JP3217490B2 - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JP3217490B2 JP3217490B2 JP25963492A JP25963492A JP3217490B2 JP 3217490 B2 JP3217490 B2 JP 3217490B2 JP 25963492 A JP25963492 A JP 25963492A JP 25963492 A JP25963492 A JP 25963492A JP 3217490 B2 JP3217490 B2 JP 3217490B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor layer
- light emitting
- znse
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 77
- 239000000758 substrate Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 105
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 24
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910021476 group 6 element Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 229910007709 ZnTe Inorganic materials 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/327—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIBVI compounds, e.g. ZnCdSe-laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
- H01L33/145—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体発光装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device.
【0002】[0002]
【従来の技術】近年、光ディスクシステムや高速レーザ
プリンタなどの光情報処理光源への応用を目的として半
導体レーザの開発が盛んに進められている。レーザの発
振波長を短くすることは光ディスクの記録密度を向上さ
せることにつながるために盛んに研究開発が進められて
いる。GaAs基板上に、形成されたInGaAlP系
の半導体レーザは、0.6μm帯の発振波長を有し、す
でに実用レベルの20mWクラスのレーザが実用に供さ
れているが、GaAlAs系半導体レーザと比較して、
記録密度は1.4倍程度に向上するだけであり必ずしも
十分ではない。これに対してZnSeを中心としたII-V
I 族化合物半導体は、0.5μm付近での青色発振が可
能であり、記録密度はGaAlAs系半導体レーザと比
較して、3倍向上する。このため特にZnSe系半導体
レーザの開発が、精力的に行われるようになっている。2. Description of the Related Art In recent years, semiconductor lasers have been actively developed for application to optical information processing light sources such as optical disk systems and high-speed laser printers. Since shortening the laser oscillation wavelength leads to improvement in the recording density of the optical disc, research and development are being actively conducted. An InGaAlP-based semiconductor laser formed on a GaAs substrate has an oscillation wavelength in the 0.6 μm band, and a 20 mW-class laser at a practical level has already been put into practical use. However, compared to a GaAlAs-based semiconductor laser, hand,
The recording density is only improved to about 1.4 times and is not always sufficient. On the other hand, II-V centered on ZnSe
The group I compound semiconductor can emit blue light at around 0.5 μm, and the recording density is improved three times as compared with a GaAlAs-based semiconductor laser. For this reason, the development of ZnSe-based semiconductor lasers has been particularly vigorous.
【0003】一般にp型のZnSeは金属電極との良好
なオーム性接触が得られにくいという問題がある。これ
を解決する手段として、ZnSeと金属電極との間にG
aAsなどのコンタクト層を設ける方法がある。しかし
ながらこのような半導体発光装置では、ZnSeが2.
7eV、GaAsが1.4eVと非常に大きなバンドギ
ャップ差があり、この大きなバンドギャップ差に基づく
ヘテロバリヤが正孔に対して障壁となるためにZnSe
とGaAsとのヘテロ接合間での電圧降下が著しく大き
くなることが明らかになっている。In general, p-type ZnSe has a problem that it is difficult to obtain good ohmic contact with a metal electrode. As a means for solving this, G Zn is applied between ZnSe and the metal electrode.
There is a method of providing a contact layer such as aAs. However, in such a semiconductor light emitting device, ZnSe is 2.
7 eV and GaAs have a very large band gap difference of 1.4 eV, and the hetero barrier based on this large band gap difference becomes a barrier against holes, so that ZnSe
It has been clarified that the voltage drop between the heterojunction of GaAs and GaAs becomes significantly large.
【0004】[0004]
【発明が解決しようとする課題】このように従来のZn
Seを含む半導体発光装置においてはGaAs層をコン
タクト層とした場合には大きなバンドギャップ差に基づ
くヘテロバリヤーの存在により、素子電圧が著しく上昇
するという問題点があった。As described above, the conventional Zn
In a semiconductor light emitting device containing Se, when a GaAs layer is used as a contact layer, there is a problem that a device voltage is significantly increased due to the presence of a hetero barrier based on a large band gap difference.
【0005】本発明は上記問題点を除去し、電極からp
側のZnSe層への正孔の注入を円滑に行わしめ、素子
電圧が低く温度特性が格段にすぐれた半導体発光装置を
提供することを目的とする。[0005] The present invention eliminates the above-mentioned problems and removes p from the electrode.
It is an object of the present invention to provide a semiconductor light emitting device in which holes are smoothly injected into the ZnSe layer on the side, and the device voltage is low and the temperature characteristics are remarkably excellent.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、第1の発明による半導体発光装置は、基板上に形成
され表面がII族元素及びVI族元素を含む第1の半導体層
から成る発光領域と、前記第1の半導体層表面に形成さ
れ格子定数が前記基板の格子定数と2%以上異なり、膜
厚が臨界膜厚以下である第2の半導体層と、前記第2の
半導体層上に形成された電極とを有することを特徴とす
るものである。In order to achieve the above object, a semiconductor light emitting device according to a first aspect of the present invention comprises a first semiconductor layer formed on a substrate and having a surface containing a group II element and a group VI element. A light emitting region, a second semiconductor layer formed on the surface of the first semiconductor layer, having a lattice constant different from the lattice constant of the substrate by 2% or more, and having a film thickness equal to or less than a critical film thickness; And an electrode formed thereon.
【0007】また第2の発明による半導体発光装置は、
基板上に形成され表面がII族元素及びVI族元素を含む第
1の半導体層から成る発光領域と、前記第1の半導体層
表面に形成され格子定数が前記基板の格子定数と2%以
上異なり、膜厚が臨界膜厚以下である第2の半導体層
と、前記第2の半導体層上に形成されたIII-V 族半導体
層と、前記III-V 族半導体層上に形成された電極とを有
することを特徴とするものである。また、好ましくは上
記II族元素はZn或はCd、上記VI族元素はS或はSe
であれば良い。A semiconductor light emitting device according to a second aspect of the present invention
A light emitting region formed on a substrate and having a surface formed of a first semiconductor layer containing a group II element and a group VI element; and a lattice constant formed on the surface of the first semiconductor layer and having a lattice constant different from that of the substrate by 2% or more. A second semiconductor layer having a thickness equal to or less than a critical thickness, a III-V semiconductor layer formed on the second semiconductor layer, and an electrode formed on the III-V semiconductor layer. It is characterized by having. Preferably, the group II element is Zn or Cd, and the group VI element is S or Se.
Is fine.
【0008】ここで、上記発光領域とは少なくともキャ
リアの再結合によって発光する発光層を有するもので、
その他にキャリア或は光の閉じ込めを行うクラッド層、
発光した光を導く光ガイド層、或は成長層界面を保護す
る成長保護層を含むものである。Here, the light emitting region has a light emitting layer that emits light at least by recombination of carriers.
In addition, a cladding layer for confining carriers or light,
It includes a light guide layer that guides emitted light or a growth protection layer that protects the interface of the growth layer.
【0009】更に臨界膜厚とは、前記第2の半導体を成
長させる際転移を発生させることなく歪を有する状態で
連続して格子を接合することができる最大の膜厚のこと
である。Further, the critical film thickness is the maximum film thickness at which the lattice can be continuously joined in a strained state without causing a transition when the second semiconductor is grown.
【0010】[0010]
【作用】本発明によれば、II族元素及びVI族元素を含む
第1の半導体層表面の第2の半導体層は、基板と格子定
数比で2%以上の歪量としたとき重い正孔と軽い正孔が
歪により分離した状態になり、II族元素及びVI族元素を
含む第1の半導体層との正孔のカップリングが非常に良
くなり、ヘテロバリヤーの存在による正孔の注入の妨害
は生じず、電極から注入された正孔はスムーズに発光領
域に注入される。従って、動作電圧を十分低くすること
ができ発光領域にキャリアを効果的に注入することがで
きる。According to the present invention, the second semiconductor layer on the surface of the first semiconductor layer containing a group II element and a group VI element has heavy holes when the substrate has a lattice constant ratio of strain of 2% or more. And light holes are separated by strain, the hole coupling with the first semiconductor layer containing the group II element and the group VI element becomes very good, and the hole injection due to the presence of the hetero barrier is prevented. No interference occurs, and holes injected from the electrodes are smoothly injected into the light emitting region. Accordingly, the operating voltage can be sufficiently reduced, and carriers can be effectively injected into the light emitting region.
【0011】[0011]
【実施例】以下、本発明の詳細を図示の実施例によって
説明する。図1は本発明の第1の実施例に係る半導体レ
ーザ装置の概略断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a schematic sectional view of a semiconductor laser device according to a first embodiment of the present invention.
【0012】n−GaAs基板11上にn−GaAsバ
ッファ層12及び、n−ZnSeバッファ層13を介し
て発光領域25であるn−ZnSSeクラッド層14、
ZnSe光ガイド層15、n−ZnCdSe活性層1
6、ZnSe光ガイド層17、p−ZnSSeクラッド
層18、p−ZnSe成長保護層19がこの順に形成さ
れダブルへテロ構造を形成している。発光領域25の表
面を形成するII族元素及びVI族元素を含む第1の半導体
層であるp−ZnSe成長保護層19表面に第2の半導
体層であるp−Zn0.7 Cd0.3 Se半導体層20が形
成され更にp−Zn0.7 Cd0.3 Se半導体層20表面
にIII-V 族半導体層であるp−GaAs半導体層21が
形成されている。On the n-GaAs substrate 11, an n-ZnSe buffer layer 14, which is a light emitting region 25, is provided via an n-GaAs buffer layer 12 and an n-ZnSe buffer layer 13.
ZnSe light guide layer 15, n-ZnCdSe active layer 1
6, a ZnSe light guide layer 17, a p-ZnSSe cladding layer 18, and a p-ZnSe growth protection layer 19 are formed in this order to form a double heterostructure. A p-Zn 0.7 Cd 0.3 Se semiconductor layer 20 as a second semiconductor layer is formed on the surface of a p-ZnSe growth protection layer 19 as a first semiconductor layer containing a group II element and a group VI element forming the surface of the light emitting region 25. Is formed, and a p-GaAs semiconductor layer 21 as a III-V group semiconductor layer is formed on the surface of the p-Zn 0.7 Cd 0.3 Se semiconductor layer 20.
【0013】そしてp−GaAs半導体層21の上面に
金属電極23が被着され、基板11の下面に金属電極2
4が被着されている。電極部分を除く各層はすべて分子
線エピタキシー法により成長を行っている。このレーザ
では誘電体膜22(SiO2)により、電流狭窄を図っ
ている。以下図2を用いて格子定数が基板11と2%以
上異なり、膜厚が臨界膜厚以下である第2の半導体層の
バンドギャップと素子電圧の関係について説明する。A metal electrode 23 is deposited on the upper surface of the p-GaAs semiconductor layer 21, and a metal electrode 2 is formed on the lower surface of the substrate 11.
4 are applied. All the layers except for the electrode portion are grown by molecular beam epitaxy. In this laser, current confinement is achieved by the dielectric film 22 (SiO 2 ). Hereinafter, the relationship between the band gap and the device voltage of the second semiconductor layer whose lattice constant differs from the substrate 11 by 2% or more and whose film thickness is equal to or less than the critical film thickness will be described with reference to FIG.
【0014】応力の無い状態(b)から、結晶に歪を導
入すると価電子帯側のバンド構造に変化が起き、圧縮型
(a)の場合でも、引っ張り型(c)の場合でも重い正
孔帯Ehhと軽い正孔帯Eihが歪により分離した状態にな
る。このような歪層を発光領域の表面を形成するp−Z
nSe成長保護層19と接触して形成するとp−ZnS
eからの正孔の注入が非常に良くなる。これは圧縮型
(a)の場合は分離した軽い正孔帯Eihと、ZnSeの
価電子帯位置が近くなり、レベルの共鳴効果およびトン
ネル効果が増大するためである。引っ張り型(c)の場
合は軽い正孔帯Eihが禁制帯側に飛び出しモビリティー
が増大し正孔が流れ易くなるためである。When strain is introduced into the crystal from the state without stress (b), the band structure on the valence band side changes, and heavy holes are generated in both the compression type (a) and the tension type (c). The band Ehh and the light hole band Eih are separated by strain. Such a strained layer is formed by p-Z forming the surface of the light emitting region.
When formed in contact with the nSe growth protection layer 19, p-ZnS
The injection of holes from e becomes very good. This is because, in the case of the compression type (a), the positions of the separated light hole band E ih and the valence band of ZnSe are close to each other, and the level resonance effect and the tunnel effect are increased. This is because, in the case of the tension type (c), the light hole band E ih jumps out to the forbidden band side, the mobility increases, and the holes easily flow.
【0015】本実施例では第1の半導体層としてZn
0.7 Cd0.3 Seを示したがこの格子定数は基板の格子
定数よりも大きく圧縮型のバンド構造になり、この組成
では3%以上になる。しかしながら層厚を50オングス
トローム(以下Aと記す)と薄く、臨界膜厚である15
0A以下にしているため圧縮歪を有する状態で隣接層で
あるp−ZnSe成長保護層19とつながっており、転
位等の発生はない。本発明者らの研究の結果、歪量とし
ては格子定数比で2%以上としたときこの様な歪効果と
して有効性が得られることを見いだした。In this embodiment, Zn is used as the first semiconductor layer.
Although 0.7 Cd 0.3 Se was shown, the lattice constant was larger than the lattice constant of the substrate, resulting in a compression-type band structure, and this composition exceeded 3%. However, the layer thickness is as thin as 50 angstroms (hereinafter referred to as A), and the critical film thickness is 15 Å.
Since it is 0 A or less, it is connected to the adjacent p-ZnSe growth protective layer 19 with a compressive strain, and no dislocation or the like occurs. As a result of the research by the present inventors, it has been found that when the strain amount is 2% or more in terms of the lattice constant ratio, such a strain effect is effective.
【0016】また、本実施例のように第2の半導体層を
II-VI 族で構成すると第2の半導体層作製の上でもモホ
ロジーが良く成長温度も発光領域に合わせられるなど結
晶成長の上でも種々のメリットがあった。Further, as in this embodiment, the second semiconductor layer
The group II-VI group has various merits also in crystal growth, such as good morphology in the preparation of the second semiconductor layer and adjustment of the growth temperature to the light emitting region.
【0017】また本実施例では電極と第2の半導体との
間にIII-V 族半導体層としてGaAs層を形成した。G
aAsはAuなどと容易に合金層を作り、電極と低抵抗
のオーム性接触を得ることができるがこのような構成に
することにより従来問題とされていたGaAsとII-VI
族半導体であるZnSeとの過電子帯のヘテロスパイク
による接触抵抗を解決し良好な電圧特性を得ることがで
きる。これは過電子帯のヘテロスパイクを小さくしレベ
ルの共鳴効果およびトンネル効果を増大させるためであ
る。In this embodiment, a GaAs layer is formed as a III-V semiconductor layer between the electrode and the second semiconductor. G
aAs can easily form an alloy layer with Au or the like, and can obtain a low-resistance ohmic contact with the electrode.
It is possible to solve the contact resistance due to heterospikes in the excess electronic band with ZnSe which is a group semiconductor, and to obtain good voltage characteristics. This is to reduce heterospikes in the over-emission band and increase the level of resonance effect and tunnel effect.
【0018】GaAs基板は高品質のものが得られてお
り、上記した各層の成長も品質良く行うことができるが
第1の実施例では基板としてZnSeを用いることも可
能である。Although a high quality GaAs substrate can be obtained, and the growth of each layer described above can be performed with high quality, ZnSe can be used as the substrate in the first embodiment.
【0019】かくのごとく活性層をn型に設定した図1
に示すレーザは共振器長400μmとした時、しきい値
80mAで室温連続発振した。素子の抵抗は15Ω、2
0mW時の電圧も3.8Vと低くかった。これは比較例
としてp−ZnSe成長保護層18の表面に直接p−G
aAs半導体層を形成したものの20mW時の電圧が1
0Vであるのでこれと比べると約1/3と格段に低い値
となった。図3は本発明の第2の実施例に係る半導体レ
ーザ装置の概略断面図である。FIG. 1 in which the active layer is set to the n-type as described above
When the cavity length was 400 μm, the laser shown in (1) continuously oscillated at room temperature at a threshold value of 80 mA. The resistance of the element is 15Ω, 2
The voltage at 0 mW was also as low as 3.8 V. This is because p-G is directly applied to the surface of the p-ZnSe growth protection layer 18 for comparison.
The voltage at 20 mW when the aAs semiconductor layer is formed is 1
Since the voltage is 0 V, the value is about 1/3, which is a remarkably low value. FIG. 3 is a schematic sectional view of a semiconductor laser device according to a second embodiment of the present invention.
【0020】n−GaAs基板11上にn−GaAsバ
ッファ層12及び、n−ZnSeバッファ層13を介し
て発光領域25であるn−ZnSSeクラッド層14、
ZnSe光ガイド層15、n−ZnCdSe活性層1
6、ZnSe光ガイド層17、p−ZnSSeクラッド
層18、p−ZnSe成長保護層19がこの順に形成さ
れダブルへテロ構造を形成している。以上の構成は第1
の実施例と同様である。発光領域25の表面を形成する
II族元素及びVI族元素を含む第1の半導体層であるp−
ZnSe成長保護層19表面に第2の半導体層であるp
−ZnTe半導体層40が形成されこの上にp−InG
aAlP半導体層41を介してIII-V 族半導体層である
p−GaAs半導体層21が形成されている。On the n-GaAs substrate 11, an n-ZnSe buffer layer 12, an n-ZnSe buffer layer 13, and an n-ZnSSe cladding layer 14,
ZnSe light guide layer 15, n-ZnCdSe active layer 1
6, a ZnSe light guide layer 17, a p-ZnSSe cladding layer 18, and a p-ZnSe growth protection layer 19 are formed in this order to form a double heterostructure. The above configuration is the first
This is the same as the embodiment. Form the surface of the light emitting region 25
P- which is a first semiconductor layer containing a group II element and a group VI element
On the surface of the ZnSe growth protection layer 19, the second semiconductor layer p
-ZnTe semiconductor layer 40 is formed, and p-InG
A p-GaAs semiconductor layer 21, which is a III-V group semiconductor layer, is formed via an aAlP semiconductor layer 41.
【0021】そしてp−GaAs半導体層21の上面に
金属電極23が被着され、基板11の下面に金属電極2
4が被着されている。電極部分を除く各層はすべて分子
線エピタキシー法により成長を行っている。このレーザ
では誘電体膜22(SiO2)により、電流狭窄を図っ
ている。A metal electrode 23 is deposited on the upper surface of the p-GaAs semiconductor layer 21 and a metal electrode 2 is formed on the lower surface of the substrate 11.
4 are applied. All the layers except for the electrode portion are grown by molecular beam epitaxy. In this laser, current confinement is achieved by the dielectric film 22 (SiO 2 ).
【0022】第1の実施例と異なるのは発光領域25か
ら上の部分でありここでは下からZnTe/InGaA
lP/GaAsなる構成を採用している。ZnTeはア
ンドープでもp型を得られるため、有利であり2元組成
のため組成制御も容易になる。The difference from the first embodiment is the portion above the light emitting region 25, and here ZnTe / InGaAs from below.
The configuration of 1P / GaAs is adopted. ZnTe is advantageous because it can obtain a p-type even if undoped, and the composition control is easy because of the binary composition.
【0023】本実施例で用いたZnTeは基板であるG
aAsと比べると格子定数が3%異なっており膜厚は臨
界膜厚である100A以下の30Aとしている。このよ
うなレーザ装置を第1の実施例と同様に素子特性を測定
すると20mW時の電圧は3.5Vとなり比較例と比べ
るとやはり約1/3程度と格段に低くなった。図4は本
発明の第3の実施例に係る半導体レーザ装置の概略断面
図である。The ZnTe used in this embodiment is a substrate G
Compared with aAs, the lattice constant is different by 3%, and the film thickness is set to 30A which is 100A or less which is the critical film thickness. When the device characteristics of such a laser device were measured in the same manner as in the first embodiment, the voltage at 20 mW was 3.5 V, which was also much lower than that of the comparative example, about 1/3. FIG. 4 is a schematic sectional view of a semiconductor laser device according to a third embodiment of the present invention.
【0024】n−GaAs基板11上にn−GaAsバ
ッファ層12及び、n−ZnSeバッファ層13を介し
て発光領域25であるn−ZnSSeクラッド層14、
ZnSe光ガイド層15、n−ZnCdSe活性層1
6、ZnSe光ガイド層17、p−ZnSSeクラッド
層18、p−ZnSe成長保護層19がこの順に形成さ
れダブルヘテロ構造を形成している。発光領域25の表
面を形成するII族元素及びVI族元素を含む第1の半導体
層であるp−ZnSe成長保護層19表面に第2の半導
体層であるp−Zn0.5 Cd0.5 Se半導体層60が形
成されこの上にp−In0.3 Ga0.7 P半導体層61を
介してIII-V 族半導体層であるp−GaAs半導体層2
1が形成されている。On the n-GaAs substrate 11, an n-ZnSe buffer layer 12, an n-ZnSe buffer layer 13, and an n-ZnSSe clad layer 14,
ZnSe light guide layer 15, n-ZnCdSe active layer 1
6, a ZnSe light guide layer 17, a p-ZnSSe cladding layer 18, and a p-ZnSe growth protection layer 19 are formed in this order to form a double heterostructure. A p-Zn 0.5 Cd 0.5 Se semiconductor layer 60 as a second semiconductor layer is formed on the surface of the p-ZnSe growth protection layer 19 as a first semiconductor layer containing a group II element and a group VI element forming the surface of the light emitting region 25. Is formed on the p-GaAs semiconductor layer 2 which is a III-V group semiconductor layer via a p-In 0.3 Ga 0.7 P semiconductor layer 61.
1 is formed.
【0025】そしてp−GaAs半導体層21の上面に
金属電極23が被着され、基板11の下面に金属電極2
4が被着されている。電極部分を除く各層はすべて分子
線エピタキシー法により成長を行っている。このレーザ
では誘電体膜22(SiO2)により、電流狭窄を図っ
ている。A metal electrode 23 is deposited on the upper surface of the p-GaAs semiconductor layer 21, and a metal electrode 2 is formed on the lower surface of the substrate 11.
4 are applied. All the layers except for the electrode portion are grown by molecular beam epitaxy. In this laser, current confinement is achieved by the dielectric film 22 (SiO 2 ).
【0026】第1、第2の実施例と異なるのは発光領域
25より上の構成であり、ここでは下からZn0.5 Cd
0.5 Se/In0.3 Ga0.7 P/GaAsなる構成をし
ている。これはInGaPの組成をIn0.3 Ga0.7 P
とすることで格子定数をZn0.5 Cd0.5 Seの格子不
整の方向とは逆の方向に設定し、格子不整の補償降下を
ねらっている。The difference from the first and second embodiments lies in the structure above the light emitting region 25. Here, Zn 0.5 Cd
The structure is 0.5 Se / In 0.3 Ga 0.7 P / GaAs. This is because the composition of InGaP is In 0.3 Ga 0.7 P
Thus, the lattice constant is set in a direction opposite to the direction of the lattice misalignment of Zn 0.5 Cd 0.5 Se, and the compensation drop of the lattice irregularity is aimed at.
【0027】本実施例で用いたZn0.5 Cd0.5 Seは
基板であるGaAsと比べると格子定数が2%異なって
おり膜厚は臨界膜厚である100A以下の50Aとして
いる。このような素子を第1の実施例と同様に素子特性
を測定すると20mW時の電圧は3.2Vとなり比較例
と比べるとやはり約1/3程度と格段に低くなった。The Zn 0.5 Cd 0.5 Se used in the present embodiment has a lattice constant different from that of GaAs by 2%, and the film thickness is 50 A, which is 100 A or less, which is the critical film thickness. When the element characteristics of such an element were measured in the same manner as in the first embodiment, the voltage at 20 mW was 3.2 V, which was much lower than that of the comparative example, about 1/3.
【0028】これらの実施例ではp側だけに格子定数が
基板と2%以上異なり、膜厚が臨界膜厚以下である第2
の半導体層を設けているが、GaAs/ZnSe等のよ
うなIII-V 族半導体層/II-VI 族半導体層の組み合わせ
の場合、ヘテロバリヤーの問題はn側でも問題になる。
よってn側にも本発明と同様の構造を設けるのが望まし
い。In these embodiments, only the p-side has a lattice constant different from that of the substrate by 2% or more, and the second film having a film thickness equal to or less than the critical film thickness.
However, in the case of a combination of III-V group semiconductor layer / II-VI group semiconductor layer such as GaAs / ZnSe, the problem of the hetero barrier also becomes a problem on the n-side.
Therefore, it is desirable to provide the same structure as that of the present invention on the n side.
【0029】なお本発明は上述した実施例に限られるも
のではない。活性層としてSを含まないZnSeを用い
た発光ダイオードとしたり、歪みを導入したものなどで
も良い。活性層、クラッド層として他のAs、P、B、
N、Zn、Se、などを含む材料を用いても良い。The present invention is not limited to the embodiment described above. The active layer may be a light emitting diode using ZnSe containing no S, or may have a strain introduced. Other As, P, B, as active layers and cladding layers
A material containing N, Zn, Se, or the like may be used.
【0030】また、上記実施例では圧縮歪の例を示した
が、歪半導体としてAlGaP系を用いれば引っ張り歪
としてのコンタクト効果を得ることができ上記実施例と
同様の効果を期待することができる。また、上記実施例
では歪半導体層と電極との間にIII-V 族コンタクト層を
挿入した例を示したが、直接歪半導体層と電極を接続さ
せても良い。In the above embodiment, an example of compressive strain was shown. However, if an AlGaP-based strain semiconductor is used, a contact effect as tensile strain can be obtained, and the same effect as in the above embodiment can be expected. . Further, in the above embodiment, an example is shown in which the group III-V contact layer is inserted between the strained semiconductor layer and the electrode, but the strained semiconductor layer and the electrode may be directly connected.
【0031】[0031]
【発明の効果】以上詳述したように本発明によれば、動
作電圧が格段に低いため温度特性に優れ、発光領域にキ
ャリアを効果的に注入することができ発光効率の格段に
向上したII-VI 族化合物半導体層を含む半導体発光素子
を提供することができる。As described in detail above, according to the present invention, the operating voltage is remarkably low, so that the temperature characteristics are excellent, the carriers can be effectively injected into the light emitting region, and the light emitting efficiency is remarkably improved. -It is possible to provide a semiconductor light emitting device including a group VI compound semiconductor layer.
【図1】 本発明の第1の実施例に係る半導体レーザ装
置の断面図FIG. 1 is a sectional view of a semiconductor laser device according to a first embodiment of the present invention.
【図2】 本発明の第1の実施例を説明する歪がある無
しの場合のバンド構造の変化を示す図FIG. 2 is a view for explaining a first embodiment of the present invention and showing a change in band structure in the case where there is no distortion;
【図3】 本発明の第2の実施例に係る半導体レーザ装
置の断面図FIG. 3 is a sectional view of a semiconductor laser device according to a second embodiment of the present invention.
【図4】 本発明の第3の実施例に係る半導体レーザ装
置の断面図FIG. 4 is a sectional view of a semiconductor laser device according to a third embodiment of the present invention.
11 n−GaAs基板 12 n−GaAsバッファ層 13 n−ZnSeバッファ層 14 n−ZnSSeクラッド層 15 ZnSe光ガイド層 16 ZnCdSe活性層 17 ZnSe光ガイド層 18 p−ZnSSeクラッド層 19 p−ZnSe半導体層 20 p−ZnCdSe半導体層 21 p−GaAs半導体層 22 誘電体膜 23 金属電極 24 金属電極 25 発光領域 Reference Signs List 11 n-GaAs substrate 12 n-GaAs buffer layer 13 n-ZnSe buffer layer 14 n-ZnSSe clad layer 15 ZnSe light guide layer 16 ZnCdSe active layer 17 ZnSe light guide layer 18 p-ZnSSe clad layer 19 p-ZnSe semiconductor layer 20 p-ZnCdSe semiconductor layer 21 p-GaAs semiconductor layer 22 dielectric film 23 metal electrode 24 metal electrode 25 light emitting region
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−97505(JP,A) 特開 平6−21572(JP,A) 特開 平6−37356(JP,A) 特開 平6−85392(JP,A) 特開 平1−296687(JP,A) 特開 昭60−178684(JP,A) 特開 昭59−184583(JP,A) 特開 平6−5920(JP,A) 特開 平5−218565(JP,A) 特開 平6−13655(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-97505 (JP, A) JP-A-6-21572 (JP, A) JP-A-6-37356 (JP, A) JP-A-6-37356 85392 (JP, A) JP-A-1-296687 (JP, A) JP-A-60-178684 (JP, A) JP-A-59-184583 (JP, A) JP-A-6-5920 (JP, A) JP-A-5-218565 (JP, A) JP-A-6-13655 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 33/00
Claims (1)
族元素を含む第1の半導体層から成る発光領域と、前記
第1の半導体層表面に形成され格子定数が前記基板の格
子定数と2%以上異なり、膜厚が臨界膜厚以下である第
2の半導体層と、前記第2の半導体層上に形成されたII
I-V 族半導体層と、前記III-V 族半導体層上に形成され
た電極とを有することを特徴とする半導体発光装置。1. The method according to claim 1, wherein the surface is formed on a substrate and has a surface of a group II element and a VI.
A light emitting region comprising a first semiconductor layer containing a group III element, and a second light emitting region formed on the surface of the first semiconductor layer, having a lattice constant different from the lattice constant of the substrate by 2% or more and having a film thickness equal to or less than a critical film thickness. And a II formed on the second semiconductor layer.
A semiconductor light emitting device comprising: a group IV semiconductor layer; and an electrode formed on the group III-V semiconductor layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25963492A JP3217490B2 (en) | 1992-09-29 | 1992-09-29 | Semiconductor light emitting device |
US08/128,113 US5389800A (en) | 1992-09-29 | 1993-09-29 | Semiconductor light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25963492A JP3217490B2 (en) | 1992-09-29 | 1992-09-29 | Semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06112593A JPH06112593A (en) | 1994-04-22 |
JP3217490B2 true JP3217490B2 (en) | 2001-10-09 |
Family
ID=17336795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25963492A Expired - Fee Related JP3217490B2 (en) | 1992-09-29 | 1992-09-29 | Semiconductor light emitting device |
Country Status (2)
Country | Link |
---|---|
US (1) | US5389800A (en) |
JP (1) | JP3217490B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1297634C (en) * | 2004-09-02 | 2007-01-31 | 中国石油化工股份有限公司 | Method for removing arsenide from liquid hydrocarbon |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994015369A1 (en) * | 1992-12-22 | 1994-07-07 | Research Corporation Technologies, Inc. | Group ii-vi compound semiconductor light emitting devices and an ohmic contact therefor |
JP3116675B2 (en) * | 1993-07-28 | 2000-12-11 | ソニー株式会社 | Semiconductor laser |
JPH07335934A (en) * | 1994-06-03 | 1995-12-22 | Mitsubishi Electric Corp | Optical semiconductor device and its manufacture |
US5879962A (en) * | 1995-12-13 | 1999-03-09 | Minnesota Mining And Manufacturing Company | III-V/II-VI Semiconductor interface fabrication method |
JP2930032B2 (en) * | 1996-09-26 | 1999-08-03 | 日本電気株式会社 | II-VI compound semiconductor light emitting device and method of manufacturing the same |
TW497277B (en) * | 2000-03-10 | 2002-08-01 | Toshiba Corp | Semiconductor light emitting device and method for manufacturing the same |
TWI780167B (en) * | 2018-06-26 | 2022-10-11 | 晶元光電股份有限公司 | Semiconductor substrate and semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01169985A (en) * | 1987-12-24 | 1989-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor laser |
JP2685209B2 (en) * | 1988-03-25 | 1997-12-03 | 株式会社東芝 | Semiconductor device and semiconductor light emitting device |
JPH01296687A (en) * | 1988-05-25 | 1989-11-30 | Inkiyuubeetaa Japan:Kk | Visible ray emitting semiconductor laser device |
-
1992
- 1992-09-29 JP JP25963492A patent/JP3217490B2/en not_active Expired - Fee Related
-
1993
- 1993-09-29 US US08/128,113 patent/US5389800A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1297634C (en) * | 2004-09-02 | 2007-01-31 | 中国石油化工股份有限公司 | Method for removing arsenide from liquid hydrocarbon |
Also Published As
Publication number | Publication date |
---|---|
JPH06112593A (en) | 1994-04-22 |
US5389800A (en) | 1995-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4961197A (en) | Semiconductor laser device | |
EP0661782B1 (en) | A semiconductor laser | |
US5321712A (en) | Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound | |
JP3129779B2 (en) | Semiconductor laser device | |
US5583878A (en) | Semiconductor optical device | |
US6387721B1 (en) | Semiconductor light-emitting device and manufacturing method for the same | |
JPS6014482A (en) | Semiconductor laser device | |
JPH11274635A (en) | Semiconductor light emitting device | |
JP2008091713A (en) | Two-wavelength semiconductor laser device | |
JP3095545B2 (en) | Surface emitting semiconductor light emitting device and method of manufacturing the same | |
JP2001053389A (en) | Semiconductor device | |
JPH0732285B2 (en) | Semiconductor laser device | |
JP3217490B2 (en) | Semiconductor light emitting device | |
JPH05291686A (en) | Semiconductor laser | |
JP3892637B2 (en) | Semiconductor optical device equipment | |
JPH0783138B2 (en) | Semiconductor light emitting element | |
JP2009302582A (en) | Two wavelength semiconductor laser apparatus | |
JP3197042B2 (en) | Semiconductor light emitting device | |
JP2661576B2 (en) | Semiconductor light emitting device | |
EP0867949B1 (en) | Semiconductor light-emitting device | |
JP4163321B2 (en) | Semiconductor light emitting device | |
JP3193087B2 (en) | AlGaInP semiconductor light emitting device | |
US6023483A (en) | Semiconductor light-emitting device | |
JP3115006B2 (en) | Semiconductor laser device | |
JP3157671B2 (en) | Semiconductor laser device and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |