JP3218111B2 - Light deflection element - Google Patents
Light deflection elementInfo
- Publication number
- JP3218111B2 JP3218111B2 JP03583593A JP3583593A JP3218111B2 JP 3218111 B2 JP3218111 B2 JP 3218111B2 JP 03583593 A JP03583593 A JP 03583593A JP 3583593 A JP3583593 A JP 3583593A JP 3218111 B2 JP3218111 B2 JP 3218111B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- light
- variable
- refractive
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザプリンタ、光走査
装置、バーコードリーダ、光スキャナ、及び光ピックア
ップ等に用いられる、光の伝搬方向を連続的に変化させ
ることのできる光偏向素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflecting element used in laser printers, optical scanning devices, bar code readers, optical scanners, optical pickups, etc., which can continuously change the propagation direction of light.
【0002】[0002]
【従来の技術】従来、前記分野に用いられる光偏向素子
では、光の伝搬方向を連続的に変化させるために、主に
3種の方法が採用されていた。第1の方法は、多面体鏡
(ポリゴン)を回転させることによる方法であり、第2
の方法は、ホログラムを回転させることによる方法、第
3の方法は、鏡を振動させる(ガルバノミラー)ことに
よる方法である。しかし、これら第1、第2、第3の方
法では物質を物理的に動かす必要があり、小型化が難し
い、及び信頼性に欠ける等の問題点があった。2. Description of the Related Art Conventionally, in an optical deflection element used in the above-mentioned field, three kinds of methods have been mainly employed in order to continuously change the propagation direction of light. The first method is to rotate a polyhedral mirror (polygon).
The third method is a method by rotating a hologram, and the third method is a method by vibrating a mirror (galvano mirror). However, in the first, second, and third methods, it is necessary to physically move the substance, and there are problems such as difficulty in miniaturization and lack of reliability.
【0003】上記問題点を解決する最も有望な方法とし
て第4の方法が考案された。第4の方法は、音響光学効
果により周期的な屈折変化を生じる媒質によるブラッグ
反射を用いる方法である(IEEE Transact
ions on Circuit and Syste
ms, Vol. CAS−26,p1072(197
9))。本方法を、図3に示す光偏向素子に基づいて説
明する。A fourth method has been devised as the most promising method for solving the above problems. A fourth method is a method using Bragg reflection by a medium that causes a periodic refraction change by an acousto-optic effect (IEEE Transact).
ions on Circuit and System
ms, Vol. CAS-26, p1072 (197
9)). This method will be described based on the light deflection element shown in FIG.
【0004】この光偏向素子は、ニオブ酸リチウム(L
iNbO3)基板31上全面に、Ti拡散により形成され
た光導波路32と、光導波路上に形成された櫛形電極3
3とを備えている。この櫛形電極33は、場所により電
極の間隔が異なり、且つ湾曲している。This light deflecting element is made of lithium niobate (L
An optical waveguide 32 formed by Ti diffusion and a comb-shaped electrode 3 formed on the optical waveguide are formed on the entire surface of the iNbO 3 ) substrate 31.
3 is provided. In the comb-shaped electrode 33, the distance between the electrodes varies depending on the location and is curved.
【0005】本方法の光偏向素子では、櫛形電極33に
よって、音響光学効果を有する材料であるLiNbO3
に交流電圧を印加して粗密波を生成する。図示するよう
に、印加する交流電圧の周波数が低いときには、波長が
長い粗密波WがRの位置に生成される。位置Rが特定さ
れるのは、上述のように櫛形電極33の電極間隔が異な
るので、発生した粗密波の共振する位置が特定されるか
らである。この粗密波Wに適当な角度θAで光Aを入射
すると、ブラッグ回折により効率よく光を回折し、回折
波Bを生成する。交流電圧の周波数を高くすると、共振
する位置がRからR´に変化すると共に、粗密波W’が
発生する。粗密波W’の波長は、粗密波Wの波長より高
い。効率よく回折される入射角θBも、角θAとは異な
る。In the light deflecting element of the present method, the comb-shaped electrode 33 forms LiNbO 3, which is a material having an acousto-optic effect.
To generate a compression wave. As shown, when the frequency of the applied AC voltage is low, the compression wave W having a long wavelength is generated at the position of R. The position R is specified because the electrode spacing of the comb-shaped electrodes 33 is different as described above, and thus the position where the generated compression wave resonates is specified. When light enters A at an appropriate angle theta A to the compression wave W, diffract light efficiently by Bragg diffraction, and generates a diffracted wave B. When the frequency of the AC voltage is increased, the resonance position changes from R to R ', and a compression wave W' is generated. The wavelength of the compression wave W ′ is higher than the wavelength of the compression wave W. The incident angle θ B that is diffracted efficiently is also different from the angle θ A.
【0006】この効率よく回折が生じる入射角は、粗密
波の波長により決まる。粗密波の波長は音響光学効果を
有する材料の屈折率、及び音波の伝搬速度等の材料特性
と、櫛形電極に印加される交流電圧の周波数とにより決
まる。従って、音響光学効果を有する材料の種類を決め
れば、印加する交流電圧の周波数により、効率よく回折
が生じる入射角が決まる。即ち、印加する交流電圧の周
波数を変化させれば、回折方向が変化し、光の偏向が実
現する。[0006] The incident angle at which the diffraction occurs efficiently is determined by the wavelength of the compression wave. The wavelength of the compression wave is determined by the material characteristics such as the refractive index of the material having the acousto-optic effect and the propagation speed of the sound wave, and the frequency of the AC voltage applied to the comb-shaped electrode. Therefore, if the type of the material having the acousto-optic effect is determined, the incident angle at which diffraction occurs efficiently is determined by the frequency of the applied AC voltage. That is, if the frequency of the applied AC voltage is changed, the diffraction direction changes, and light deflection is realized.
【0007】ブラッグ回折では、ブラッグ条件が満足さ
れるごく狭い範囲でのみ回折効率が高いため、偏向角が
狭くなる。しかし、上述したように櫛形電極33が湾曲
しているので、偏向角が大きくなる。即ち、粗密波の周
波数の変化によって、変化する伝搬方向が大きくなるよ
うに、櫛形電極33を湾曲してある。In Bragg diffraction, since the diffraction efficiency is high only in a very narrow range where the Bragg condition is satisfied, the deflection angle becomes narrow. However, since the comb-shaped electrode 33 is curved as described above, the deflection angle increases. That is, the comb-shaped electrode 33 is curved so that the propagation direction that changes according to the change in the frequency of the compressional wave increases.
【0008】この第4の方法は、外部から印加する電気
信号を制御することにより、偏向角を容易に制御するこ
とが出来る。しかも、機械的に動く部分がなく、小型化
も可能である。In the fourth method, the deflection angle can be easily controlled by controlling an externally applied electric signal. In addition, there is no mechanically moving part, and miniaturization is possible.
【0009】[0009]
【発明が解決しようとする課題】上記第4の方法の光偏
向素子では、大きな交流電流が流れるため、消費電力が
大きい。従って、素子自身は小型であっても、電源等の
周辺装置の小型化が困難となる。また、広い周波数の範
囲でインピーダンス整合を取る必要があるなど実用上困
難な問題が多く、実用化していない。In the optical deflecting element according to the fourth method, a large alternating current flows, so that the power consumption is large. Therefore, even if the element itself is small, it is difficult to reduce the size of peripheral devices such as a power supply. In addition, there are many practically difficult problems such as the need to obtain impedance matching in a wide frequency range, and the technology has not been put to practical use.
【0010】本発明は、上記問題点に鑑みてなされたも
のであり、消費電力が少なく、周辺装置まで含めて小型
で偏向範囲の大きな光偏向素子を提供することを目的と
する。The present invention has been made in view of the above problems, and has as its object to provide an optical deflecting element which consumes less power, is small in size including peripheral devices, and has a large deflection range.
【0011】[0011]
【課題を解決するための手段】本発明の光偏向素子は、
光学的周期をもつように、2種類以上の層が一定の順序
で同心円状に積層され、且つ少なくとも1種類の層が屈
折率可変材料からなる、全体が湾曲した積層体と、該屈
折率可変材料からなる層の屈折率を変化させることで該
積層体の湾曲面への入射光を偏向する屈折率変更手段と
を有しており、そのことにより上記目的を達成する。According to the present invention, there is provided an optical deflecting element comprising:
A laminated body entirely curved, comprising two or more layers concentrically laminated in a certain order so as to have an optical period, and at least one layer made of a variable refractive index material; There is provided a refractive index changing means for deflecting light incident on the curved surface of the laminate by changing the refractive index of the layer made of a material, thereby achieving the above object.
【0012】前記屈折率可変材料が電気光学効果材料で
あり、前記屈折率可変材料からなる層を挟む層が導電体
であり、且つ前記屈折率変更手段が、該屈折率可変材料
からなる層を挟む層に電位差を付与してもよい。The variable-refractive-index material is an electro-optic effect material, the layer sandwiching the layer made of the variable-refractive-index material is a conductor, and the refractive-index changing means includes a layer made of the variable-refractive-index material. A potential difference may be applied to the sandwiched layer.
【0013】前記屈折率可変材料が半導体材料であり、
且つ前記屈折率変更手段が、該屈折率可変材料からなる
層に電流を注入してもよい。[0013] The variable refractive index material is a semiconductor material,
The refractive index changing means may inject a current into the layer made of the variable refractive index material.
【0014】[0014]
【作用】本発明の光偏向素子では、光学的周期を有する
積層体の少なくとも1種類の層の屈折率を変化させるこ
とにより、積層体の光学的周期を変化させる。その結
果、この変化に応じて光偏光素子に入射する光が最も効
率よく回析される角度が変化する。In the light deflecting element of the present invention, the optical period of the laminate is changed by changing the refractive index of at least one layer of the laminate having the optical period. As a result, the angle at which the light incident on the light polarizing element is most efficiently diffracted changes according to this change.
【0015】積層体を、電気光学効果材料からなる層と
導電体からなる層とを備えるように構成し、導電体から
なる層に電圧を印加することにより、電界光学効果材料
からなる層の屈折率を変化させる。その結果、積層体の
光学的周期が変化し、その変化に応じて光偏光素子に入
射する光が最も効率よく回析される角度が変化する。こ
の構成では、電圧を印加するのみで電流を殆ど流す必要
がないので、従来に比べ消費電力が著しく低減される。The laminate is constituted so as to include a layer made of an electro-optic effect material and a layer made of a conductor, and by applying a voltage to the layer made of the conductor, the layer made of the electro-optic effect material is refracted. Change the rate. As a result, the optical period of the laminate changes, and the angle at which light incident on the light polarizing element is most efficiently diffracted changes according to the change. In this configuration, almost no current needs to flow just by applying a voltage, so that the power consumption is significantly reduced as compared with the related art.
【0016】積層体を構成する少なくとも1種の層を半
導体材料として、半導体材料からなる層に電流を流す
と、その層の屈折率が変化して、積層体の光学的周期が
変化する。その結果、光偏光素子に入射する光が最も効
率よく回析される角度が変化する。When at least one layer constituting the laminate is used as a semiconductor material and an electric current is applied to a layer made of the semiconductor material, the refractive index of the layer changes and the optical period of the laminate changes. As a result, the angle at which light incident on the light polarizing element is most efficiently diffracted changes.
【0017】更に、この積層体は湾曲しているので、積
層体への入射光は、実質的に入射角が変化して最適な位
置で反射されることにより、第4の方法のように櫛型電
極の間隔を調節する必要がない。Further, since the laminated body is curved, the incident light on the laminated body is substantially changed in the incident angle and is reflected at an optimum position, so that the light is combed as in the fourth method. There is no need to adjust the spacing of the mold electrodes.
【0018】[0018]
【実施例】本発明の実施例について以下に説明する。Embodiments of the present invention will be described below.
【0019】(第1実施例)図1に、本発明の第1実施
例である光偏向素子の斜視図を示す。この光偏向素子
は、湾曲した側面を有する柱状の基板11と、その湾曲
した側面上に交互に積層された透明な導電性の複数のI
TO膜12及び電気光学効果の大きな複数のLiNbO
3膜13とを備えている。この湾曲した側面上に形成さ
れた各層12及び13は、同心円の一部となっている。
ITO膜12及びLiNbO3膜13は、同心円状であ
る。ITO膜12は交互に、電源V及びアースGに接続
されており、LiNbO3膜13に電界を印加するよう
になっている。(First Embodiment) FIG. 1 is a perspective view of a light deflecting element according to a first embodiment of the present invention. The light deflecting element includes a columnar substrate 11 having curved side surfaces and a plurality of transparent conductive I / O layers alternately stacked on the curved side surfaces.
TO film 12 and a plurality of LiNbO having a large electro-optic effect
And three films 13. Each layer 12 and 13 formed on this curved side surface is a part of a concentric circle.
The ITO film 12 and the LiNbO 3 film 13 are concentric. The ITO films 12 are alternately connected to a power supply V and a ground G so that an electric field is applied to the LiNbO 3 film 13.
【0020】上記構成を有する光偏向素子の動作原理を
説明する。この光偏向素子では、屈折率の異なる膜、即
ちITO膜12とLiNbO3膜13とが周期的に積層
されていることにより、この光偏向素子への入射光が回
折される。The principle of operation of the light deflecting element having the above configuration will be described. In this light deflecting element, light having different refractive indexes, that is, the ITO film 12 and the LiNbO 3 film 13 are periodically laminated, so that light incident on the light deflecting element is diffracted.
【0021】ITO膜12とLiNbO3膜13との光
学的な周期Λは、LiNbO3膜13の厚さをd1、屈折
率をn1、ITO膜12の厚さをd2、屈折率をn2とす
ると、数1で表される。The optical period Λ between the ITO film 12 and the LiNbO 3 film 13 is such that the thickness of the LiNbO 3 film 13 is d 1 , the refractive index is n 1 , the thickness of the ITO film 12 is d 2 , and the refractive index is If n 2 , it is expressed by Equation 1.
【0022】[0022]
【数1】 (Equation 1)
【0023】その結果、本光偏向素子に入射する光に対
するブラッグ条件は、数2で表される。As a result, the Bragg condition for the light incident on the present light deflection element is expressed by Equation 2.
【0024】[0024]
【数2】 (Equation 2)
【0025】ただし、λは入射光の波長である。また角
度θはLiNbO3膜13内での角度であり、空気とI
TO膜12との界面での屈折を考慮すると、実際の入射
角θ’はもっと小さくなる。Here, λ is the wavelength of the incident light. The angle θ is an angle in the LiNbO 3 film 13,
Considering the refraction at the interface with the TO film 12, the actual incident angle θ ′ becomes smaller.
【0026】ITO膜12に印加する電圧Vを変化させ
てることによりLiNbO3膜13の屈折率n1を変化さ
せると、数1に従って周期Λが変化する。その結果、ブ
ラッグ条件を満足する入射角θは、数2に従って変化す
るため、回折角が変化し、光が偏向されることになる。When the refractive index n 1 of the LiNbO 3 film 13 is changed by changing the voltage V applied to the ITO film 12, the period Λ changes according to Equation 1. As a result, the incident angle θ that satisfies the Bragg condition changes according to Equation 2, so that the diffraction angle changes and light is deflected.
【0027】更に、ITO膜12及びLiNbO3膜1
3は湾曲しているので、光偏光素子への入射光は、入射
角が異なる位置を通過することとなる。その結果、図1
に示すように、電圧Vを、例えば電圧V1としたときに
位置Rに回折光Bが発生し、電圧Vを電圧V1と異なる
電圧V2としたときに、位置Rとは異なる位置R’に回
折光B’が発生する。Further, the ITO film 12 and the LiNbO 3 film 1
Since 3 is curved, the light incident on the light polarizing element passes through positions at different incident angles. As a result, FIG.
As shown in the voltage V, the diffracted light B is generated for example at the position R when the voltage V 1, when the voltage V 2 different voltages V to the voltage V 1, the position R which is different from the position R 'A diffracted light B' is generated.
【0028】本実施例の場合は、LiNbO3膜13の
屈折率n1を変化させるのに電気光学効果を用いてい
る。しかし、LiNbO3膜13には電流は流れておら
ず、従って最も低消費電力となる。In this embodiment, the electro-optic effect is used to change the refractive index n 1 of the LiNbO 3 film 13. However, no current flows through the LiNbO 3 film 13 and therefore the power consumption is the lowest.
【0029】(第2実施例)図2に、本発明の第2実施
例である光偏向素子を表す斜視図を示す。この光偏向素
子は、例えば湾曲した側面を有する半絶縁性GaAs基
板21と、その湾曲した側面上に交互に積層されたアン
ドープIn0.52Al0.48P層22及びn型In0.52(G
aAl)0.48P層23と、その湾曲した側面と隣接する
両側面に形成された電極24a及び24bとを備えてい
る。(Second Embodiment) FIG. 2 is a perspective view showing a light deflecting element according to a second embodiment of the present invention. This optical deflection element comprises, for example, a semi-insulating GaAs substrate 21 having curved side surfaces, an undoped In 0.52 Al 0.48 P layer 22 and an n-type In 0.52 (G
aAl) 0.48 P layer 23 and electrodes 24a and 24b formed on both side surfaces adjacent to the curved side surface.
【0030】このような構造を有する光偏向素子は、平
らな半絶縁性GaAs基板21上に例えば分子線エピタ
キシー(MBE)法、有機金属気相成長(MOCVD)
法等を用いて、アンドープIn0.52Al0.48P層22
と、n型In0.52(GaAl)0.48P層23とを交互に
積層する。このとき、成長層であるアンドープIn0.52
Al0.48P層22及びn型In0.52(GaAl)0.48P
層23の格子定数を、GaAs基板21の格子定数より
わずかに大きな組成のものにすると、図示するように、
GaAs基板21が反って、積層面が湾曲した側面とな
る。The light deflecting element having such a structure is formed on a flat semi-insulating GaAs substrate 21 by, for example, molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD).
Undoped In 0.52 Al 0.48 P layer 22
And n-type In 0.52 (GaAl) 0.48 P layers 23 are alternately stacked. At this time, the undoped In 0.52
Al 0.48 P layer 22 and n-type In 0.52 (GaAl) 0.48 P
When the lattice constant of the layer 23 is set to a composition slightly larger than the lattice constant of the GaAs substrate 21, as shown in FIG.
The GaAs substrate 21 is warped, and the stacked surface becomes a curved side surface.
【0031】この光偏向素子では、両側面に設けられた
電極24a及び24bに電圧を加えると、抵抗の高いア
ンドープIn0.52Al0.48P層22に挟まれた抵抗の低
いn型In0.52(GaAl)0.48P層23の屈折率が変
化し、第1実施例の場合と同様の原理で入射光を偏向す
ることができる。In this light deflecting element, when a voltage is applied to the electrodes 24a and 24b provided on both side surfaces, the n-type In 0.52 (GaAl) having a low resistance sandwiched between the undoped In 0.52 Al 0.48 P layers 22 having a high resistance. 0.48 The refractive index of the P layer 23 changes, and incident light can be deflected by the same principle as in the first embodiment.
【0032】本実施例の場合、屈折率を変えるために電
流注入を用いているので第1実施例に比べて屈折率の変
化率を大きくすることができるので、偏向角を大きくで
きる。但し、第1実施例に比べて消費電力は多くなる。In the present embodiment, since the current injection is used to change the refractive index, the rate of change of the refractive index can be increased as compared with the first embodiment, so that the deflection angle can be increased. However, the power consumption is higher than in the first embodiment.
【0033】上記実施例では、2種類の膜を堆積させた
構造であったが、膜の種類は2種類に限られない。偏向
角は、屈折率が変化する層の厚さに依存するので、例え
ば、3種類の膜を堆積させた構造の場合でも、屈折率が
変化する層の厚みを一定にすれば、2種類の膜を堆積さ
せた構造の場合と同様の効果が得られる。In the above embodiment, two types of films are deposited, but the types of films are not limited to two. Since the deflection angle depends on the thickness of the layer where the refractive index changes, for example, even in the case of a structure in which three types of films are deposited, if the thickness of the layer where the refractive index changes is constant, two types The same effect as in the case of the structure in which the film is deposited can be obtained.
【0034】[0034]
【発明の効果】以上の説明より明らかなように、本発明
の光偏向素子によれば、消費電力が少なく、偏向範囲が
大きくなる。従って、電源等の周辺装置を小さくするこ
とができ、装置全体として小型化することができる。As is clear from the above description, according to the optical deflecting element of the present invention, the power consumption is small and the deflecting range is large. Therefore, peripheral devices such as a power supply can be reduced in size, and the entire device can be reduced in size.
【図1】本発明の第1実施例である光偏向素子の斜視図
である。FIG. 1 is a perspective view of a light deflection element according to a first embodiment of the present invention.
【図2】本発明の第2実施例である光偏向素子の斜視図
である。FIG. 2 is a perspective view of a light deflection element according to a second embodiment of the present invention.
【図3】従来の光偏向素子の斜視図である。FIG. 3 is a perspective view of a conventional light deflection element.
11 基板 12 ITO膜 13 LiNbO3膜 21 半絶縁性GaAs基板 22 アンドープIn0.52Al0.48P層 23 n型In0.52(GaAl)0.48P層 24a、24b 電極Reference Signs List 11 substrate 12 ITO film 13 LiNbO 3 film 21 semi-insulating GaAs substrate 22 undoped In 0.52 Al 0.48 P layer 23 n-type In 0.52 (GaAl) 0.48 P layer 24a, 24b Electrode
Claims (3)
層が一定の順序で同心円状に積層され、且つ少なくとも
1種類の層が屈折率可変材料からなる、全体が湾曲した
積層体と、 該屈折率可変材料からなる層の屈折率を変化させること
で該積層体の湾曲面への入射光を偏向する屈折率変更手
段とを有する光偏向素子。An overall curved laminate comprising two or more layers concentrically laminated in a certain order so as to have an optical period, and at least one layer made of a variable refractive index material. An optical deflecting element comprising: a refractive index changing unit that deflects light incident on a curved surface of the laminate by changing a refractive index of a layer made of the variable refractive index material.
であり、 前記屈折率可変材料からなる層を挟む層が導電体であ
り、且つ前記屈折率変更手段が、該屈折率可変材料から
なる層を挟む層に電位差を付与する請求項1記載の光偏
向素子。2. The variable-refractive-index material is an electro-optic effect material, a layer sandwiching the layer made of the variable-refractive-index material is a conductor, and the refractive-index changing means is made of the variable-refractive-index material. 2. The optical deflecting element according to claim 1, wherein a potential difference is applied to the layers sandwiching the layers.
り、且つ前記屈折率変更手段が、該屈折率可変材料から
なる層に電流を注入する請求項1記載の光偏向素子。3. An optical deflecting element according to claim 1, wherein said variable refractive index material is a semiconductor material, and said refractive index changing means injects a current into a layer made of said variable refractive index material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03583593A JP3218111B2 (en) | 1993-02-24 | 1993-02-24 | Light deflection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03583593A JP3218111B2 (en) | 1993-02-24 | 1993-02-24 | Light deflection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06250238A JPH06250238A (en) | 1994-09-09 |
JP3218111B2 true JP3218111B2 (en) | 2001-10-15 |
Family
ID=12453036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03583593A Expired - Fee Related JP3218111B2 (en) | 1993-02-24 | 1993-02-24 | Light deflection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3218111B2 (en) |
-
1993
- 1993-02-24 JP JP03583593A patent/JP3218111B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06250238A (en) | 1994-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210356838A1 (en) | Non-moving optical beam steering using non-pixelated liquid crystal optical phased arrays | |
JP4084203B2 (en) | Optical deflection device | |
CN110537143B (en) | Optical device and optical detection system | |
US5446754A (en) | Phased array semiconductor laser | |
US10133144B2 (en) | Optical scanning device including waveguide array | |
US5576879A (en) | Composite optical modulator | |
US7417706B2 (en) | Beam steering device | |
US6373620B1 (en) | Thin film electro-optic beam steering device | |
US6317251B1 (en) | Thin film electro-optic beam steering device | |
US4902088A (en) | Integrated optic device for laser beam scanning | |
US20200363596A1 (en) | Optical device and photodetection system | |
JPH095797A (en) | Optical deflecting element | |
JPWO2018061515A1 (en) | Optical scanning device, optical receiving device, and optical detection system | |
US20190049562A1 (en) | Optical scanning device that includes mirrors and optical waveguide region | |
WO2019187681A1 (en) | Optical device and light detection system | |
JP2018128663A (en) | Optical scan device, optical receiver device, and optical detection system | |
US20200379314A1 (en) | Optical device and photodetection system | |
CN116324527A (en) | Systems, methods, and apparatus for non-mechano-optical and photon beam steering | |
JPH03116028A (en) | Optical acoustic element | |
JP4094864B2 (en) | Optical deflection element and driving method thereof | |
EP3764135B1 (en) | Optical device and optical detection system | |
WO2018061231A1 (en) | Optical scan device, optical reception device, and waveguide array | |
JP2008134652A (en) | Optical deflection apparatus | |
JP3218111B2 (en) | Light deflection element | |
CN114609803B (en) | Dynamic super-structured surface based on liquid crystal material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010710 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070803 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080803 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |