JP3218325B2 - Millimeter-wave wireless / optical fiber transmission system and equipment - Google Patents

Millimeter-wave wireless / optical fiber transmission system and equipment

Info

Publication number
JP3218325B2
JP3218325B2 JP08665099A JP8665099A JP3218325B2 JP 3218325 B2 JP3218325 B2 JP 3218325B2 JP 08665099 A JP08665099 A JP 08665099A JP 8665099 A JP8665099 A JP 8665099A JP 3218325 B2 JP3218325 B2 JP 3218325B2
Authority
JP
Japan
Prior art keywords
optical
signal
millimeter
wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08665099A
Other languages
Japanese (ja)
Other versions
JP2000244397A (en
Inventor
敏明 久利
研一 北山
康徳 小川
Original Assignee
独立行政法人通信総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人通信総合研究所 filed Critical 独立行政法人通信総合研究所
Priority to JP08665099A priority Critical patent/JP3218325B2/en
Publication of JP2000244397A publication Critical patent/JP2000244397A/en
Application granted granted Critical
Publication of JP3218325B2 publication Critical patent/JP3218325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線通信等におけ
る光ファイバ伝送技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber transmission technique in wireless communication and the like.

【0002】[0002]

【従来の技術】無線端末からのミリ波無線信号をアンテ
ナ基地局で受信し、光ファイバ伝送路により制御局まで
伝送するアップリンクを想定した、従来のミリ波無線・
光ファイバ伝送方式の構成図を、光ファイバ伝送路上に
おける無線信号副搬送波の周波数で区分して、図4に示
す。図4において、31はミリ波無線端末を、32はミ
リ波アンテナを、33はミリ波帯信号復調器を、34は
光学的変調器を、35は光ファイバ伝送路を、36は光
検波器を、37は副搬送波周波数変換器を、38は中間
周波数帯信号復調器を各々示す。
2. Description of the Related Art A conventional millimeter-wave wireless communication system is supposed to receive a millimeter-wave wireless signal from a wireless terminal at an antenna base station and transmit the signal to a control station via an optical fiber transmission line.
FIG. 4 shows a configuration diagram of the optical fiber transmission system, divided by the frequency of the radio signal subcarrier on the optical fiber transmission line. In FIG. 4, reference numeral 31 denotes a millimeter-wave wireless terminal, 32 denotes a millimeter-wave antenna, 33 denotes a millimeter-wave band signal demodulator, 34 denotes an optical modulator, 35 denotes an optical fiber transmission line, and 36 denotes an optical detector. , 37 denotes a sub-carrier frequency converter, and 38 denotes an intermediate frequency band signal demodulator.

【0003】図4の(a)図はベースバンド伝送方式を
示す構成図であり、ミリ波無線端末31からのミリ波無
線信号をミリ波アンテナ32で受信し、該無線信号をア
ンテナ基地局のミリ波帯信号復調器33で復調し、光学
的変調器34において再生されたベースバンド・データ
で光搬送波を変調し、光ファイバ伝送路35を通して伝
送された光信号を光検波器36で光検波することによ
り、元の無線信号の情報が送られる。
FIG. 4A is a configuration diagram showing a baseband transmission system, in which a millimeter-wave radio signal from a millimeter-wave radio terminal 31 is received by a millimeter-wave antenna 32, and the radio signal is transmitted to an antenna base station. The optical carrier is demodulated by the millimeter-wave band signal demodulator 33, the optical carrier is modulated by the baseband data reproduced by the optical modulator 34, and the optical signal transmitted through the optical fiber transmission line 35 is optically detected by the optical detector 36. By doing so, the information of the original radio signal is transmitted.

【0004】図4の(b)図は中間周波数帯副搬送波伝
送方式を示す構成図であり、ミリ波無線端末31からの
ミリ波無線信号をミリ波アンテナ32で受信し、該無線
信号をアンテナ基地局の無線信号周波数変換器37でマ
イクロ波中間周波数帯にダウンコンバートし、光学的変
調器34において得られた中間周波数帯信号で光搬送波
を変調し、光ファイバ伝送路35を通して伝送された光
信号を光検波器36で光検波することにより、再生され
た中間周波数帯信号を中間周波数帯信号復調器38で復
調を行うことで、元の無線信号の情報が送られる。
FIG. 4B is a block diagram showing an intermediate frequency band sub-carrier transmission system. A millimeter wave radio signal from a millimeter wave radio terminal 31 is received by a millimeter wave antenna 32, and the radio signal is transmitted to the antenna. The radio signal frequency converter 37 of the base station down-converts the signal into a microwave intermediate frequency band, modulates the optical carrier with the intermediate frequency band signal obtained in the optical modulator 34, and transmits the light transmitted through the optical fiber transmission line 35. The signal is optically detected by the optical detector 36, and the reproduced intermediate frequency band signal is decoded by the intermediate frequency band signal demodulator 38.
By performing the tuning, the information of the original wireless signal is transmitted.

【0005】図4の(c)図はミリ波帯副搬送波無線信
号伝送方式を示す構成図であり、ミリ波無線端末31か
らのミリ波無線信号をミリ波アンテナ32で受信し、光
学的変調器34において受信したミリ波無線信号で光搬
送波を直接変調し、光ファイバ伝送路35を通して伝送
された光信号を光検波器36で光検波することにより再
生されたミリ波帯信号をミリ波帯信号復調器33で復調
を行うことによって、元の無線信号の情報が送られる。
FIG. 4C is a configuration diagram showing a millimeter wave band subcarrier radio signal transmission system. A millimeter wave radio signal from a millimeter wave radio terminal 31 is received by a millimeter wave antenna 32 and optical modulation is performed. The optical carrier is directly modulated by the millimeter-wave radio signal received by the detector 34, and the optical signal transmitted through the optical fiber transmission line 35 is optically detected by the optical detector 36 to convert the reproduced millimeter-wave band signal into the millimeter-wave band. By performing demodulation by the signal demodulator 33, information of the original radio signal is transmitted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
技術のうち、図4の(a)図と(b)図に示す方式で
は、光ファイバ伝送路が具備する分散の影響を無視でき
る反面、アンテナ基地局が複雑になることによる費用の
増大が問題であり、商用的に展開することが大きく制限
される。
However, among the conventional techniques, in the systems shown in FIGS. 4A and 4B, the influence of the dispersion provided in the optical fiber transmission line can be ignored, but the antenna The problem of increased costs due to the complexity of the base station is a problem, which greatly limits commercial deployment.

【0007】また、従来の技術のうち、図4の(c)図
に示す方式では、基地局が大変簡便でコストの観点から
有利であるが、他方光ファイバが具備する分散の影響を
受けること、及び超高周波光検波器が必要となること
等、実用化の面から光ファイバが具備する分散の影響及
び費用負担の軽減を図る必要がある。
[0007] Among the conventional techniques, in the system shown in FIG. 4 (c), the base station is very simple and advantageous from the viewpoint of cost, but is affected by the dispersion of the optical fiber. From the viewpoint of practical use, it is necessary to reduce the influence of the dispersion of the optical fiber and to reduce the cost burden.

【0008】本発明は、アンテナ基地局が簡便で費用の
増大がなく、且つ商用的な展開に制限を受けること
く、更に光ファイバが具備する分散の影響を受けること
ないミリ波無線・光ファイバ伝送方式及び装置を提供
することを、目的としている。
[0008] The present invention is an antenna base station without an increase in convenience and cost, and commercial deployment in rather <br/> such being restricted, further influenced by the dispersion which the optical fiber comprises
Providing a free millimeter-wave radio, optical fiber transmission system and apparatus are aimed.

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題に鑑
みて成されたものであり、ミリ波無線・光ファイバ伝
方式において、単一モード光源からの光搬送波fc
伝送すべきミリ波無線副搬送波信号の搬送波周波数f RF
からそれより低いマイクロ波帯以下の所望の中間周波数
帯信号の搬送波周波数f IF までの周波数変換量(f RF
IF に相当する周波数f LO の正弦波信号で強度変調
し、その結果、発生したパイロット光をミリ波無線副搬
送波信号で更に強度変調して得られた光スペクトルのう
ち、元のミリ波無線副搬送波信号と同じ情報 RF を具備
する複数の光スペクトルのうちの一つである第1成分
(fc−f RF )と、その第1成分(fc−f RF )に対し
て所望の中間周波数帯信号の搬送波周波数f IF の差で隣
接している第2成分f PL を光ファイバ伝送した後に、
光自己ヘテロダイン検波により、その第1成分(fc−
RF )と第2成分f PL との周波数差(f PL −(fc−f
RF )))に相当する周波数 IF を具備する中間周波数帯
信号に変換し、該中間周波数帯信号を復調することによ
元のミリ波無線副搬送波信号の情報を再生すること
を特徴としている。
Means for Solving the Problems The present invention has been made in view of the above problems, feeding millimeter-wave radio, optical fiber Den
In scheme an optical carrier fc from a single-mode light source,
Carrier frequency f RF of millimeter-wave wireless sub-carrier signal to be transmitted
Desired intermediate frequency below the lower microwave band
Frequency conversion up to the carrier frequency f IF of the band signal (f RF
f IF ) , the intensity of which is modulated with a sine wave signal having a frequency f LO corresponding to the frequency f LO . As a result, the generated pilot light is further intensity-modulated with the millimeter wave radio subcarrier signal, and the original millimeter wave A first component of one of a plurality of optical spectra having the same information f RF as the radio sub-carrier signal
(Fc−f RF ) and its first component (fc−f RF )
At the difference of the carrier frequency f IF of the desired intermediate frequency band signal.
After transmitting the contacting second component f PL with the optical fiber,
By optical self-heterodyne detection, the first component (fc-
f RF) and frequency difference between the second component f PL (f PL - (fc -f
Converted into an intermediate frequency band signal having a frequency f IF corresponding to RF))), by demodulating the frequency band signals between intermediate is characterized by reproducing the information of the original millimeter-wave wireless subcarrier signals .

【0010】また、本発明は、ミリ波無線・光ファイバ
伝送装置において、単一周波数の光搬送波を発生する単
一モード光源と、伝送すべきミリ波無線副搬送波信号の
搬送波周波数からそれより低いマイクロ波帯以下の所望
中間周波数帯信号の搬送波周波数までの周波数変換量
に相当する周波数の正弦波を発生させるミリ波局部発振
器と、上記正弦波で光搬送波を強度変調しパイロット光
を生成するパイロット光生成用光学的変調器と、ミリ波
無線副搬送波信号を受信するミリ波アンテナと、ミリ波
無線副搬送波信号でパイロット光を強度変調して光スペ
クトルを得る無線信号変調用光学的変調器と、上記光ス
ペクトルのうち、元のミリ波無線副搬送波信号と同じ情
報を具備する複数の光スペクトルのうちの一つである第
1成分と、その第1成分に対して所望の中間周波数帯信
号の搬送波周波数の差で隣接している第2成分とを取り
出す光フィルタと、上記第1成分と第2成分とを伝送す
る光伝送路と、伝送された第1成分と第2成分とを光自
己ヘテロダイン検波しその双方の周波数差に相当する周
波数をもつ中間周波数帯信号に変換する光検波器と、光
検波で得られた中間周波数帯信号から元のミリ波無線副
搬送波信号の情報を再生する中間周波数帯信号復調器
から構成したことを特徴としている。
Further, the present invention relates to a millimeter-wave radio / optical fiber.
In a transmission device, a single-mode light source for generating a single-frequency optical carrier and a millimeter-wave wireless subcarrier signal to be transmitted.
And the millimeter wave local oscillator for generating a sine wave of a frequency corresponding to the frequency conversion amount to the carrier frequency of the desired intermediate frequency band signal lower than the microwave band following it from the carrier frequency, intensity modulation of the optical carrier by the sine wave Pilot light
A pilot light generation optical modulator for generating a millimeter wave antenna for receiving millimeter wave radio subcarrier signal, the light space by intensity modulating the pilot light in the millimeter wave <br/> radio subcarrier signals
A radio signal modulation optical modulator to obtain a vector, the optical scan
The spectrum is one of a plurality of optical spectra having the same information as the original millimeter-wave wireless subcarrier signal .
One component and a desired intermediate frequency band signal for the first component
An optical filter for extracting an adjacent second component with a difference in carrier frequency of the signal, an optical transmission line for transmitting the first component and the second component, and a transmitted first component and a second component . Optical self-heterodyne detection and the frequency corresponding to the frequency difference between the two
A photodetector for converting the intermediate frequency band signal having a wave number, original millimeter-wave wireless sub from the intermediate frequency band signal obtained by the optical detection
It was composed of a intermediate frequency band signal demodulator for reproducing information of the carrier signal, and wherein the kite.

【0011】本発明に含まれる光学的な副搬送波周波数
変換機能により、アンテナ基地局はより単純な構成で、
光ファイバの分散の影響を無視でき、且つ制御局に超高
周波光検波器やミリ波帯ミキサが不必要となる。
With the optical subcarrier frequency conversion function included in the present invention, the antenna base station has a simpler configuration,
The influence of the dispersion of the optical fiber can be ignored, and the control station does not need an ultrahigh-frequency optical detector or a millimeter-wave band mixer.

【0012】本発明は、具体的には、ある一つの光搬送
波をミリ波無線副搬送波信号で強度変調した際に得られ
光スペクトルのうち、元のミリ波無線副搬送波信号と
同じ情報を具備する複数の光スペクトルのうちの一つ
(第1成分)と、その第1成分に対して所望の中間周波
数帯信号の搬送波周波数の差で隣接する異周波数・同位
相雑音のもう一つの無変調光波(第2成分)とを光ファ
イバ伝送路上を伝送させ、光自己ヘテロダイン検波を行
い、伝送した光信号(第1成分と第2成分)の周波数差
に相当する周波数を具備する光検波信号、即ち中間周波
数帯信号を復調する。
[0012] The present invention is specifically, of the light spectrum obtained upon intensity modulation certain one of the optical carrier in the millimeter-wave radio sub-carrier signals, comprises the same information as the original millimeter wave radio subcarrier signals One of multiple optical spectra
(First component) and a desired intermediate frequency for the first component
Another unmodulated lightwave (second component) of different frequency and in-phase noise adjacent to the difference in carrier frequency of several band signals is transmitted on the optical fiber transmission line, optical self-heterodyne detection is performed, and the transmitted optical signal is transmitted. An optical detection signal having a frequency corresponding to the frequency difference between the first component and the second component , that is, an intermediate frequency band signal is demodulated.

【0013】[0013]

【発明の実施の形態】以下に、本発明による実施の形態
の一実施例の具体的な構成を図面に基づいて、説明する
が、本発明は、この実施例に限定されない。図1は本発
明の実施例におけるミリ波無線・光ファイバ伝送装置の
構成を示す図である。図1において、9は制御局を、1
0はアンテナ基地局を、11はミリ波無線端末を、12
は単一モード光源を、13はミリ波局部発振器を、14
はパイロット光生成用光学的変調器を、15は光増幅器
を、16は光伝送路を、17は偏光制御装置を、18は
無線信号変調用光学的変調器を、19はミリ波無線信号
生成部を、20はミリ波アンテナを、21はミリ波帯増
幅器を、22は光帯域フィルタを、23は光検波器を、
24は中間周波数帯信号処理部(中間周波数帯信号復調
器)を、25はミリ波局部発振器出力のスペクトルを、
26はパイロット光の光スペクトルを、27はミリ波無
線副搬送波信号のスペクトルを、28はアップリンク変
調信号の光スペクトルを、及び29は光検波信号のスペ
クトルを各々示す。本装置は基本的に、制御局9と、ア
ンテナ基地局10と、ミリ波無線端末11と及び光ファ
イバ伝送路16とから構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific configuration of an embodiment according to the present invention will be described with reference to the drawings, but the present invention is not limited to this embodiment. FIG. 1 is a diagram showing a configuration of a millimeter wave wireless / optical fiber transmission device according to an embodiment of the present invention. In FIG. 1, reference numeral 9 denotes a control station;
0 is an antenna base station, 11 is a millimeter wave wireless terminal, 12
Is a single mode light source, 13 is a millimeter wave local oscillator, 14
Is an optical modulator for generating pilot light, 15 is an optical amplifier, 16 is an optical transmission line, 17 is a polarization controller, 18 is an optical modulator for radio signal modulation, and 19 is a millimeter-wave radio signal generation. , A millimeter wave antenna, 21 a millimeter wave band amplifier, 22 an optical bandpass filter, 23 an optical detector,
24 is an intermediate frequency band signal processing unit (intermediate frequency band signal demodulation
The vessel), 25 a spectrum of the millimeter wave local oscillator output,
26 indicates the optical spectrum of the pilot light, 27 indicates the spectrum of the millimeter-wave wireless subcarrier signal, 28 indicates the optical spectrum of the uplink modulation signal, and 29 indicates the spectrum of the optical detection signal. This device basically includes a control station 9, an antenna base station 10, a millimeter-wave wireless terminal 11, and an optical fiber transmission line 16.

【0014】まず、制御局9において、単一モード光源
12からの光搬送波(fc)を、ミリ波局部発振器13
からの正弦波出力25(fLO)により、パイロット光生
成用光学的変調器14で強度変調することによりパイロ
ット光26を生成し、該パイロット光26を光増幅器1
5で十分増幅した後、一つの光伝送路16を通してアン
テナ基地局10に伝送する。伝送されたパイロット光2
6は、別の光増幅器15で所要電力に達するまで増幅さ
れ、偏光制御装置17で偏光を調整した後に、無線信号
変調用光学的変調器18に入力される。
First, in the control station 9, the optical carrier (fc) from the single mode light source 12 is transmitted to the millimeter-wave local oscillator 13.
The pilot light 26 is intensity-modulated by a pilot light generation optical modulator 14 with a sine wave output 25 (f LO ) from the
After sufficient amplification at 5, the signal is transmitted to the antenna base station 10 through one optical transmission line 16. Transmitted pilot light 2
The signal 6 is amplified by another optical amplifier 15 until the required power is reached, and the polarization is adjusted by the polarization controller 17 and then input to the optical modulator 18 for modulating a radio signal.

【0015】一方、無線端末11では、伝送する情報
(DATA)をミリ波無線信号生成部19においてDP
SK変調形式のミリ波無線信号(fRF27に変換し、
該ミリ波無線信号を無線端末側のミリ波アンテナ20よ
りアンテナ基地局10に向けて放射する。
On the other hand, in the wireless terminal 11, the information (DATA) to be transmitted is
It converts it into a millimeter wave radio signal (f RF ) 27 of the SK modulation format,
The millimeter wave radio signal is radiated from the millimeter wave antenna 20 on the wireless terminal side to the antenna base station 10.

【0016】自由空間を通して伝搬してきたミリ波無線
信号27をアンテナ基地局側のミリ波アンテナ20で受
信し、該ミリ波無線信号27をミリ波帯増幅器21で所
要電力に達するまで増幅し、更に無線信号変調用光学的
変調器18においてパイロット信号26を強度変調し、
その結果、アップリンク変調信号28を得る。
The millimeter wave radio signal 27 propagated through the free space is received by the millimeter wave antenna 20 on the antenna base station side, and the millimeter wave radio signal 27 is amplified by the millimeter wave band amplifier 21 until the required power is reached. The pilot signal 26 is intensity-modulated in the optical modulator 18 for radio signal modulation,
As a result, an uplink modulated signal 28 is obtained.

【0017】アップリンク変調信号28は、更に別の光
増幅器15で増幅してから、光帯域フィルタ22で伝送
に必要最小限の光スペクトル(fpLとfc-fRF)のみを取
りだし、続いてもう一つの光伝送路16を通して制御局
9に伝送される。ここで、送られる2つの光波(第1成
分(fc-fRF)と第2成分 PL )の周波数差は、必ず光
検波後の所望周波数fIFに一致していなければならな
い。
The uplink modulated signal 28 is amplified by another optical amplifier 15 and then the optical bandpass filter 22 extracts only the minimum optical spectrum ( fpL and fc-f RF ) necessary for transmission, and then extracts it. The light is transmitted to the control station 9 through another optical transmission line 16. Here, the frequency difference between the two transmitted light waves (the first component (fc-f RF ) and the second component f PL ) must always match the desired frequency f IF after optical detection.

【0018】次に、伝送された2つの光波(fpLとfc-f
RF)は、その光周波数差を十分検波できる帯域の光検波
器23で光自己ヘテロダイン検波されると、中間周波数
帯信号29(fIF)が得られる。最後に、光検波によっ
て得られた中間周波数帯信号29を中間周波数帯信号処
理部24においてDPSK復調することにより、元の情
報が再現される。ここで、パイロット光26は位相雑音
が等しく、異なる周波数で少なくとも2つの光波で構成
されていれば、他の方法で生成してもよい。例えば、モ
ード同期レーザ等の他波長光源から出力された光波のう
ち、fpLに相当する光波を基準光として用いることによ
り、fcに相当する光波をミリ波無線信号の情報伝送用
に用いればよい。この際に、光変調方式は、副搬送波伝
送が可能な光アナログ変調方式、即ち、強度変調、振幅
変調、位相変調、及び周波数変調のいずれの光変調方式
でも可能である。
Next, the two transmitted light waves ( fpL and fc-f
RF ) is subjected to optical self-heterodyne detection by the optical detector 23 in a band capable of sufficiently detecting the optical frequency difference, thereby obtaining an intermediate frequency band signal 29 ( fIF ). Finally, the intermediate frequency band signal 29 obtained by the optical detection is subjected to DPSK demodulation in the intermediate frequency band signal processing unit 24, whereby the original information is reproduced. Here, the pilot light 26 may be generated by another method as long as it has the same phase noise and includes at least two light waves at different frequencies. For example, among the light waves output from the other wavelength light source such as a mode-locked laser by using light waves corresponding to f pL as the reference light, may be used light wave corresponding to fc for information transmission of the millimeter-wave radio signals . At this time, the optical modulation method can be an optical analog modulation method capable of subcarrier transmission, that is, any one of intensity modulation, amplitude modulation, phase modulation, and frequency modulation.

【0019】また、fpLに相当する光波は変調構成分(f
c-fRF)と分離して送信しても良いし、又はアンテナ基
地局10に送信しないで、制御局9内で変調構成分(f
c-fRF)と合成して光検波を行っても良いし、従って光
源又はパイロット光の各スペクトルの配置は、制御局と
アンテナ基地局の何れにも限定しない。
The light wave corresponding to f pL is a modulation component (f
c-f RF ) may be transmitted separately, or may not be transmitted to the antenna base station 10 and may be transmitted to the control station 9 within the modulation component (f
c-f RF ) may be combined with the optical detection, and the arrangement of each spectrum of the light source or the pilot light is not limited to either the control station or the antenna base station.

【0020】光増幅器15とミリ波帯増幅器21は、所
要電力を得るために用いるものであるので、増幅器の手
前で十分な電力がある場合には省略することができる。
偏光制御装置17は無線信号変調用光学的変調器18の
偏光依存性に対して変調効率を高めるために用いられる
ものであるので、光伝送路が偏波保持型ものであるか
又は光学的変調器の偏光依存性が極めて低い場合には、
該偏光制御装置17は省略することができる。
Since the optical amplifier 15 and the millimeter-wave band amplifier 21 are used for obtaining required power, they can be omitted if there is sufficient power before the amplifier.
Since the polarization controller 17 and is used to increase the modulation efficiency for the polarization dependence of the radio signal modulation optical modulator 18, or the optical transmission line is of polarization-maintaining or optical If the polarization dependence of the modulator is very low,
The polarization controller 17 can be omitted.

【0021】ミリ波無線信号は任意であり、アナログ信
号とディジタル信号、単一信号と多重化信号、伝送速
度、及び変調形式等の限定はする必要がない。
The millimeter wave radio signal is arbitrary, and there is no need to limit analog signals and digital signals, single signals and multiplexed signals, transmission speed, modulation format, and the like.

【0022】図2は、本実施例において測定された光ス
ペクトルを示しており、図2の(a)図はパイロット
光、及び図2の(b)図は光ファイバ伝送前と標準光フ
ァイバを50km伝送した後の光アップリンク信号を示
している。
FIG. 2 shows an optical spectrum measured in the present embodiment. FIG. 2 (a) shows pilot light, and FIG. 2 (b) shows light before transmission of an optical fiber and a standard optical fiber. 5 shows an optical uplink signal after transmission of 50 km .

【0023】図3は、本実施例において、50km離れ
たアンテナ基地局で受信した155.52Mb/sの伝
送速度を具備する59.6GHzのDPSKミリ波無線
信号を標準光ファイバ伝送路で伝送し、続いて制御局側
で情報を再現したときの伝送品質の一つとして、ビット
誤り率を測定した結果である。図3の結果より、光ファ
イバ50kmを取り除いて測定した場合と比べて、殆ど
同等の特性が得られていることが、判る。
FIG. 3 shows that in this embodiment, a 59.6 GHz DPSK millimeter wave radio signal having a transmission rate of 155.52 Mb / s and received by an antenna base station 50 km away is transmitted through a standard optical fiber transmission line. Next, the result of measuring the bit error rate as one of the transmission qualities when the information is reproduced on the control station side. From the results in FIG. 3, it can be seen that almost the same characteristics are obtained as compared to the case where the measurement is performed with the optical fiber 50 km removed.

【0024】[0024]

【発明の効果】本発明によると、ミリ波信号を直接的に
パイロット光に取り込んでいるので、アンテナ基地局の
構成が簡単となり、該基地局のコストが大幅に改善でき
るだけでなく、又屋外に配置される場合も考慮すると、
維持、管理、及び信頼性の面で実用性が高くなり、従っ
て商用的な展開にも大きく貢献できる。また、光領域で
ミリ波の無線信号帯からマイクロ波の中間周波数帯まで
周波数を変換しているので、全体構成の中で電気的ミリ
波ダウンコンバータの構成要素を必要としない。更に、
光源を制御局側に配置することにより、光源の安定度や
信頼性も高くでき、且つ光波長等の変更が容易となるの
で、ネットワークを構築し易くなる。更に又、伝送され
る信号は、中間周波数帯と同等の副搬送波伝送に相当す
るので、光ファイバが具備する分散の影響を考慮しなく
て済む。
According to the present invention, since the millimeter wave signal is directly taken into the pilot light, the configuration of the antenna base station can be simplified, the cost of the base station can be greatly improved, and the antenna can be used outdoors. Considering the case where it is placed,
It is more practical in terms of maintenance, management, and reliability, and thus can greatly contribute to commercial deployment. Further, since the frequency is converted from the millimeter wave radio signal band to the microwave intermediate frequency band in the optical domain, no component of the electrical millimeter wave down converter is required in the entire configuration. Furthermore,
By arranging the light source on the control station side, the stability and reliability of the light source can be improved, and the wavelength of the light can be easily changed, so that the network can be easily constructed. Furthermore, since the transmitted signal corresponds to the subcarrier transmission equivalent to the intermediate frequency band, it is not necessary to consider the influence of the dispersion provided in the optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるミリ波無線・光ファイバ伝送装
置の実施例を示す構成図である。
FIG. 1 is a configuration diagram illustrating an embodiment of a millimeter wave wireless / optical fiber transmission device according to the present invention.

【図2】本発明における光スペクトルを示す特性図であ
る。
FIG. 2 is a characteristic diagram showing an optical spectrum in the present invention.

【図3】本発明におけるビット誤り率を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a bit error rate in the present invention.

【図4】従来の光信号伝送方式の分類を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a classification of a conventional optical signal transmission system.

【符号の説明】[Explanation of symbols]

9 制御局 10 アンテナ基地局 11 ミリ波無線端末 12 単一モード光源 13 ミリ波局部発振器 14 パイロット光生成用光学的変調器 15 光増幅器 16 光伝送路 17 偏光制御装置 18 無線信号変調用光学的変調器 19 ミリ波無線信号生成部 20 ミリ波アンテナ 21 ミリ波帯増幅器 22 光帯域フィルタ 23 光検波器 24 中間周波数帯信号処理部(中間周波数帯信号復
調器) 25 ミリ波局部発振器出力のスペクトル 26 パイロット光の光スペクトル 27 ミリ波無線副搬送波信号のスペクトル 28 アップリンク変調信号の光スペクトル 29 光検波信号のスペクトル 31 ミリ波無線端末 32 ミリ波アンテナ 33 ミリ波帯信号復調器 34 光学的変調器 35 光伝送路 36 光検波器 37 無線信号周波数変換器 38 中間周波数帯信号復調器
Reference Signs List 9 control station 10 antenna base station 11 millimeter-wave wireless terminal 12 single-mode light source 13 millimeter-wave local oscillator 14 optical modulator for pilot light generation 15 optical amplifier 16 optical transmission line 17 polarization controller 18 optical modulation for radio signal modulation 19 millimeter-wave radio signal generation unit 20 millimeter-wave antenna 21 millimeter-wave band amplifier 22 optical band-pass filter 23 optical detector 24 intermediate frequency band signal processing unit (intermediate frequency band signal recovery unit)
25 ) Spectrum of millimeter-wave local oscillator output 26 Optical spectrum of pilot light 27 Spectrum of millimeter-wave wireless subcarrier signal 28 Optical spectrum of uplink modulation signal 29 Spectrum of photodetection signal 31 Millimeter-wave wireless terminal 32 Millimeter-wave antenna 33 Millimeter-wave band signal demodulator 34 Optical modulator 35 Optical transmission line 36 Optical detector 37 Wireless signal frequency converter 38 Intermediate frequency band signal demodulator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04B 10/18 H04Q 7/36 (56)参考文献 特開 平9−321700(JP,A) 特開 平10−32563(JP,A) 特開2000−19470(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 H04B 7/26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H04B 10/18 H04Q 7/36 (56) References JP-A-9-321700 (JP, A) JP-A 10-32563 (JP) , A) JP-A-2000-19470 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 H04B 7/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単一モード光源からの光搬送波を、伝送
すべきミリ波無線副搬送波信号の搬送波周波数からそれ
より低いマイクロ波帯以下の所望の中間周波数帯信号の
搬送波周波数までの周波数変換量に相当する周波数の正
弦波信号で強度変調し、その結果、発生したパイロット
光をミリ波無線副搬送波信号で更に強度変調して得られ
た光スペクトルのうち、元のミリ波無線副搬送波信号と
同じ情報を具備する複数の光スペクトルのうちの一つ
ある第1成分と、その第1成分に対して所望の中間周波
数帯信号の搬送波周波数の差で隣接している第2成分と
を光ファイバ伝送した後に、光自己ヘテロダイン検波に
より、その第1成分と第2成分との周波数差に相当する
周波数を具備する中間周波数帯信号に変換し、該中間周
波数帯信号を復調することにより元のミリ波無線副搬
送波信号の情報を再生することを特徴とするミリ波無線
・光ファイバ伝送方式。
An optical carrier from a single mode light source is transmitted.
From the carrier frequency of the millimeter-wave wireless subcarrier signal to be
Of the desired intermediate frequency band signal below the lower microwave band
The intensity is modulated with a sine wave signal having a frequency corresponding to the amount of frequency conversion up to the carrier frequency, and as a result, of the optical spectrum obtained by further intensity modulating the generated pilot light with the millimeter-wave wireless sub-carrier signal, One of a plurality of optical spectra having the same information as the millimeter-wave wireless subcarrier signal
A certain first component and a desired intermediate frequency for the first component;
After transmitting the second component adjacent to the carrier signal having a difference in the carrier frequency of the several band signal through an optical fiber , the frequency corresponding to the frequency difference between the first component and the second component is detected by optical self-heterodyne detection. converted into an intermediate frequency band signal having a by demodulating the frequency band signals between intermediate, original millimeter-wave wireless Fuku搬
A millimeter-wave wireless / optical fiber transmission system for reproducing information of a transmission signal.
【請求項2】 単一周波数の光搬送波を発生する単一モ
ード光源と、伝送すべきミリ波無線副搬送波信号の搬送波周波数から
それより低いマイクロ波帯以下の 所望の中間周波数帯信
号の搬送波周波数までの周波数変換量に相当する周波数
の正弦波を発生させるミリ波局部発振器と、上記 正弦波で光搬送波を強度変調しパイロット光を生成
するパイロット光生成用光学的変調器と、 ミリ波無線副搬送波信号を受信するミリ波アンテナと、ミリ波 無線副搬送波信号でパイロット光を強度変調して
光スペクトルを得る無線信号変調用光学的変調器と、上記光スペクトルのうち、元のミリ波無線副搬送波信号
同じ情報を具備する複数の光スペクトルのうちの一つ
である第1成分と、その第1成分に対して所望の中間周
波数帯信号の搬送波周波数の差で隣接している第2成分
を取り出す光フィルタと、上記第1成分と第2成分と を伝送する光伝送路と、 伝送された第1成分と第2成分とを光自己ヘテロダイン
検波しその双方の周波 数差に相当する周波数をもつ中間
周波数帯信号に変換する光検波器と、 光検波で得られた中間周波数帯信号から元のミリ波無線
副搬送波信号の情報を再生する中間周波数帯信号復調器
から構成したことを特徴とするミリ波無線・光ファイバ
伝送装置。
2. A single-mode light source for generating a single-frequency optical carrier and a carrier frequency of a millimeter-wave wireless sub-carrier signal to be transmitted.
The desired intermediate frequency band below the lower microwave band
Generating a millimeter wave local oscillator for generating a sine wave of a frequency, an intensity-modulated by a pilot light optical carrier by the sine wave corresponding to the frequency conversion amount to the carrier frequency of the No.
A pilot light generation optical modulator which, and the millimeter-wave antenna for receiving millimeter wave radio subcarrier signal, and intensity modulating the pilot light in the millimeter-wave wireless subcarrier signals
An optical modulator for modulating a radio signal for obtaining an optical spectrum, and an original millimeter-wave radio subcarrier signal of the optical spectrum;
One of multiple optical spectra with the same information as
And a desired intermediate circumference for the first component
Second components adjacent to each other with a difference in carrier frequency of a waveband signal
An optical filter for extracting the bets, corresponding to frequency difference between both of the first component and the optical transmission path for transmitting a second component, the first component and the optical self-heterodyne detection shiso and a second component which is transmitted Intermediate with frequency
An optical detector that converts the signal to a frequency band signal, and the original millimeter-wave radio signal from the intermediate frequency band signal obtained by optical detection
An intermediate frequency band signal demodulator for reproducing information subcarrier signals, configured to millimeter-wave wireless, optical fiber transmission and wherein the kite from.
JP08665099A 1999-02-22 1999-02-22 Millimeter-wave wireless / optical fiber transmission system and equipment Expired - Lifetime JP3218325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08665099A JP3218325B2 (en) 1999-02-22 1999-02-22 Millimeter-wave wireless / optical fiber transmission system and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08665099A JP3218325B2 (en) 1999-02-22 1999-02-22 Millimeter-wave wireless / optical fiber transmission system and equipment

Publications (2)

Publication Number Publication Date
JP2000244397A JP2000244397A (en) 2000-09-08
JP3218325B2 true JP3218325B2 (en) 2001-10-15

Family

ID=13892919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08665099A Expired - Lifetime JP3218325B2 (en) 1999-02-22 1999-02-22 Millimeter-wave wireless / optical fiber transmission system and equipment

Country Status (1)

Country Link
JP (1) JP3218325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467507B2 (en) 2000-06-22 2003-11-17 独立行政法人通信総合研究所 High-frequency signal transmission method and high-frequency signal transmission device using optical carrier
EP1422841A1 (en) * 2001-09-17 2004-05-26 Matsushita Electric Industrial Co., Ltd. Control station apparatus, base station apparatus, and optical transmission method
JP4696270B2 (en) * 2006-01-24 2011-06-08 独立行政法人情報通信研究機構 Communication system and communication method
CN116599581B (en) * 2023-05-19 2024-01-05 煤炭科学技术研究院有限公司 Reliability assessment method, device, equipment and medium for optical fiber sensing network

Also Published As

Publication number Publication date
JP2000244397A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP2791060B2 (en) Especially radio wave-light wave transmission system for space communication
Kaszubowska et al. Remote downconversion with wavelength reuse for the radio/fiber uplink connection
EP1357683B1 (en) Hybrid fibre-radio system
US7149435B2 (en) Method and apparatus for transmitting high-frequency signals in optical communication system
US8358933B2 (en) Optical signal sideband millimeter-wave signal generation for super-broadband optical wireless network
JP3072259B2 (en) Low bias heterodyne optical fiber communication link
JP4332616B2 (en) Method and apparatus for signal processing of modulated light
Kuri et al. Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques
KR100827278B1 (en) Optical signal transmitting apparatus and signal processing method
JP3218325B2 (en) Millimeter-wave wireless / optical fiber transmission system and equipment
US20110091217A1 (en) Apparatus and method for transporting multiple radio signals over optical fiber
JP3297734B2 (en) Millimeter-wave wireless bidirectional transmission method and millimeter-wave wireless bidirectional transmission device
Dat et al. Simultaneous transmission of 4G LTE-A and wideband MMW OFDM signals over fiber links
Chowdhury et al. Field demonstration of bi-directional millimeter wave RoF systems inter-operable with 60 GHz multi-gigabit CMOS transceivers for in-building HD video and data delivery
JP4041205B2 (en) Optical transmission system, optical transmitter and optical receiver
JP3887327B2 (en) Optical transmitter and optical transmission method
JP4164570B2 (en) Wireless optical fusion communication system and wireless optical fusion communication method
JP3778813B2 (en) Electromagnetic wave transmitter
US6594056B1 (en) Receiver for use in a transmission system for spectral-coded data as well as a method
JP4339366B2 (en) Wireless communication system
JP2002353938A (en) Optical transmitter, optical subscriber terminal, radio base station, optical receiving device and optical transmitting device
JP3007955B2 (en) Optical / millimeter wave generation transmission method and apparatus
JPH0522228A (en) Optical transmission system for feeding antenna
JPH06152565A (en) Coherent light transmitting device
JPS60107626A (en) Optical heterodyne-homodyne communication method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term