理することは得策ではな
い。また、摩擦係数の測定による評価,管理も、その都
度CSSを2万回行わねばならず、好ましくない。
The protective film of the magnetic recording medium is formed as a thin film having a thickness of several hundred mm or less. It is technically difficult to accurately measure the microhardness of such a thin film. Further, the measurement of the amount of hydrogen in the film requires a large-scale apparatus, and requires much time and cost. Therefore, it is not advisable to evaluate and control the film quality based on the microhardness and the hydrogen content. In addition, the evaluation and management by measuring the coefficient of friction also require the CSS to be performed 20,000 times each time, which is not preferable.

【0011】膜のラマン分光により組成的に膜質を評価
する方法は精度が高く、これにより管理を行うことがで
きれば効果的である。ところが、この組成的に膜質を評
価する指標であるG−ピークのラマンシフトと耐磨耗性
の面で膜質を評価する指標である膜の水素含有量,微小
硬度,摩擦係数との間には、それぞれ図6(a)の摩擦
係数との関係線図,図6(b)の微小硬度との関係線
図,図6(c)の水素含有量との関係線図に示すよう
に、1対1対応あるいは単調増加・減少の関係がなく、
また、ピーク強度比Id /Ig と耐磨耗性の面で膜質を
評価する指標も、それぞれ図7(a)の摩擦係数との関
係線図,図7(b)の微小硬度との関係線図,図7
(c)の水素含有量との関係線図に示すように、1対1
対応あるいは単調増加・減少の関係がない。従って、G
−ピークのラマンシフト,あるいはピーク強度比Id
g を評価し管理することによりDLC保護膜の耐磨耗
性を適正範囲に保つことはできない。
The method of evaluating the film quality compositionally by Raman spectroscopy of the film has high accuracy, and it is effective if management can be performed by this method. However, between the Raman shift of the G-peak, which is an index for evaluating the film quality in terms of composition, and the hydrogen content, microhardness, and coefficient of friction of the film, which are indexes for evaluating the film quality in terms of wear resistance. 6 (a), the relationship with the microhardness in FIG. 6 (b), and the relationship with the hydrogen content in FIG. 6 (c). There is no relation of one-to-one correspondence or monotonic increase / decrease,
Further, the indexes for evaluating the film quality in terms of the peak intensity ratio I d / I g and the abrasion resistance are also represented by the relationship between the friction coefficient in FIG. 7A and the micro hardness in FIG. Relationship diagram, FIG.
As shown in the relationship diagram with the hydrogen content in FIG.
There is no relation between correspondence or monotone increase / decrease. Therefore, G
Raman shift of peak or peak intensity ratio I d /
Can not be kept in a proper range wear resistance of the DLC protective layer by evaluating manages I g.

【0012】従来、DLC保護膜の膜質評価および管理
は、保護膜スパッタ成膜時の供給CH4 量(CH4 濃度
・ガス流量・放電パワー密度により決まる)と組成的に
膜質を評価する指標との相関、および供給CH4 量と耐
磨耗性の面で膜質を評価する指標との相関をとり、この
CH4 量を介しての両者の相関から適正範囲を規定して
行われており、膜質管理が難しく煩雑であった。
Conventionally, the evaluation and management of the film quality of a DLC protective film include an index for compositionally evaluating the film quality and the amount of CH 4 supplied (determined by a CH 4 concentration, a gas flow rate, and a discharge power density) at the time of forming the protective film by sputtering. And the correlation between the supplied CH 4 amount and an index for evaluating the film quality in terms of abrasion resistance, and defining an appropriate range from the correlation between the two via this CH 4 amount, Film quality management was difficult and complicated.

【0013】この発明は、上述の点に鑑み、カーボン
膜の組成的な膜質を簡便に評価でき、しかも、耐磨耗
性の面で膜質を評価する各指標と一対一の明確な相関を
有する新規な膜質評価方法を提供することを目的とす
る。
[0013] The present invention, in view of the above points, mosquito Bon coercive
Protection can easily evaluate the compositional quality of film, moreover, to an object to provide a novel film quality evaluation method having a clear correlation of one-to-one with each index for evaluating the quality in terms of wear resistance
You.

【0014】[0014]

【課題を解決するための手段】この発明は、上述の目的
を達成するため、波長514.5nmのアルゴンイオン
レーザー励起によるラマンスペクトル測定を行い、図1
に示すように得られたラマンスペクトルの波数900c
-1〜1800cm-1の範囲内蛍光によるバックグラ
ンドを含んだ主ピーク強度Bと、この主ピーク強度Bか
蛍光によるバックグランドを差し引いた主ピーク強度
Aとの強度比(以下「ラマン蛍光強度比」という)B/
Aを求め、その強度比B/Aでカーボン保護膜の膜質を
評価することを特徴とする
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned object.
To achieve, have rows Raman spectroscopy with argon ion laser excitation wavelength 514.5 nm, Fig. 1
The wave number 900c of the Raman spectrum obtained as shown in
back- by fluorescence in the range m -1 ~1800cm -1
A main peak intensity including command B, or the main peak intensity B
Luo intensity ratio of the main peak intensity A minus the background by fluorescence (hereinafter referred to as "Raman fluorescence intensity ratio") B /
Seeking A, and evaluating the quality of the carbon protective film at the intensity ratio B / A.

【0015】[0015]

【0016】[0016]

【作用】DLC膜のラマンスペクトルの蛍光強度は、D
LC膜中のsp2 クラスター(グラファイト構造部)の
大きさ,あるいはその分布状態(ある程度集まって分布
しているのか,個々に島状に孤立して分布しているの
か)に依存している。従って、前述のラマン蛍光強度比
B/AはDLC膜構造すなわち組成に依存し、膜質評価
の指標となり得る。また、DLC膜の微小硬度,水素含
有量,摩擦係数もこの膜構造に依存するので、ラマン蛍
光強度比B/Aは膜の耐磨耗性と明確な相関を有するこ
とになる。
The fluorescence intensity of the Raman spectrum of the DLC film is D
It depends on the size of the sp 2 cluster (graphite structure) in the LC film, or on its distribution state (whether it is distributed to some extent or individually distributed in island form). Therefore, the aforementioned Raman fluorescence intensity ratio B / A depends on the DLC film structure, that is, the composition, and can be an index for evaluating the film quality. Further, the microhardness, hydrogen content, and coefficient of friction of the DLC film also depend on the film structure, so that the Raman fluorescence intensity ratio B / A has a clear correlation with the abrasion resistance of the film.

【0017】[0017]

【実施例】図2に示した構成の磁気記録媒体の製造に際
して、DLC保護膜はカーボンターゲットをArガスと
CH4 の混合ガス雰囲気中でスパッタ成膜することによ
り形成される。このスパッタ時のガス雰囲気中の供給C
4 量を制御して、波長514.5nmのアルゴンイオ
ンレーザー励起によるラマンスペクトルにおいて種々の
ラマン蛍光強度比B/AをもつDLC保護膜を形成した
磁気記録媒体を作製した。
When manufacturing the magnetic recording medium of the structure shown in Embodiment] FIG 2, DLC protective film is formed by sputtering a carbon target in a mixed gas atmosphere of Ar gas and CH 4. Supply C in the gas atmosphere during this sputtering
By controlling the amount of H 4, a magnetic recording medium was formed in which DLC protective films having various Raman fluorescence intensity ratios B / A in a Raman spectrum excited by an argon ion laser having a wavelength of 514.5 nm were formed.

【0018】これらの磁気記録媒体について、Al2
3 ・TiCをスライダー材料とする薄膜ヘッドを用いて
CSS2万回後の摩擦係数を測定し、保護膜のラマン蛍
光強度比B/Aとの相関を調べた。その結果を図8の線
図に示す。図8に見られるように、B/Aと摩擦係数と
の間には、Id /Ig やG−ピークラマンシフトとの間
では見られなかった一対一の明確な相関が認められる。
従って、膜質評価指標としてのB/Aの値を知ることに
よりCSSを行うことなしにCSS2万回後の摩擦係数
を知ることができる。実用上充分な耐磨耗性を得るため
には摩擦係数は0.4以下が必要とされるが、そのため
にはB/Aの値が2以上が適正範囲であることが図8よ
り判る。
For these magnetic recording media, Al 2 O
The 3 · TiC using a thin film head to the slider material to determine the friction coefficient after CSS2 million times was investigated the correlation between the Raman fluorescence intensity ratio B / A of the protective film. The results are shown in the diagram of FIG. As shown in FIG. 8, a clear one-to-one correlation between B / A and the coefficient of friction, which was not seen between I d / I g and G-peak Raman shift, is observed.
Therefore, by knowing the value of B / A as the film quality evaluation index, it is possible to know the friction coefficient after 20,000 times of CSS without performing CSS. In order to obtain practically sufficient abrasion resistance, the coefficient of friction is required to be 0.4 or less. It can be seen from FIG. 8 that the B / A value is 2 or more within the appropriate range.

【0019】また、保護膜のB/Aと微小硬度,水素含
有量との相関を調べたところ、それぞれ図9,図10に
示すように、Id /Ig やG−ピークラマンシフトとの
間では見られなかった一対一の明確な相関が認められ
た。従って、膜質評価指標としてのB/Aの値を知るこ
とにより微小硬度,水素含有量を知ることができる。良
好な耐磨耗性を得るためには、上述のように、B/Aの
値が2以上が適正範囲であり、図9より微小硬度は約4
0GPa以下が適正範囲であり、図10より水素含有量
は約40原子%以上が適正範囲であることが判る。
Further, B / A and the micro hardness of the protective film, was examined the correlation between the hydrogen content, respectively 9, as shown in FIG. 10, the I d / I g and G- peak Raman shift There was a clear one-to-one correlation not seen between the two. Therefore, the microhardness and the hydrogen content can be known by knowing the value of B / A as the film quality evaluation index. In order to obtain good abrasion resistance, as described above, the value of B / A is 2 or more in an appropriate range.
0 GPa or less is an appropriate range, and FIG. 10 shows that the hydrogen content is about 40 atomic% or more.

【0020】さらにまた、保護膜の組成的な膜質評価の
指標として、前述のように、膜の比抵抗が知られてい
る。この比抵抗とB/Aの相関を調べたところ、図11
の線図に示すように一対一の明確な相関が認められ、良
好な対磨耗性を得るためには、比抵抗は約108 Ω・c
m以上が適正範囲であることが判る。以上述べたよう
に、保護膜の組成的な膜質評価指標としてのラマン蛍光
強度比B/Aと、保護膜の耐磨耗性の各評価指標との間
には一対一の明確な相関が有るので、DLC膜のラマン
スペクトルを測定しB/A値を求めるだけで簡単にDL
C保護膜の耐磨耗性を評価することができ、このB/A
値が適正範囲にあるように保護膜の膜質を管理すること
により、耐磨耗性,耐CSS特性に優れた磁気記録媒体
を得ることが可能となる。
Further, as described above, the specific resistance of the film is known as an index for evaluating the compositional film quality of the protective film. When the correlation between this specific resistance and B / A was examined, FIG.
As shown in the diagram, a clear one-to-one correlation was observed, and in order to obtain good abrasion resistance, the specific resistance was about 10 8 Ω · c
It turns out that m or more is an appropriate range. As described above, there is a clear one-to-one correlation between the Raman fluorescence intensity ratio B / A as a compositional film quality evaluation index of the protective film and each of the abrasion resistance evaluation indexes of the protective film. Therefore, simply by measuring the Raman spectrum of the DLC film and obtaining the B / A value, DL
The abrasion resistance of the C protective film can be evaluated.
By controlling the film quality of the protective film so that the value is within an appropriate range, it becomes possible to obtain a magnetic recording medium having excellent wear resistance and CSS resistance.

【0021】[0021]

【発明の効果】この発明によれば、波長514.5nm
のアルゴンイオンレーザー励起によるラマンスペクトル
を測定し、そのラマンスペクトルの波数900cm-1
ら波数1800cm-1の範囲内の蛍光によるバックグラ
ンドを含んだ主ピーク強度Bと、この主ピーク強度Bか
蛍光によるバックグランドを差し引いた主ピーク強度
Aとの強度比B/Aを求め、その強度比B/Aでカーボ
保護膜の膜質を評価するようにしたので、強度比B/
Aは耐磨耗性の面で膜質を評価するための各指標と一対
一の明確な相関を有し、保護膜の耐磨耗性を簡便に評価
することができる。
Effects of the Invention According to the present invention, wavelength 514.5nm
Measured Raman spectrum with argon ion laser excitation, back- wave number 900 cm -1 of the Raman spectrum by fluorescence in the range of wave number 1800 cm -1
A main peak intensity including command B, or the main peak intensity B
Obtains an intensity ratio B / A between the main peak intensity A minus the background by Luo fluorescence. Thus evaluate the quality of the carbon protective film at the intensity ratio B / A, the intensity ratio B /
A is a pair with each index for evaluating film quality in terms of wear resistance.
There is one clear correlation, and the abrasion resistance of the protective film can be easily evaluated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係わるラマン蛍光強度比B/Aの説
明図
FIG. 1 is an explanatory diagram of a Raman fluorescence intensity ratio B / A according to the present invention.

【図2】磁気記録媒体の模式的断面図FIG. 2 is a schematic sectional view of a magnetic recording medium.

【図3】DLC保護膜のラマンスペクトルの一例を示す
線図
FIG. 3 is a diagram showing an example of a Raman spectrum of a DLC protective film.

【図4】DLC保護膜のラマンスペクトルの波数900
cm-1〜1800cm-1の範囲の拡大図
FIG. 4 is a wave number 900 of Raman spectrum of a DLC protective film.
enlarged view of the range of cm -1 ~1800cm -1

【図5】DLC保護膜のラマンスペクトルのピーク強度
比Id /Ig の説明図
FIG. 5 is an explanatory diagram of a peak intensity ratio I d / I g of a Raman spectrum of a DLC protective film.

【図6】G−ピークラマンシフトと各耐磨耗性評価指標
との相関を示す線図で、図6(a)は摩擦係数との関係
図、図6(b)は微小硬度との関係図、図6(c)は水
素含有量との関係図
FIG. 6 is a diagram showing a correlation between G-peak Raman shift and each wear resistance evaluation index. FIG. 6 (a) is a graph showing a relationship with a friction coefficient, and FIG. 6 (b) is a graph showing a relationship with a microhardness. FIG. 6 (c) is a diagram showing the relationship with the hydrogen content.

【図7】Id /Ig と各耐磨耗性評価指標との相関を示
す線図で、図7(a)は摩擦係数との関係図、図7
(b)は微小硬度との関係図、図7(c)は水素含有量
との関係図
FIG. 7 is a graph showing a correlation between I d / I g and each wear resistance evaluation index. FIG. 7 (a) is a graph showing the relationship between the friction coefficient and FIG.
(B) is a diagram showing the relationship with the microhardness, and FIG. 7 (c) is a diagram showing the relationship with the hydrogen content.

【図8】ラマン蛍光強度比B/Aと摩擦係数との関係を
示す線図
FIG. 8 is a diagram showing the relationship between the Raman fluorescence intensity ratio B / A and the coefficient of friction.

【図9】ラマン蛍光強度比B/Aと微小硬度との関係を
示す線図
FIG. 9 is a diagram showing the relationship between Raman fluorescence intensity ratio B / A and microhardness.

【図10】ラマン蛍光強度比B/Aと水素含有量との関
係を示す線図
FIG. 10 is a diagram showing the relationship between the Raman fluorescence intensity ratio B / A and the hydrogen content.

【図11】ラマン蛍光強度比B/Aと膜の比抵抗との関
係を示す線図
FIG. 11 is a diagram showing the relationship between the Raman fluorescence intensity ratio B / A and the specific resistance of the film.

【符号の説明】[Explanation of symbols]

1 非磁性基板 2 非磁性金属下地層 3 磁性層 4 保護膜 5 潤滑層 DESCRIPTION OF SYMBOLS 1 Nonmagnetic substrate 2 Nonmagnetic metal base layer 3 Magnetic layer 4 Protective film 5 Lubrication layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−138035(JP,A) 特開 平2−71422(JP,A) 特開 平5−81660(JP,A) 特開 平6−111287(JP,A) 特開 平5−174369(JP,A) 特開 平2−29919(JP,A) 特開 平7−12714(JP,A) 特開 平5−174369(JP,A) 特開 平5−174368(JP,A) 特開 平6−349055(JP,A) 特開 平7−192254(JP,A) 特開 平7−85462(JP,A) 特開 平7−6354(JP,A) 特開 平6−267063(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/72 G11B 5/84 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-138035 (JP, A) JP-A-2-71422 (JP, A) JP-A-5-81660 (JP, A) JP-A-6-13860 111287 (JP, A) JP-A-5-174369 (JP, A) JP-A-2-29919 (JP, A) JP-A-7-12714 (JP, A) JP-A-5-174369 (JP, A) JP-A-5-174368 (JP, A) JP-A-6-349055 (JP, A) JP-A-7-192254 (JP, A) JP-A-7-85462 (JP, A) JP-A-7-6354 (JP, A) JP-A-6-26663 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/72 G11B 5/84

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気記録媒体の磁性層の保護膜として用い
られるカーボン膜の膜質評価方法であって、波長51
4.5nmのアルゴンイオンレーザー励起によるラマン
スペクトルを測定し、そのラマンスペクトルの波数90
0cm-1から波数1800cm-1の範囲内の蛍光による
バックグランドを含んだ主ピーク強度Bと、この主ピー
ク強度Bから蛍光によるバックグランドを差し引いた主
ピーク強度Aとの強度比B/Aを求め、その強度比B/
でカーボン膜の膜質を評価することを特徴とするカー
ボン膜の膜質評価方法。
1. A method for evaluating the quality of a carbon film used as a protective film for a magnetic layer of a magnetic recording medium, comprising:
A Raman spectrum was measured by excitation with a 4.5 nm argon ion laser , and the wave number 90 of the Raman spectrum was measured.
According from 0 cm -1 to fluorescence in the range of wave number 1800 cm -1
The main peak intensity B including the background and this main peak
The intensity ratio B / A with the main peak intensity A obtained by subtracting the background due to fluorescence from the intensity B was calculated.
A method for evaluating the quality of a carbon film, wherein the quality of the carbon film is evaluated using A.
JP13974994A 1994-06-22 1994-06-22 Carbon film quality evaluation method Expired - Lifetime JP3218864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13974994A JP3218864B2 (en) 1994-06-22 1994-06-22 Carbon film quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13974994A JP3218864B2 (en) 1994-06-22 1994-06-22 Carbon film quality evaluation method

Publications (2)

Publication Number Publication Date
JPH087257A JPH087257A (en) 1996-01-12
JP3218864B2 true JP3218864B2 (en) 2001-10-15

Family

ID=15252496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13974994A Expired - Lifetime JP3218864B2 (en) 1994-06-22 1994-06-22 Carbon film quality evaluation method

Country Status (1)

Country Link
JP (1) JP3218864B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716222B2 (en) * 2002-03-19 2005-11-16 三菱重工業株式会社 Fuel ratio measuring apparatus and method
JP3790504B2 (en) * 2002-08-09 2006-06-28 三菱重工業株式会社 Pulverized coal combustion system

Also Published As

Publication number Publication date
JPH087257A (en) 1996-01-12

Similar Documents

Publication Publication Date Title
US5567512A (en) Thin carbon overcoat and method of its making
JP3157006B2 (en) Carbon film forming method, magnetic memory structure, and magnetic disk manufacturing method
US5607783A (en) Magnetic recording medium and method for fabricating the same
US6132875A (en) Magnetic recording medium and magnetic head having carbon protective layers
US4664976A (en) Magnetic recording medium comprising a protective carbon nitride layer on the surface thereof
KR100485281B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
EP0595494B1 (en) Magnetic recording medium and a method for its manufacture
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
US6136421A (en) Magneto-resistance recording media comprising multilayered protective overcoats
JP3218864B2 (en) Carbon film quality evaluation method
US5562982A (en) Magnetic recording medium
US5118564A (en) Longitudinal magnetic recording media with fine grain crystal magnetic layer
US6537686B1 (en) Magneto-resistance recording media comprising a silicon nitride corrosion barrier layer and a C-overcoat
US6322880B1 (en) Magneto-resistance recording media comprising a foundation layer and a C-overcoat
Patton et al. Effect of diamondlike carbon coating and surface topography on the performance of metal evaporated magnetic tapes
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
JP3244068B2 (en) Magnetic head and its production
Lal et al. Asymmetric DC-magnetron sputtered carbon-nitrogen thin-film overcoat for rigid-disk applications
JP3652616B2 (en) Magnetic recording medium, manufacturing method thereof, magnetic recording / reproducing apparatus, and sputtering target
Bijker et al. Future directions in advanced digital recording technology
JP3083454B2 (en) Magnetic head
JPH07141643A (en) Magnetic recording medium, its production and method for evaluating quality of carbon protective film
JP2547034B2 (en) Magnetic recording media
EP0320241A2 (en) Magnetic recording medium and process for preparing the same
WO1988002168A1 (en) Magnetic data storage media

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term