JP3218582B2 - GaInAs photodiode - Google Patents

GaInAs photodiode

Info

Publication number
JP3218582B2
JP3218582B2 JP33741092A JP33741092A JP3218582B2 JP 3218582 B2 JP3218582 B2 JP 3218582B2 JP 33741092 A JP33741092 A JP 33741092A JP 33741092 A JP33741092 A JP 33741092A JP 3218582 B2 JP3218582 B2 JP 3218582B2
Authority
JP
Japan
Prior art keywords
layer
gainas
photodiode
inas
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33741092A
Other languages
Japanese (ja)
Other versions
JPH06188447A (en
Inventor
守夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP33741092A priority Critical patent/JP3218582B2/en
Publication of JPH06188447A publication Critical patent/JPH06188447A/en
Application granted granted Critical
Publication of JP3218582B2 publication Critical patent/JP3218582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体材料を用
いたフォトダイオードの分光感度特性の改善に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in spectral sensitivity characteristics of a photodiode using a compound semiconductor material.

【0002】[0002]

【従来の技術】従来、波長1.5μm帯のフォトダイオ
ードとして、Ge(ゲルマニウム)およびGaInAs
(ゲルマニウム・インジウム・ヒ素)のフォトダイオー
ドが知られている。Geフォトダイオードと比べてGa
InAsフォトダイオードの方が、暗電流が1桁以上小
さく、1〜1.5μmの波長範囲で分光感度が高く優れ
ている。光計測や光通信などに用いられるGaInAs
フォトダイオードは、InP(インジウム・リン)基板
上に膜厚1〜3μmのGaInAs吸収層とこの吸収層
上にInP窓層を形成し、pn接合をInP窓層/Ga
InAs吸収層の界面付近のGaInAs吸収層内に形
成した構成である。この時、GaInAs吸収層の格子
定数は、InPの格子定数に合うように、GaとInの
組成(3族組成)を制御して形成する。したがって、I
nPに対するGaInAsの格子定数の違い(格子不整
合率Δa/a)は、ほぼ±0.3%以内である。このよ
うなGaInAsフォトダイオードの長波長側の分光感
度限界は、GaInAsの吸収端波長によって決定さ
れ、室温でほぼ1.7μmより短波長である。
2. Description of the Related Art Conventionally, Ge (germanium) and GaInAs have been used as photodiodes in a wavelength band of 1.5 μm.
A photodiode of (germanium, indium, arsenic) is known. Ga photodiode compared to Ge photodiode
The InAs photodiode has a dark current smaller by one digit or more and has a higher spectral sensitivity in a wavelength range of 1 to 1.5 μm and is superior. GaInAs used for optical measurement and optical communication
In the photodiode, a GaInAs absorption layer having a thickness of 1 to 3 μm is formed on an InP (indium phosphorus) substrate, and an InP window layer is formed on the absorption layer.
This is a configuration formed in the GaInAs absorption layer near the interface of the InAs absorption layer. At this time, the GaInAs absorption layer is formed by controlling the composition of Ga and In (group 3 composition) so as to match the lattice constant of InP. Therefore, I
The difference in the lattice constant of GaInAs with respect to nP (lattice mismatch rate Δa / a) is approximately within ± 0.3%. The spectral sensitivity limit on the long wavelength side of such a GaInAs photodiode is determined by the absorption edge wavelength of GaInAs, and is shorter than about 1.7 μm at room temperature.

【0003】しかし、1.7μmから2μm付近までの
近赤外波長帯域には、C−H、H−N、H−Oなどの結
合基の振動モードによる光吸収があり、これらの光吸収
強度を測定するための近赤外分析計にとって、1.7μ
m以上の長波長側の受光素子が特に重要である。
However, in the near-infrared wavelength band from 1.7 μm to about 2 μm, there is light absorption due to vibration modes of bonding groups such as CH, HN, and HO. 1.7 μm for a near-infrared analyzer for measuring
The light receiving element on the long wavelength side of m or more is particularly important.

【0004】2μm帯の受光素子としてPbS(鉛・イ
オウ)光導電素子が知られているが、感度に経時変化が
あり、その温度依存性も大きく、応答速度が遅いなどの
問題があった。
[0004] A PbS (lead / sulfur) photoconductive element is known as a light receiving element in the 2 µm band. However, there have been problems such as the sensitivity changes with time, its temperature dependence is large, and the response speed is slow.

【0005】また、分光感度を長波長側に1.8μm付
近まで広げたフォトダイオードが格子不整合率0.5%
のGaInAs吸収層を用いて製作されている(和田
他、「光学」1992年7月、第21巻第7号 p.2
9)。この時に用いられた格子不整合の緩和層は、Ga
InAs/InP歪格子層であり、その厚さは、約3μ
mと比較的薄い。しかし、分光感度を2μmより長波長
側に広げる場合、GaInAs吸収層のInPに対する
格子不整合率は、1%を越える大きさとなる。このよう
に大きい格子不整合に対する緩和層は、GaInAs/
InP歪格子層ではまだ実現されていない。
A photodiode whose spectral sensitivity is extended to about 1.8 μm on the longer wavelength side has a lattice mismatch rate of 0.5%.
(Wada)
Et al., Optics, July 1992, Vol. 21, No. 7, p. 2
9). The lattice mismatch relaxation layer used at this time was Ga
An InAs / InP strained lattice layer having a thickness of about 3 μm.
m and relatively thin. However, when the spectral sensitivity is extended to a longer wavelength side than 2 μm, the lattice mismatch ratio of the GaInAs absorption layer to InP exceeds 1%. The mitigation layer for such large lattice mismatch is GaInAs /
It has not been realized yet with the InP strain lattice layer.

【0006】一方、InAsPを格子不整合緩和層に用
いて、波長2μm以上に分光感度のあるGaInAs吸
収層を持つフォトダイオードが製作されている(K.Maki
ta et al., Electronic Letters, vol.24, p.379, 198
8.およびK.R.Ringa, et al.,J.Lightwave Technology,
vol.10, p.1050, 1992.)。ここで用いられた格子不整
合緩和層は、InP基板側からInAsY1-Yの組成y
を徐々に0から増加して成長したバッファー層(graded
composition InAsY1-Y buffer layer)である。
図5に示すこれらのバッファー層の構造は、格子不整合
成長層の転位密度を減少するのには効果的であるが、こ
の組成傾斜InAsPバッファー層の厚さは、15〜2
0μmと非常に厚い。このため、結晶成長時間を短くす
る必要があり、結晶成長速度の速いハイドライド(hydr
ide)気相成長法(VPE:vaporphase epitaxy)が用
いられた。
On the other hand, a photodiode having a GaInAs absorption layer having a spectral sensitivity at a wavelength of 2 μm or more has been manufactured using InAsP as a lattice mismatch relaxation layer (K. Maki).
ta et al., Electronic Letters, vol. 24, p. 379, 198
8. and KRRinga, et al., J. Lightwave Technology,
vol.10, p.1050, 1992.). The lattice mismatch relaxation layer used here has a composition y of InAs Y P 1-Y from the InP substrate side.
Buffer layer (graded
composition InAs Y P 1-Y buffer layer).
Although the structure of these buffer layers shown in FIG. 5 is effective in reducing the dislocation density of the lattice mismatch grown layer, the thickness of the compositionally graded InAsP buffer layer is 15 to 2
It is very thick at 0 μm. For this reason, it is necessary to shorten the crystal growth time, and the hydride (hydr) having a high crystal growth rate is required.
ide) Vapor phase epitaxy (VPE) was used.

【0007】しかし、ハイドライドVPE法では、結晶
成長速度が速い反面、1μmより薄いサブミクロンの膜
厚制御性は、有機金属気相成長法(MOVPE:metalo
rganic vapor phase epitaxy)に比較して非常に劣って
いる。したがって、このような厚い組成傾斜InAsP
バッファー層とサブミクロンの膜厚の層を含む構成のフ
ォトダイオードを製作することは基本的に困難であっ
た。また、フォトダイオード製作のために、このように
厚いバッファー層を形成することは、フォトダイオード
以外の素子を一つの基板上に集積化するときには、製作
プロセスの大きな制約と成っていた。
However, in the hydride VPE method, the crystal growth rate is high, but the submicron film thickness controllability of less than 1 μm is controlled by the metal organic vapor phase epitaxy method (MOVPE: metalo).
rganic vapor phase epitaxy). Therefore, such a thick composition gradient InAsP
It has been basically difficult to manufacture a photodiode having a configuration including a buffer layer and a layer having a submicron thickness. Also, forming such a thick buffer layer for the manufacture of a photodiode has been a great constraint on the manufacturing process when elements other than the photodiode are integrated on one substrate.

【0008】[0008]

【発明が解決しようとする課題】GaInAsフォトダ
イオードのGaInAsの3族組成を変えて、GaIn
As吸収層の吸収端波長を長波長側に変化させて、分光
感度を波長2μm近傍にまで延ばしたときに、GaIn
As吸収層の格子定数がInPより大きくなり、格子不
整合が生じる。
By changing the group III composition of GaInAs of a GaInAs photodiode,
When the spectral sensitivity is extended to a wavelength near 2 μm by changing the absorption edge wavelength of the As absorption layer to the longer wavelength side, GaIn
The lattice constant of the As absorption layer becomes larger than that of InP, and lattice mismatch occurs.

【0009】本発明は、このGaInAs吸収層の格子
不整合をInAsX1-X/InAs Y1-Yの組み合わせ
の歪超格子層を多段階に挿入して、従来用いられていた
バッファー層に比べ、1/3以下の膜厚で緩和する層を
形成し、GaInAs吸収層の格子定数と−0.5〜
0.5%で一致するようにした格子定数のInAsP窓
層を0.1μm以下の膜厚で形成することにより、1μ
mより短波長側から2μm近傍まで、高い分光感度を有
する信頼性の高いフォトダイオードを提供することを目
的とするものである。
[0009] The present invention relates to a lattice of the GaInAs absorption layer.
InAs mismatchXP1-X/ InAs YP1-YCombination of
Of the conventional superlattice layer was inserted in multiple stages.
A layer that relaxes with a thickness of 1/3 or less compared to the buffer layer
And the lattice constant of the GaInAs absorption layer and -0.5 to
InAsP window with lattice constant matched at 0.5%
By forming the layer with a thickness of 0.1 μm or less, 1 μm
high spectral sensitivity from the shorter wavelength side to near 2 μm
To provide highly reliable photodiodes
It is the target.

【0010】[0010]

【課題を解決するための手段】InP基板上にバッファ
ー層と光吸収層と窓層が順次積層されたGaInAsフ
ォトダイオードであって、前記バッファー層は前記In
P基板より大きな格子定数を持つInAs x 1-x 層とI
nAs y 1-y 層が交互に多段階に積層された歪超格子
層、前記光吸収層は前記InP基板との格子不整合率が
0.5%以上のGaInAs層、前記窓層は前記GaI
nAs吸収層との格子定数が−0.5〜0.5%で一致
するようにした膜厚0.1μm以下の層であることを特
徴としている。
A buffer is provided on an InP substrate.
Layer, a light absorption layer, and a window layer in this order.
A photodiode, wherein the buffer layer is
InAs x P 1-x layer with lattice constant larger than P substrate and I
Strained superlattice in which nAs y P 1-y layers are alternately stacked in multiple stages
Layer and the light absorbing layer have a lattice mismatch rate with the InP substrate.
0.5% or more GaInAs layer, the window layer is the GaI
Lattice constant with nAs absorption layer is -0.5 to 0.5%
It is characterized in that it is a layer having a thickness of 0.1 μm or less .

【0011】[0011]

【作用】InAsX1-X/InAsY1-Yの組み合わせ
の歪超格子層を多段階に挿入する格子不整合緩和層は、
MOVPE法のような比較的成長速度の遅い成長法が適
用でき、このため、膜厚0.1μm以下の非常に薄いI
nAsP窓層の厚さを正確に制御して形成できる。
The lattice mismatch relaxation layer in which the strained superlattice layer of the combination of InAs X P 1-X / InAs Y P 1-Y is inserted in multiple stages,
A growth method having a relatively low growth rate such as the MOVPE method can be applied.
The thickness of the nAsP window layer can be accurately controlled and formed.

【0012】[0012]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明のGaInAsフォトダイオードの一実施例
を示す構成図である。図1に示すように、本実施例の構
成のGaInAsフォトダイオードは、n+−(10
0)InP基板上に、n+ −InP層、InAsy1-y
/InAsz1-z歪超格子バッファー層、n−Ga1-x
InxAs吸収層、n−InAsx 1-x 窓層を順次
MOVPE法により成長し、Znの選択拡散により、p
+ 領域を吸収層内、吸収層/窓層界面近傍にp+−n接
合が形成されるように製作し、このp+ 側と基板裏面n
+ 側に電極(例えば、それぞれAu−Zn、Au−Sn
合金電極)を形成し、反射防止膜を受光面に設けてある
構造である。なお、図2には、膜成長方向(縦軸)に変
化させたInPに対する格子不整合率(横軸)を示して
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the GaInAs photodiode of the present invention. As shown in FIG. 1, the GaInAs photodiode having the configuration of the present embodiment has n +-(10
0) on the InP substrate, n + -InP layer, InAs y P 1-y
/ InAs z P 1-z strained superlattice buffer layer, n-Ga 1-x
An In x As absorption layer, n-InAs x , P 1-x , and a window layer are sequentially grown by MOVPE, and p is selectively diffused by Zn.
+ Regions absorbent layer, the absorbent layer / window layer fabricated as p + -n junction is formed near the interface, the p + side and the substrate rear surface n
The electrode (for example, Au-Zn, Au-Sn
Alloy electrode) and an antireflection film is provided on the light receiving surface. FIG. 2 shows the lattice mismatch rate (horizontal axis) with respect to InP changed in the film growth direction (vertical axis).

【0013】ここで、MOVPE法で成長したInAs
Y'1-Y'のAsH3 (アルシン)流量とPH3 (フォス
フィン)流量(濃度100%に換算)比: As/(As+P)≡AsH3 流量/(AsH3 流量+
PH3 流量) とInPに対する格子不整合率: Δa/a≡(InAsY'1-Y'格子定数−InP格子定
数)/InP格子定数×100 (%) との関係を実験で求めた結果を図2に示す。TMI(ト
リメチルインジュウム)をIn源として、(100)I
nP基板上にエピタキシャル成長した。InAs Y'
1-Y'エピタキシャル膜の成長速度は、10〜20(nm
/分)程度で、TMI流量を変化させて正確に制御され
る。図2に示すように、格子不整合率2%近くまで格子
定数の再現性ある制御が行える。また、V族組成Y'が変
化するときのInAsY'1-Y'の吸収端波長の変化は、
(永井 他、「3−V族半導体混晶」コロナ社、第2
章、pp.27−47)などで計算できる。
Here, InAs grown by the MOVPE method is used.
Y 'P1-Y 'AsHThree(Arsine) flow rate and PHThree(Foss
Fin) flow rate (converted to concentration 100%) ratio: As / (As + P) ≡AsHThreeFlow rate / (AsHThreeFlow rate +
PHThreeLattice mismatch rate for InP: Δa / a≡ (InAsY 'P1-Y 'Lattice constant-InP lattice constant
FIG. 2 shows the result of an experiment to determine the relationship between (number) / InP lattice constant × 100 (%). TMI
(100) I
It was epitaxially grown on an nP substrate. InAs Y 'P
1-Y 'The growth rate of the epitaxial film is 10 to 20 (nm)
/ Min), and can be precisely controlled by changing the TMI flow rate.
You. As shown in FIG. 2, the lattice mismatch is reduced to about 2%.
Control with constant reproducibility can be performed. In addition, the V-group composition Y ′ changes.
Of InAsY 'P1-Y 'The change in the absorption edge wavelength of
(Nagai et al., “3-V Group Semiconductor Mixed Crystal,” Corona Co., Ltd.
Chapter, pp. 27-47).

【0014】一方、GaXIn1-XAsの3族組成X を変
えて、その吸収端波長λg を変化させたとき、λg
1.8μmの時に、InPに対するGaXIn1-XAsの
格子不整合率Δa/aは、約0.5%、λg =2.2μ
mの時に、Δa/aは、約1.4%となる(和田 他、
「光学」1992年7月、第21巻第7号 p.2
9)。GaXIn1-XAsエピタキシャル膜の成長速度
は、15〜25(nm/分)程度で、3族有機金属材料
の供給量により正確に制御される。これらのエピタキシ
ャル膜のMOVPE成長における膜厚は、1nm以下ま
で再現性よく制御できることが既に示されている(M.Wa
da et al.,Japanese Journal of Applied Physics, vo
l.29,p.2342,1990)。
On the other hand, when the group X composition of Ga X In 1 -X As is changed to change the absorption edge wavelength λ g , λ g =
At 1.8 μm, the lattice mismatch ratio Δa / a of Ga x In 1 -x As to InP is about 0.5%, and λ g = 2.2 μm.
At the time of m, Δa / a is about 1.4% (Wada et al.,
"Optics", Vol. 21, No. 7, July 1992, p. 2
9). The growth rate of the Ga x In 1-x As epitaxial film is about 15 to 25 (nm / min), and is accurately controlled by the supply amount of the group 3 organometallic material. It has been shown that the thickness of these epitaxial films in MOVPE growth can be controlled with good reproducibility to 1 nm or less (M. Wa
da et al., Japanese Journal of Applied Physics, vo
l.29, p.2342, 1990).

【0015】図3は、n+ −(100)InP基板上
に、n+ −InP層、n形(S添加)InAsY1-Y
InAsZ1-Z歪超格子バッファー層を多段階にMOV
PE法で成長し、その後、格子不整合率1.7%のIn
AsX'1-X'を650nm成長したときの成長層の断面
2次電子顕微鏡像を示している。ここでは、4段階に成
長した各歪超格子層の句切りが分かるように、GaIn
As層5nmをマーカーとして挿入し、断面像では硫酸
と過酸化水素水と水とを混合したエッチング液でGaI
nAs層をエッチングしている。各歪超格子層内のIn
AsPの膜厚は80nmである。このエピタキシャルウ
ェハには反りはなく、InPに対する格子不整合率Δa
/aが、1.7%まで平坦な成長を実現し、上記GaX
In1-XAs吸収層(Δa/a>1%)を成長するため
のバッファー層が形成されている。
[0015] Figure 3, n + - (100) on an InP substrate, n + -InP layer, n-type (S added) InAs Y P 1-Y /
MOAs of InAs Z P 1-Z strained superlattice buffer layer in multiple stages
Grown by the PE method, and then with an In lattice with a lattice mismatch rate of 1.7%.
Shows a cross sectional secondary electron microscope image of the growth layer when 650nm grow As X 'P 1-X' . Here, GaIn is used to understand the punctuation of each strained superlattice layer grown in four stages.
5 nm of the As layer was inserted as a marker, and in the cross-sectional image, GaI was mixed with an etching solution obtained by mixing sulfuric acid, hydrogen peroxide solution, and water.
The nAs layer is being etched. In in each strained superlattice layer
The thickness of AsP is 80 nm. This epitaxial wafer has no warp and has a lattice mismatch rate Δa with InP.
/ A is, to achieve a flat growth up to 1.7%, the Ga X
A buffer layer for growing an In 1-x As absorption layer (Δa / a> 1%) is formed.

【0016】このように、上記実施例では、格子不整合
緩和のためのバッファー層の厚さは、従来の1/3以下
(5μm以下)と非常に薄くできる。なお、図1に示し
た本発明のGaInAsフォトダイオードでは、GaI
nAsマーカー層は特に挿入する必要はない。
As described above, in the above embodiment, the thickness of the buffer layer for alleviating the lattice mismatch can be extremely reduced to 1/3 or less (5 μm or less) of the conventional one. In the GaInAs photodiode of the present invention shown in FIG.
There is no particular need to insert the nAs marker layer.

【0017】また、格子不整合緩和のためのバッファー
層の最上部のInAsX'1-X'層の格子定数にほぼ等し
い格子定数をもつn−GaXIn1-XAs吸収層を厚さ2
〜3μm成長後、n−InAsX'1-X'窓層を、この窓
層と吸収層との間の格子定数の違いが、ほぼ−0.5〜
0.5%以内、膜厚が0.1μm以下となるように形成
する。特に、窓層厚が臨界膜厚(J.W.Matthews and A.
E.Blakeslee, Journalof Crystal Growth vol.27, p.11
1, 1974)を越えないように形成できるので、結晶欠陥
は吸収層と窓層間の格子不整合により発生することはな
く、信頼性が高い。
[0017] The thickness of the n-Ga X In 1-X As absorbing layer having a lattice constant approximately equal to the lattice constant of the top of the InAs X 'P 1-X' layer of the buffer layer for lattice mismatching buffer Sa2
After the growth of μ3 μm, the difference in lattice constant between the n-InAs X ′ P 1 -X ′ window layer and the window layer and the absorption layer is approximately −0.5 to
It is formed so as to have a thickness of 0.5% or less and a thickness of 0.1 μm or less. In particular, the window thickness is critical thickness (JWMatthews and A.
E. Blakeslee, Journal of Crystal Growth vol. 27, p. 11
1, 1974), crystal defects do not occur due to lattice mismatch between the absorption layer and the window layer, and the reliability is high.

【0018】このような構造において、GaInAsフ
ォトダイオードの分光感度は、(和田 他、「光学」1
992年7月、第21巻第7号 p.29)のモデルを
用いて詳細に計算することができる。図1に示した本発
明のGaInAsフォトダイオードにおいて、反射防止
膜をSiO2 (厚さ0.18μm)/Si3 4 (同
0.17μm)の2層膜とし、λg =2.2μmのGa
InAs吸収層(厚さ2μm)、このGaInAsの格
子不整合率Δa/a=1.4%と同じΔa/aのInA
sP窓層とすると、図4に示す分光感度計算結果とな
る。図4では、InAsP窓層厚:0.1、0.5、1
μmの3つについて計算した。
In such a structure, the spectral sensitivity of the GaInAs photodiode is as follows (Wada et al., “Optical” 1).
July 1999, Vol. 21, No. 7, p. It can be calculated in detail using the model of 29). In the GaInAs photodiode of the present invention shown in FIG. 1, the antireflection film is a two- layer film of SiO 2 (0.18 μm in thickness) / Si 3 N 4 (0.17 μm in thickness), and λ g = 2.2 μm. Ga
InAs absorption layer (2 μm thick), InA having the same Δa / a as lattice mismatch Δa / a = 1.4% of GaInAs
If an sP window layer is used, the spectral sensitivity calculation result shown in FIG. 4 is obtained. In FIG. 4, the InAsP window layer thickness: 0.1, 0.5, 1
Calculated for three μm.

【0019】InAsP窓層の膜厚が厚い場合は、この
窓層の吸収端波長の約1.3μmから短波長側で窓層に
よる光吸収が大きくなると共に、この窓層による光吸収
が小さくなる長波長側での光の干渉による分光感度の凸
凹も大きくなる。したがって、InAsP窓層が薄い場
合は、0.6〜2μm以上の広い波長範囲にわたって、
高い分光感度を有するGaInAsフォトダイオード
が、従来より非常に薄いバッファー層の構成で実現でき
る。
When the thickness of the InAsP window layer is large, the light absorption by the window layer increases from the absorption edge wavelength of about 1.3 μm to the short wavelength side of the window layer, and the light absorption by the window layer decreases. The unevenness of the spectral sensitivity due to light interference on the long wavelength side also increases. Therefore, when the InAsP window layer is thin, over a wide wavelength range of 0.6 to 2 μm or more,
A GaInAs photodiode having high spectral sensitivity can be realized with a configuration of a buffer layer that is much thinner than before.

【0020】[0020]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、多段階にInAsPの歪超格子
構造を挿入した構成の薄いバッファー層を使用して、I
nPとの格子不整合が1%以上も大きいGaInAs吸
収層を形成し、窓層を0.1μm以下の厚さのInAs
Pで構成することにより、0.6〜2μmより大きい波
長範囲で、高い分光感度を有するGaInAsフォトダ
イオードを実現することができる。また、本発明のGa
InAsフォトダイオードに用いられるバッファー層の
厚さは、5μm以下であり、成長膜厚制御性に優れたM
OVPE成長法が適用でき、さらに他の素子を同一基板
上に集積化するときには、エッチング深さを浅くできる
こと、ポリイミドによる溝の埋め込みなどの平坦化技術
など、製作プロセスの制約が大きく緩和されるなどの効
果を有するGaInAsフォトダイオードを実現でき
る。
As described above in detail with the embodiments, according to the present invention, a thin buffer layer having a structure in which a strained superlattice structure of InAsP is inserted in multiple stages is used.
A GaInAs absorption layer having a lattice mismatch with nP of 1% or more is formed, and the window layer is formed of InAs having a thickness of 0.1 μm or less.
By using P, a GaInAs photodiode having high spectral sensitivity in a wavelength range larger than 0.6 to 2 μm can be realized. In addition, the Ga of the present invention
The thickness of the buffer layer used for the InAs photodiode is 5 μm or less, and M
The OVPE growth method can be applied, and when other elements are integrated on the same substrate, the etching depth can be reduced, and the restrictions on the manufacturing process, such as flattening technology such as trench filling with polyimide, are greatly eased. A GaInAs photodiode having the above effect can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のGaInAsフォトダイオードの一実
施例を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a GaInAs photodiode of the present invention.

【図2】V族モル流量比と格子不整合率の関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a group V molar flow ratio and a lattice mismatch ratio.

【図3】本発明に係わるGaInAsフォトダイオード
の成長層の断面2次電子顕微鏡像である。
FIG. 3 is a cross-sectional secondary electron microscope image of a growth layer of a GaInAs photodiode according to the present invention.

【図4】本発明のGaInAsフォトダイオードの分光
感度計算結果例である。
FIG. 4 is an example of a calculation result of spectral sensitivity of the GaInAs photodiode of the present invention.

【図5】従来例の構成図である。FIG. 5 is a configuration diagram of a conventional example.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】InP基板上にバッファー層と光吸収層と
窓層が順次積層されたGaInAsフォトダイオードで
あって、 前記バッファー層は前記InP基板より大きな格子定数
を持つInAs x 1-x 層とInAs y 1-y 層が交互に多
段階に積層された歪超格子層、 前記光吸収層は前記InP基板との格子不整合率が0.
5%以上のGaInAs層、 前記窓層は前記GaInAs吸収層との格子定数が−
0.5〜0.5%で一致するようにした膜厚0.1μm
以下の層である。 」 ことを特徴とするGaInAsフォトダイオード。
A buffer layer and a light absorbing layer on an InP substrate;
A GaInAs photodiode in which window layers are sequentially stacked
And the buffer layer has a larger lattice constant than the InP substrate.
InAs x P 1-x layers and InAs y P 1-y layers having
The strained superlattice layer and the light absorbing layer stacked in a step have a lattice mismatch ratio of 0.5 with the InP substrate.
5% or more of the GaInAs layer, and the window layer has a lattice constant with the GaInAs absorption layer of −
A film thickness of 0.1 μm that is matched at 0.5 to 0.5%
The following layers. A GaInAs photodiode characterized by the above-mentioned.
JP33741092A 1992-12-17 1992-12-17 GaInAs photodiode Expired - Fee Related JP3218582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33741092A JP3218582B2 (en) 1992-12-17 1992-12-17 GaInAs photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33741092A JP3218582B2 (en) 1992-12-17 1992-12-17 GaInAs photodiode

Publications (2)

Publication Number Publication Date
JPH06188447A JPH06188447A (en) 1994-07-08
JP3218582B2 true JP3218582B2 (en) 2001-10-15

Family

ID=18308376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33741092A Expired - Fee Related JP3218582B2 (en) 1992-12-17 1992-12-17 GaInAs photodiode

Country Status (1)

Country Link
JP (1) JP3218582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956944B2 (en) * 2005-09-12 2012-06-20 三菱電機株式会社 Avalanche photodiode
JP5558454B2 (en) 2011-11-25 2014-07-23 シャープ株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JPH06188447A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
US4928154A (en) Epitaxial gallium arsenide semiconductor on silicon substrate with gallium phosphide and superlattice intermediate layers
US4906583A (en) Making a semiconductor photodetector
JP3425185B2 (en) Semiconductor element
USRE38072E1 (en) Fabrication method for AlGaInNPAsSb based devices
US5407491A (en) Tandem solar cell with improved tunnel junction
US6566595B2 (en) Solar cell and process of manufacturing the same
US11201261B2 (en) Deep ultraviolet light emitting element and method of manufacturing the same
WO2005086868A2 (en) Metamorphic buffer on small lattice constant substrates
US20080002750A1 (en) Surface emitting semiconductor device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JPH06216403A (en) Semiconductor photodetector
CN109473496B (en) Transition layer structure of avalanche detector and preparation method
JP3288741B2 (en) Manufacturing method of semiconductor light receiving element
JPH07123170B2 (en) Light receiving element
JP3218582B2 (en) GaInAs photodiode
JP5215267B2 (en) Method for producing compound semiconductor film
KR20190044235A (en) Multi junction solar cell having lattice mismatched buffer structure and Method for manufacturing the same
CA1149497A (en) Iii-v quaternary alloy photodiode
US6815792B2 (en) Epitaxially grown compound semiconductor film and compound semiconductor multi-layer structure
JPH0567802A (en) Semiconductor photo detector
US20060202212A1 (en) Semiconductor optical device
JP2945464B2 (en) Method for manufacturing semiconductor device
US20240113493A1 (en) Device for regrowth of a thick structure, photonic device comprising the same and associated methods of fabrication
JP2010062400A (en) Optical semiconductor element
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees