JP3216001U - AC electrodynamic inspection device, insurance device, current display device - Google Patents

AC electrodynamic inspection device, insurance device, current display device Download PDF

Info

Publication number
JP3216001U
JP3216001U JP2017003382U JP2017003382U JP3216001U JP 3216001 U JP3216001 U JP 3216001U JP 2017003382 U JP2017003382 U JP 2017003382U JP 2017003382 U JP2017003382 U JP 2017003382U JP 3216001 U JP3216001 U JP 3216001U
Authority
JP
Japan
Prior art keywords
circuit
voltage
power supply
expansion
import
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017003382U
Other languages
Japanese (ja)
Inventor
尤宣来
Original Assignee
尤宣来
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尤宣来 filed Critical 尤宣来
Application granted granted Critical
Publication of JP3216001U publication Critical patent/JP3216001U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】測量範囲が大きく感度が高い交流電流検査装置、保険装置、及び電流表示装置を提供する。【解決手段】交流電流検査装置は、第一直流供電回路、第二直流供電回路、定常基準回路、微電位サンプリング回路、交流電圧増幅回路、検波回路、校正回路、シグナルディスプレーを含む。第一直流供電回路の電圧出力側が交流電圧増幅回路の電源入力側に接続し、第二直流供電回路の電圧出力側がシグナルディスプレーの電源入力側に接続し、定常基準回路の電圧入力側が第二直流供電回路に接続し、定常基準回路の電圧出力側がシグナルディスプレーの基準電圧入力側に接続し、微電位サンプリング回路が測量される交流電源に接続し、且つ、そのサンプリング電圧シグナル出力側が交流電圧増幅回路の入力側に接続し、交流電圧増幅回路の出力側が順次に検波回路、校正回路、シグナルディスプレーの入力側に接続する。【選択図】図1An alternating current inspection device, an insurance device, and a current display device having a large surveying range and high sensitivity are provided. An AC current inspection apparatus includes a first DC power supply circuit, a second DC power supply circuit, a stationary reference circuit, a micropotential sampling circuit, an AC voltage amplifier circuit, a detection circuit, a calibration circuit, and a signal display. The voltage output side of the first DC power supply circuit is connected to the power input side of the AC voltage amplifier circuit, the voltage output side of the second DC power supply circuit is connected to the power input side of the signal display, and the voltage input side of the steady reference circuit is the second Connect to the DC power supply circuit, connect the voltage output side of the steady reference circuit to the reference voltage input side of the signal display, connect the micro-potential sampling circuit to the AC power source to be measured, and the sampling voltage signal output side is the AC voltage amplification Connect to the input side of the circuit and connect the output side of the AC voltage amplifier circuit to the input side of the detector circuit, calibration circuit, and signal display in sequence. [Selection] Figure 1

Description

本考案は交流電検査装置に関し、特に交流電動態検査装置及び保険装置、電流表示装置に関わる。   The present invention relates to an alternating current inspection device, and particularly relates to an alternating current dynamic inspection device, an insurance device, and a current display device.

交流電の測量は電の測量計量においては非常に重要な測量対象である。伝統測量交流電流の方法は下記幾つ有る:万用表の直列Via抵抗分圧法、運用センサー器の電磁転換法、位相センサー器検査、及び電度表の電―磁―測量法。その中、万用表及び専用表のVia抵抗分圧表の最大識別率(例 4位半)は100微ボルト、伝統測量抵抗の方法は200Ω。
上記の方法は各種の儀表と工業、家庭運用に成熟な製品が有り、規模が大きい。もっと科学的、長期省エネ、持続的オンライン測量、特に量産、大範囲分布的に監査。上記の方法では、徹底的の欠点が有る:測量範囲が小さい、敏感度が低い、不科学、大きい、重い、材料消耗、コスト高いなど。何故なら、高抵抗分圧の外部接続分圧抵抗であろうが、電磁転換装置であろうが、絶対補助の消耗部品を使用してサンプリングしなければいけないからだ。これで交流電流の測りを行われる。従い、先程の測量範囲が小さい、敏感度が低い、不科学、大きい、重い、材料消耗、コスト高いなどの欠点が有る。一方、資源の消耗も明らかである、例えば電磁転換器用の金属塊、絶縁材料、銅材材料など。
AC power surveying is a very important survey target in power surveying. There are several methods of traditional surveying AC current: serial voltage resistance method of universal table, electromagnetic conversion method of operational sensor, phase sensor test, and electro-magnetic-surgical method of electric power table. Among them, the maximum discrimination rate (example 4th and a half) of the Via resistance division table of the universal table and dedicated table is 100 microvolts, and the traditional surveying resistance method is 200Ω.
The above methods are large in scale with various rituals, mature products in industry and home use. More scientific, long-term energy saving, sustainable online surveying, especially mass production, large-scale distribution audit. The above method has exhaustive drawbacks: small survey range, low sensitivity, unscientific, large, heavy, material consumption, high cost, etc. This is because it must be sampled using absolute auxiliary consumable parts, whether it is an external connection voltage dividing resistor with high resistance voltage division or an electromagnetic conversion device. This measures AC current. Therefore, there are drawbacks such as small survey range, low sensitivity, unscientific, large, heavy, material consumption, high cost. On the other hand, the consumption of resources is obvious, for example, metal lumps for electromagnetic converters, insulating materials, copper materials, and the like.

本考案は現有技術における交流電検査装置に存在した不足点を克服するために、交流電動態検査装置及び保険装置、電流表示装置を提供する。   The present invention provides an AC electrodynamic inspection apparatus, an insurance apparatus, and a current display apparatus in order to overcome deficiencies in the AC electric inspection apparatus in the existing technology.

前述の技術問題を解決するため、本考案が採用する技術方案は、交流電動態検査装置であり、第一直流供電電路、供電電圧が第一直流より低い第二直流供電電路、定常基準電路、微電位サンプリング電路、せめて二級を拡大する工頻交流拡大電路、検波電路、校正電路、シグナルディスプレーを含み、第一直流供電電路の電圧輸出側が工頻交流拡大電路の電源輸入側に接続する。第二直流供電電路の電圧輸出側がシグナルディスプレーの電源輸入側に接続する。定常基準電路の電圧輸入側を第二直流供電電路に接続する。定常基準電路の電圧輸出側がシグナルディスプレーの基準電圧輸入側に接続する。微電位サンプリング電路が測られる交流電に接続し、且つサンプリング電圧シグナル輸出側を工頻交流拡大電路の輸入側に接続する。工頻交流拡大電路の輸出側がそれぞれ検波電路、校正電路を通してシグナルディスプレーの輸入側に接続する。   In order to solve the above technical problems, the technical scheme adopted by the present invention is an AC electrodynamic inspection device, a first DC power supply circuit, a second DC power supply circuit whose supply voltage is lower than the first DC, and a steady reference circuit. Including the micro potential sampling circuit, at least the secondary AC expansion circuit, the detection circuit, the calibration circuit, and the signal display to expand the second class, the voltage export side of the first DC power supply circuit is connected to the power import side of the technical AC expansion circuit To do. The voltage export side of the second DC power line is connected to the power import side of the signal display. Connect the voltage import side of the steady reference circuit to the second DC power circuit. The voltage export side of the steady reference circuit is connected to the reference voltage import side of the signal display. Connect the sampling voltage signal export side to the import side of the frequent AC expansion circuit, and connect to the AC line where the micropotential sampling circuit is measured. The export side of the work frequency expansion circuit will be connected to the import side of the signal display through the detection circuit and the calibration circuit.

電磁転換COSΦ拡大サンプリング測量電路も含まれる。微電位サンプリング電路の交流電の電度、位相シグナルの測量に用いる。微電位サンプリング電路と工頻交流拡大電路が未接続の場合、工頻交流拡大電路に接続する。   Electromagnetic conversion COSΦ expansion sampling surveying circuit is also included. Used to measure AC power and phase signal of micro potential sampling circuit. When the micro-potential sampling circuit and the frequent AC expansion circuit are not connected, they are connected to the frequent AC expansion circuit.

本考案が採用したもう一つ技術方案は、ある保険装置であり、圧接機構、ロック留め物、駆動機構、電圧比較電路及び上記交流電動態検査装置が含まれる。圧接機構が圧下と復位の圧接物を設定する。且つ圧接物が駆動する際に保護される負荷回路の断電オンオフスイッチに接続する。   Another technical scheme adopted by the present invention is an insurance device, which includes a pressure contact mechanism, a lock fastener, a drive mechanism, a voltage comparison circuit, and the AC electrodynamic inspection device. The pressure contact mechanism sets the pressure contact between the reduction and the reverse. And it connects to the on / off switch of the load circuit which is protected when the press contact is driven.

前記微電位サンプリング電路と保護される負荷兆区列と連結する。校正電路の輸出側が電圧比較回路の片輸入側に接続する。定常基準電路の輸出側が電圧比較電路の片側に接続。電圧比較電路の輸出側が駆動機構に接続する。ロック留め物が駆動機構に接続、駆動機構連携或いは解放された圧接物に影響される。   The micro potential sampling circuit is connected to the protected load trillion section. The export side of the calibration circuit is connected to the single import side of the voltage comparison circuit. The export side of the steady reference circuit is connected to one side of the voltage comparison circuit. The export side of the voltage comparison circuit is connected to the drive mechanism. The lock fastener is connected to the drive mechanism, affected by the drive mechanism cooperation or released press contact.

更に、駆動機構が復位弾性物、光電スイッチ、磁石、前記ロック留め物が電磁鉄、
光電スイッチの正輸入側が電圧比較回路の輸出側に接続する。負輸入側が地面に接続、光電スイッチの両輸出側が電磁の線及び供電電源と直列接続する。電磁鉄の鉄心が圧接物と磁石の間にある。且つ鉄心が磁化される際に磁石と一緒に吸収解放される圧接物。復位弾性物を通して復位する。
Furthermore, the drive mechanism is a restoring elastic material, a photoelectric switch, a magnet, and the lock fastener is electromagnetic iron,
The positive import side of the photoelectric switch is connected to the export side of the voltage comparison circuit. The negative import side is connected to the ground, and both export sides of the photoelectric switch are connected in series with electromagnetic wires and power supply. An electromagnetic iron core is located between the pressure contact and the magnet. In addition, the pressed object is absorbed and released together with the magnet when the iron core is magnetized. Reposition through the elastic recovery.

それに、圧接物側面に第一塊、鉄心端部に第二塊、第一塊と第二塊が一緒に用いられる。 In addition, the first lump is used on the side of the pressure contact object, the second lump is used at the end of the iron core, and the first lump and the second lump are used together.

その後、電圧比較電路が双運算拡大器と外部電路を含み、光電スイッチは隔離三端
両側コントロール区動機、正輸入端を電圧比較電路の輸出側に接続する。負輸入側を地面に接続する。
After that, the voltage comparison circuit will include a double-operating expander and an external circuit, and the photoelectric switch will connect the isolated three-sided control zone motive, the positive import end to the export side of the voltage comparison circuit. Connect the negative import side to the ground.

本考案が採用したもう一つ技術方案は、ある電流表示装置であり、高圧交流電の電流を表示する。それが第一直流供電電路、供電電圧が第一直流より低い第二直流供電電路、定常基準電路、せめて二級を拡大する工頻交流拡大電路、検波電路、校正電路、シグナルディスプレー、高圧センサー器第一直流供電電路の電圧輸出側が工頻交流拡大電路の電源輸入側に接続する。第二直流供電電路の電圧輸出側をシグナルディスプレーの電源輸入側に接続する。定常基準電路の電圧輸入側を第二直流供電電路に接続する。定常基準電路の電圧輸出側をシグナルディスプレーの基準電圧輸入側に接続する。工頻交流拡大電路の輸出側がそれぞれ検波電路、校正電路をシグナルディスプレーの輸入側に接続する。   Another technical scheme adopted by the present invention is a current display device, which displays the current of a high-voltage alternating current. It is the first DC power supply circuit, the second DC power supply circuit whose supply voltage is lower than the first DC, the steady reference circuit, the working AC expansion circuit that expands the second class, the detection circuit, the calibration circuit, the signal display, the high voltage The voltage export side of the sensor unit's first DC power supply circuit is connected to the power supply import side of the work AC expansion circuit. Connect the voltage export side of the second DC power circuit to the power import side of the signal display. Connect the voltage import side of the steady reference circuit to the second DC power circuit. Connect the voltage export side of the steady reference circuit to the reference voltage import side of the signal display. The export side of the work frequency expansion circuit connects the detection circuit and calibration circuit to the import side of the signal display.

高圧センサー器が絶縁構造、絶縁構造外側の金属糸、それを回る線を含めている。線の片側を地面に接続し、もう片側を工頻交流拡大電路の輸入側に接続する。測られる高圧負荷線が絶縁構造センターに入れる。現有技術と比べれば、本考案が下記有利な効果が有る:   The high-pressure sensor device includes an insulating structure, a metal thread outside the insulating structure, and a wire that goes around it. Connect one side of the wire to the ground and the other side to the import side of the AC expansion circuit. The high voltage load line to be measured enters the insulation structure center. Compared with existing technology, the present invention has the following advantageous effects:

1、本考案が第一直流供電電路を使って工頻交流拡大電路に対しては単独供電する。供電電圧が低い第二直流供電電路がシグナルディスプレーに対しては単独供電する。工頻交流拡大電路とシグナルディスプレー各自の工作需要に満足させるだけでなく、工頻交流拡大電路の拡大倍数をアップさせることも出来る。倍数大なり1万倍。それによって、本考案はVia抵抗がもっと低い交流電を検査できる(微オーム級以下)。それで本考案の測り範囲を拡大した、敏感度も高まり、温度効果が減少する。本考案が現有技術の測量装置と比較すると、もっと省エネ、高安全性、低コスト、小体積、軽い、測量が便利である。   1. The device of the present invention uses the first DC power supply circuit and supplies power to the work AC expansion circuit alone. The second DC power supply circuit with a low power supply voltage supplies the signal display alone. In addition to satisfying the work demands of the work AC expansion circuit and signal display, it is also possible to increase the magnification of the work AC expansion circuit. Multiple times greater than 10,000 times. As a result, the present invention can inspect AC power with lower Via resistance (below micro-ohm class). As a result, the measurement range of the present invention is expanded, the sensitivity increases, and the temperature effect decreases. Compared with existing surveying equipment, the present invention is more convenient for energy saving, high safety, low cost, small volume, light weight and surveying.

2、本考案が自磁転換COSΦ拡大サンプリング測量電路を含む。交流電の電度、位相シグナルを測る。低Via抵抗が動態的に交流電を検査することが出来る。交流電の有功パワーと無功パワーを区別にする。   2. The present invention includes a self-magnetic conversion COSΦ expansion sampling surveying circuit. Measure AC power and phase signal. Low Via resistance can inspect AC power dynamically. Distinguish between the power of AC power and the power of power.

3、電磁転換COSΦ拡大サンプリング測量電路が位相表と小型センサー器を含む。電度、位相を測ることが出来る。しかも電路構造が簡単、操作が便利、コストが低いといった特徴が有る。   3. Electromagnetic conversion COSΦ expansion sampling surveying circuit includes phase table and small sensor device. Electricity and phase can be measured. In addition, the circuit structure is simple, the operation is convenient, and the cost is low.

4、前記第一直流供電電路と第二直流供電電路がそれぞれ各自に工頻電を取る。工頻電に対しては、整流を降圧することで、直流電を使用する。それが便利である   4. The first DC power supply circuit and the second DC power supply circuit are each charged with electric power. For industrial power, direct current is used by stepping down rectification. It is convenient

5、保険装置が本体、圧接件、鎖止件、駆動構造、電圧比較電路、及び上記本考案の交流電動態検査装置を含める。現有技術の交流フューズ、過流スイッチ、漏電スイッチを代替できる。且つ交流フューズ、過流スイッチ、漏電スイッチ反応遅い、精度不足、重複に使用できないなどの問題を解決することも出来る。   5. The insurance device includes the main body, press contact case, seizure case, drive structure, voltage comparison circuit, and AC electrodynamic inspection device of the present invention. It can replace current technology AC fuses, overcurrent switches, and earth leakage switches. In addition, problems such as AC fuse, overcurrent switch, earth leakage switch slow reaction, insufficient accuracy, and inability to use for duplication can be solved.

6、電流表示装置が高圧交流電を測量できる。且つ高圧センサー器構造が簡単、体積が小さい、コストが低いである。   6. Current display device can measure high voltage AC power. Moreover, the structure of the high-pressure sensor device is simple, the volume is small, and the cost is low.

下記添付図面と実施例を通じて更に詳しく本考案について説明する。ただし、本考案は交流電動態検査装置と保険装置、電流表示装置が実施例に限らない。   The present invention will be described in more detail with reference to the accompanying drawings and embodiments. However, the present invention is not limited to the AC electrodynamic inspection device, the insurance device, and the current display device.

は本考案実施例1の原理図面である。These are the principle drawings of Example 1 of the present invention. は本考案実施例1の電路構造図面である。These are the electrical circuit structure drawings of Example 1 of the present invention. は本考案実施例2の交流保険装置の一部構造図面である。These are some structure drawings of the alternating current insurance apparatus of Example 2 of this invention. は本考案実施例3の電流表示装置の原理図面である。These are the principle drawings of the electric current display apparatus of Example 3 of this invention. は本考案実施例3の高圧センサー器の構造図面である。These are the structure drawings of the high voltage | pressure sensor device of Example 3 of this invention.

実施例1、図1と図2が示したように、本考案の交流電動態検査装置である。それが第一直流供電電路1、供電電圧が第一直流供電電路1の供電電圧より低い第二直流供電電路2、定常基準電路3、微電位サンプリング電路4、せめて二級を拡大する工頻交流拡大電路5、検波電路6、校正電路7、シグナルディスプレー8、第一直流供電電路1の電圧輸出側が工頻交流拡大電路5の電源輸入側と接続、第二直流供電電路2の電圧輸出側がシグナルディスプレー8の電源輸入側と接続する。定常基準電路3の電圧輸入側が第二直流電路2と接続する。定常基準電路3の電圧輸出側がシグナルディスプレー8の基準電圧輸入側と接続する。微電位サンプリング電路4が測定される交流電と接続する。しかもサンプリング電圧シグナル輸出側が工頻交流拡大電路5の輸入側と接続する。工頻交流拡大電路5の輸出側がそれぞれ検波電路6を通る。校正電路7がシグナルディスプレー8の輸入側と接続する。シグナルディスプレー8の型式はtc7106、或いはtc7107或いはtc7129。本考案も電磁転換COSΦ拡大サンプリング測量電路を含む。それが微電位サンプリング電路4の交流電の電度、位相シグナルを含む。その微電位サンプリング電路4と工頻交流拡大電路5と繋がらない時、工頻交流拡大電路5と連結する。   Example 1, FIG. 1 and FIG. 2 show the AC electrokinetic inspection apparatus of the present invention. It is the first DC power circuit 1, the second DC power circuit 2 whose power supply voltage is lower than the power voltage of the first DC power circuit 1, the steady reference circuit 3, the micropotential sampling circuit 4, and at least the second class Frequent AC expansion circuit 5, detection circuit 6, calibration circuit 7, signal display 8, first DC power supply circuit 1 voltage export side is connected to power import side of frequent AC expansion circuit 5 power supply, second DC power supply circuit 2 voltage The exporter connects to the power importer of the signal display 8. The voltage import side of the steady reference circuit 3 is connected to the second DC circuit 2. The voltage export side of the steady reference circuit 3 is connected to the reference voltage import side of the signal display 8. The micropotential sampling circuit 4 is connected to the AC power to be measured. Moreover, the sampling voltage signal exporter is connected to the importer of the frequent AC expansion circuit 5. The export side of the work frequency expansion circuit 5 passes through the detection circuit 6 respectively. Calibration circuit 7 is connected to the import side of signal display 8. The type of the signal display 8 is tc7106, tc7107 or tc7129. The present invention also includes an electromagnetic conversion COSΦ expansion sampling surveying circuit. This includes the AC power and phase signal of the micropotential sampling circuit 4. When the micro-potential sampling circuit 4 is not connected to the frequent AC expansion circuit 5, it is connected to the frequent AC expansion circuit 5.

本実施例において、微電位サンプリング電路4が一部のサンプリングリード線R2を含む。そのサンプリングリード線R2は横面が丸形の銅製リード線である。テストの時期、このリード線R2 の片側がプラザP3を通して工頻電11のコンセプトT1の零線Nと接続する。もう片側が工頻交流拡大電路5の輸入側のVia抵抗R3、R4(保護抵抗)と接続する。Via抵抗R4の片側が地面と接続し、Via抵抗R3の片側が下記述べる第一運算拡大器の三脚(即ち第一運算拡大器の同向輸入側)と接続する。   In this embodiment, the micropotential sampling circuit 4 includes a part of the sampling lead R2. The sampling lead R2 is a copper lead having a round side. During the test, one end of the lead wire R2 is connected to the zero wire N of the concept T1 of the electric power 11 through the plaza P3. The other side is connected to Via resistance R3, R4 (protection resistance) on the import side of the work AC expansion circuit 5. One side of the Via resistor R4 is connected to the ground, and one side of the Via resistor R3 is connected to a tripod of the first arithmetic expander described below (that is, the same import side of the first arithmetic expander).

電磁転換COSΦ拡大サンプリング測量電路が位相表9と小型センサー器10を含む。小型センサー器10の線圏の片側が地面と接続する。サンプリングの時期リード線R2のサンプリング電圧シグナル輸出側が工頻交流拡大電路5の輸出側と接続されていない時、小型センサー器10の線圏片側が工頻交流拡大電路5の輸入側と接続する。(いわゆる工頻交流拡大電路5輸入側のVia抵抗R3、R4と接続する)且つサンプリングリード線R2が小型センサー器10の線圏の中に入れる。位相表9が工頻交流拡大電路5の輸出側と接続する。優先方式として、サンプリングリード線R2のサンプリング電圧シグナル輸出側と小型センサー器10の線圏片側が単刀双方スイッチ12が工頻交流拡大電路5の輸入側と接続する。具体的には単刀双方スイッチ12の動端が工頻交流拡大電路5の輸入側と接続する。単刀双方スイッチ12のその中の有る不動端が小型センサー器10の線圏片側と接続する。単刀双方スイッチ12のもう一つの不動単がサンプリングリード線R2のサンプリング電圧シグナル輸出側と接続する。   Electromagnetic conversion COSΦ expansion sampling surveying circuit includes phase table 9 and small sensor device 10. One side of the line area of the small sensor device 10 is connected to the ground. Sampling timing When the sampling voltage signal export side of the lead wire R2 is not connected to the export side of the frequent AC expansion circuit 5, the one line side of the small sensor device 10 is connected to the import side of the frequent AC expansion circuit 5. (Connected to Via resistance R3, R4 on the import side of the so-called frequent AC expansion circuit 5) And the sampling lead R2 is put into the line of the small sensor device 10. Phase table 9 is connected to the export side of the expansion circuit 5 of the frequent AC expansion circuit. As a priority method, the sampling voltage signal export side of the sampling lead R2 and the one side of the line area of the small sensor device 10 are connected to the import side of the AC expansion circuit 5 with the single-sided switch 12. Specifically, the moving end of the single-sword double-sided switch 12 is connected to the import side of the work AC expansion circuit 5. The stationary end of the single-sword two-way switch 12 is connected to one side of the small-range sensor device 10. Another stationary unit of the single-sided switch 12 is connected to the sampling voltage signal export side of the sampling lead R2.

本実施例において、第一直流供電電路1が工頻電11より取り出す。よって±(8-15)Vの供電電圧となる。最高値は±9Vである。第一直流供電電路1が降圧キャパシタC1、解放Via抵抗R1、整流波電路、降圧電路C1と解放抵抗R1と並列に接続する。その片側がプラザP3を通して220Vの交流電火線と接続する。片側が整流波電路の輸入側と接続する。整流波電路の電圧正輸出側が工頻交流拡大電路5の電源正輸入側と繋ぐ。整流波電路の電圧負輸出側が工頻交流拡大電路5の電源負輸入側と繋ぐ。具体的には、整流波電路は二級パイプD1、D2、キャパシタC2、C3、定常二級パイプD3、D4を含む。二級パイプD1の正極が降圧キャパシタC1と解放抵抗R1の共通点の片側と接続する。二級パイプD1の負極とキャパシタC2の正極と定常二級パイプD3の負極と接続する。それで+9Vの充電定常電圧となる。しかも、下記第一運算拡大器と第二運算拡大器の4脚(即ち電源負輸入側)を提供する。キャパシタC3の正極と定常二級パイプD4の負極を地面に接続する。   In the present embodiment, the first DC power supply circuit 1 is taken out from the work voltage 11. Therefore, the supply voltage is ± (8-15) V. The maximum value is ± 9V. The first DC power supply circuit 1 is connected in parallel with the step-down capacitor C1, the release Via resistor R1, the rectified wave circuit, the step-down circuit C1, and the release resistor R1. One side is connected to 220V AC line through Plaza P3. One side is connected to the import side of the rectifier wave circuit. The voltage positive export side of the rectification wave circuit is connected to the power positive import side of the work frequency expansion circuit 5. The voltage negative export side of the rectification wave circuit is connected to the power source negative import side of the work AC expansion circuit 5. Specifically, the rectification wave circuit includes secondary pipes D1 and D2, capacitors C2 and C3, and stationary secondary pipes D3 and D4. The positive electrode of the secondary pipe D1 is connected to one side of the common point of the step-down capacitor C1 and the release resistor R1. The negative electrode of the secondary pipe D1, the positive electrode of the capacitor C2, and the negative electrode of the stationary secondary pipe D3 are connected. Therefore, the charging steady voltage is + 9V. In addition, we provide four legs (that is, the power supply negative import side) of the following first expansion expander and second expansion expander. The positive electrode of the capacitor C3 and the negative electrode of the stationary secondary pipe D4 are connected to the ground.

本実施例において、第二直流供電電路2も同じく工頻電11から取り出す。±5Vの供電電圧になる。定常基準電路3なら2.5Vの基準電圧になる、表示用。しかも±5Vの供電電圧になる。この第二直流供電電路2が降圧キャパシタC8、VIA抵抗値R16を解放し、整流波電路、降圧キャパシタC8 と解放抵抗値R16が並列に連結する。その片側がプラザP3を通して220Vの交流電の火線と繋ぐ。片側が整流波電路の輸入側と繋ぐ。整流波電路の電圧プラス輸出側がシグナルディスプレー8の電源プラス輸入側と繋ぐ。整流波電路の電圧マイナス輸出側がシグナルディスプレー8の電圧マイナス輸入側と繋ぐ。定常基準電路3の電圧輸入側が整流波電路の電圧プラス輸出側と接続。具体的には、第二直流供電電路2の整流波電路が二級パイプD7、D8、キャパシタC9、C10、定常二級パイプD9、D10を含む。二級パイプD8の正極が降圧キャパシタC8と解放抵抗値R16共通の片側と接続する。二級パイプD8の負極とキャパシタC9の正極、定常二級パイプD9の負極と接続、それで+5Vの充電安定電圧。しかも、シグナルディスプレー8に正極を提供する。キャパシタC9の負極と定常二級パイプD9 の正極が地面に接続する。二級パイプD7の負極が降圧キャパシタC8と解放抵抗値R16共通点の片側と接続する。二級パイプD7の正極とキャパシタ10の負極、定常二級パイプD10の正極と繋ぐ、それで−5Vの充電安定電圧になる。仕官もシグナルディスプレー8に負極を提供する。キャパシタC10 の正極と定常二級パイプD10の負極を地面に繋ぐ。定常基準電路3が抵抗値R17、定常二級パイプD3、抵抗値R17の片側を定常二極パイプD9の負極と繋ぐ。抵抗値R17の片側を定常二級パイプD3の負極と接続。それで2.5Vの基準電圧を提供する。シグナルディスプレー8表示用となる。   In the present embodiment, the second DC power supply circuit 2 is also taken out from the operation power line 11. The power supply voltage is ± 5V. For steady reference circuit 3, the reference voltage is 2.5V. Moreover, the power supply voltage is ± 5V. The second DC power supply circuit 2 releases the step-down capacitor C8 and the VIA resistance value R16, and the rectifier wave circuit, the step-down capacitor C8 and the release resistance value R16 are connected in parallel. One side connects to the 220V AC power line through Plaza P3. One side is connected to the import side of the rectifier wave circuit. The voltage plus the export side of the rectified wave circuit is connected to the power source plus the import side of the signal display 8. The voltage minus export side of the rectification wave circuit is connected to the voltage minus import side of the signal display 8. The voltage import side of the steady reference circuit 3 is connected to the voltage of the rectifier wave circuit plus the export side. Specifically, the rectified wave circuit of the second DC power supply circuit 2 includes secondary pipes D7 and D8, capacitors C9 and C10, and stationary secondary pipes D9 and D10. The positive electrode of the secondary pipe D8 is connected to one side common to the step-down capacitor C8 and the release resistance value R16. Connected to the negative electrode of the secondary pipe D8 and the positive electrode of the capacitor C9, the negative electrode of the stationary secondary pipe D9, and thus a stable charging voltage of + 5V. In addition, a positive electrode is provided for the signal display 8. The negative electrode of the capacitor C9 and the positive electrode of the stationary secondary pipe D9 are connected to the ground. The negative electrode of the secondary pipe D7 is connected to one side of the common point of the step-down capacitor C8 and the release resistance value R16. The positive electrode of the secondary pipe D7 is connected to the negative electrode of the capacitor 10, and the positive electrode of the stationary secondary pipe D10, so that a stable charging voltage of −5V is obtained. The officer also provides a negative electrode for the signal display 8. Connect the positive electrode of capacitor C10 and the negative electrode of stationary secondary pipe D10 to the ground. The stationary reference circuit 3 connects one side of the resistance value R17, the stationary secondary pipe D3, and the resistance value R17 to the negative electrode of the stationary bipolar pipe D9. One side of resistance value R17 is connected to the negative electrode of stationary secondary pipe D3. So it provides a reference voltage of 2.5V. It is for signal display 8 display.

本実施例において、工頻交流拡大電路5が第一運算拡大器U1Aと第二運算拡大器U1Bを含む。二者が第一直流供電電路1に供電する。それで交流が対称的に拡大する。しかも、両者のフィードバックVIA抵抗R5、R8の抵抗値がそれぞれ10MΩ。第一運算拡大器U1Aの輸入端が工頻交流拡大電路5の輸入になる。第一運算拡大器U1Aの輸出側が第二運算拡大器U1Bの輸入側と接続する。第二運算拡大器U1Bの輸出側が工頻交流拡大電路5の輸出側になる。サンプリング抵抗R2のシグナルが第一運算拡大器U1Aの3脚より第一運算拡大器U1Aに入り、拡大を行う。その値がフィードバック抵抗R5より第一運算拡大器U1Aの2脚に反応する。第一運算拡大器U1Aの拡大倍数を確定する。その中のシグナルも抵抗R0より地面に繋ぐ。第一運算拡大器U1Aが拡大後の信号が1脚を通して、抵抗R6が第二運算拡大器にU1Bを提供する。第二級を拡大する。その後、中間値が第二運算拡大器U1Bの7脚を通して電度、位相輸出、フィードバック抵抗R8を第二運算拡大器U1Bの6脚にフィードバックする。その中のシグナルもR7 を通して地面につなぎ、拡大を終わらせる。   In the present embodiment, the working frequency AC expansion circuit 5 includes a first operation expander U1A and a second operation expander U1B. The two supply power to the first DC power supply circuit 1. Therefore, alternating current expands symmetrically. Moreover, the resistance values of both feedback VIA resistors R5 and R8 are 10MΩ each. The import end of U1A, the first magnifying expansion device, will be the import of the work frequency expansion circuit 5. The export side of the first magnifying device U1A is connected to the importing side of the second magnifying device U1B. The export side of the second magnifying expansion device U1B becomes the export side of the work frequency expansion circuit 5. The signal of the sampling resistor R2 enters the first arithmetic expander U1A from the three legs of the first arithmetic expander U1A and performs expansion. The value responds to the two legs of the first arithmetic expander U1A from the feedback resistor R5. Determine the expansion factor of the first arithmetic expander U1A. The signal in it is also connected to the ground via resistor R0. The first arithmetic expander U1A passes the expanded signal through one leg, and the resistor R6 provides U1B to the second arithmetic expander. Expand the second grade. After that, the intermediate value is fed back to the six legs of the second arithmetic expander U1B through the seven legs of the second arithmetic expander U1B. The signal in it is also connected to the ground through R7, ending the expansion.

検波電路6がキャパシタC11、C6、C5、二級パイプD5、D6、VIA抵抗R12、R13、R10を含む。校正電路7がVIA抵抗R11、R14、R15、電位器RP4,キャパシタC7を含む。第二運算拡大器U1 Bの7脚がキャパシタC11の片側に繋ぐ。キャパシタC11の片側が二級パイプD5の負極と二級パイプD6の正極と接続する。二級パイプD5、D6を通して各自に整流後、二級パイプD6がそれに対する整流の正電位と並列にVIA抵抗R10 とキャパシタC5の累積電位と連結する。それに、電位と繋がった抵抗R11とキャパシタC7と更に過流する。それで抵抗R14を電位器RP4に提供する。その中の頭が電流の電位シグナルとして表示輸出を提供する。電位器RP4の片側が抵抗R15の片側と繋ぐ。抵抗R15の片側が地面と繋ぐ。二級パイプD5の正極が並列に抵抗R12とキャパシタC6の片側と接続する。抵抗R12とキャパシタC6 の片側が並列に抵抗R10 ,キャパシタC5と連結する。しかも抵抗R13とも連結する。と同時に抵抗R13が地面に繋ぐ。抵抗R9、キャパシタC4、抵抗R9の片側が抵抗R100とキャパシタC5の片側と連結する。抵抗R9の片側がキャパシタC4と連結する。第二運算拡大器U1Bの6脚に提供する。キャパシタC4 が過流波に用いる。輸出電圧をもっと安定的に変化させる。   The detection circuit 6 includes capacitors C11, C6, C5, secondary pipes D5, D6, and VIA resistors R12, R13, R10. The calibration circuit 7 includes VIA resistors R11, R14, R15, a potential device RP4, and a capacitor C7. Seven legs of the second arithmetic expander U1 B are connected to one side of the capacitor C11. One side of the capacitor C11 is connected to the negative electrode of the secondary pipe D5 and the positive electrode of the secondary pipe D6. After rectification to each other through the secondary pipes D5 and D6, the secondary pipe D6 is connected to the accumulated potential of the VIA resistor R10 and the capacitor C5 in parallel with the positive potential of rectification thereto. In addition, the resistor R11 connected to the potential and the capacitor C7 further overflow. Resistor R14 is then provided to potential device RP4. The head of it provides the export displayed as a potential signal of current. One side of the potential device RP4 is connected to one side of the resistor R15. One side of resistor R15 connects to the ground. The positive electrode of the secondary pipe D5 is connected in parallel with the resistor R12 and one side of the capacitor C6. One side of the resistor R12 and the capacitor C6 is connected in parallel with the resistor R10 and the capacitor C5. In addition, the resistor R13 is also connected. At the same time, resistor R13 connects to the ground. One side of the resistor R9, the capacitor C4, and the resistor R9 is connected to one side of the resistor R100 and the capacitor C5. One side of the resistor R9 is connected to the capacitor C4. Provided to 6 legs of the second magnifying device U1B. Capacitor C4 is used for overcurrent waves. Change export voltage more stably.

本実施例において、小型センサー器10用外径2.3cm、内径1cm、高さ1.2cmの磁芯或いは合金薄膜の環状物。環状体にあるΦ0.5mmの紫銅線を100回まわる。絶縁と固定することが出来る。シグナルディスプレー8がデジタルパイプ駆動電路とマルチデジタルパイプ表示物とあわせるものを含む。±5V供電、消耗が小さい、表示が正確ものを使用した。   In the present embodiment, an annular core or alloy thin film having an outer diameter of 2.3 cm, an inner diameter of 1 cm, and a height of 1.2 cm for the small sensor device 10. Rotate the Φ0.5mm purple copper wire in the annular body 100 times. Can be fixed with insulation. Includes signal display 8 combined with digital pipe drive circuit and multi-digital pipe display. Using ± 5V power supply, low consumption, accurate display.

実際に電流、電度を測量する際に、Φ2.4mm、長さ4cmの紫銅リード線がサンプリングリード線R2で20Aの交流電流とCOSΦを測量する。検波を拡大後、表示値は1400である(電位器RP4調整したあとの値)。このサンプリングリード線R2のVia抵抗を計算するなら、抵抗率/(リード線半径の平行*π)*リード線長さであるはず。即ち1.851*10-8/(0.00122*3.140)*0.04、このサンプリングリード線の抵抗値は0.0001637473Ω、1万倍を拡大したら、その値が1.637473まで上がることが出来る。   When actually measuring current and electric current, a purple lead with a diameter of 2.4 mm and a length of 4 cm measures an AC current of 20 A and COSΦ with a sampling lead R2. After enlarging detection, the displayed value is 1400 (value after adjusting the potential device RP4). If you calculate the Via resistance of this sampling lead R2, it should be resistivity / (parallel to lead radius * π) * lead length. That is, 1.851 * 10-8 / (0.00122 * 3.140) * 0.04, the resistance value of this sampling lead wire is 0.0001637473Ω, and when the magnification is increased 10,000 times, the value can be increased to 1.637473.

本考案のサンプリングリード線R2が元件と1微ボルト測量方式として、消耗が発生しない、一方、リード線以外の補助部品へサンプリング処理の実施も要らない。その電流測量配置が非常に大きい(制限無)。と同時に、この直接にリード線に使用する方式では、補助部品の量産日程と規格問題を考慮しなくて済む。極限制限のデータが非常に安定的な性能が有る。しかも一致性が保証しやすい、測量コストが低い。   The sampling lead wire R2 of the present invention is the original and 1 microvolt surveying method, so that no wear occurs, and on the other hand, it is not necessary to perform sampling processing on auxiliary parts other than the lead wire. Its current surveying arrangement is very large (no limit). At the same time, in the method of directly using the lead wire, it is not necessary to consider the mass production schedule of the auxiliary parts and the standard problem. Extremely limited data has very stable performance. Moreover, it is easy to guarantee consistency, and the surveying cost is low.

それに、直接オンラインリード線の方式を使用すると、補助部品が無いため、例えばセンサー線圏、高VIA抵抗値など、補助部品の安全問題を避ける。したがって、安全性が良い。   In addition, if the direct online lead method is used, there are no auxiliary parts, so avoid safety problems of auxiliary parts such as sensor wire area and high VIA resistance. Therefore, safety is good.

本考案が二級拡大形式を使用した。この形式が一方的には、サンプリングの交流電流がとりあえず高倍率の拡大を得た。シグナル拡大の精度も保証できた。一方、検波電路6の拡大倍率は校正電路7がコントロールできる可変倍率形式を設定する。それで校正時、あまり第一級のシグナル安定性に影響しない。だから安定性と精度が高い。   The present invention used the second grade expansion format. On the other hand, this type of unidirectional sampling current was obtained at a high magnification. The accuracy of signal expansion was also guaranteed. On the other hand, the magnification of the detection circuit 6 is set to a variable magnification format that can be controlled by the calibration circuit 7. So when calibrating, it does not affect the signal stability of first class. So stability and accuracy are high.

本考案が低VIA抵抗値の方式で交流電流をオンラインに測量する。従い、沢山の検査放置と方案を開拓できる。例えば、低抵抗値測量機械、電度表、万用表、交流微ボルト測量、パワー表、位相計、保険スイッチ、保険糸、過流スイッチ、高圧センサー器などである。と同時に、超省エネ、高安定性などといった利点も保持した。   The present invention measures AC current online with a low VIA resistance method. Therefore, a lot of inspection neglect and a plan can be cultivated. For example, a low resistance surveying machine, an electric power table, a universal table, an AC microvolt survey, a power table, a phase meter, an insurance switch, an insurance thread, an overcurrent switch, and a high-pressure sensor device. At the same time, it retains advantages such as super energy saving and high stability.

交流電動態方法は、下記ステップを含む。   The AC electrodynamic method includes the following steps.

長さの方向で、2つのサンプリングスポットを固定し、同じサンプリングリード線に繋ぐ。サンプリングリード線及びスポットが測量される交流電回路の中に有る。   Fix the two sampling spots in the length direction and connect them to the same sampling lead. Sampling leads and spots are in the AC circuit being surveyed.

2つのサンプリングスポットの電圧差が工頻交流拡大電路5を通じて拡大する。工頻交流拡大電路5の輸出がそれぞれ検波電路6と校正電路7を通してシグナルディスプレー8の輸入側と繋ぐ。シグナルディスプレー8がスポット間交流電流の測量値を表示する。工頻交流拡大電路5の供電電圧がシグナルディスプレー8の供電電圧より大きい。   The voltage difference between the two sampling spots expands through the frequent AC expansion circuit 5. The export of the expansion circuit 5 is connected to the import side of the signal display 8 through the detection circuit 6 and the calibration circuit 7, respectively. The signal display 8 displays the survey value of the alternating current between spots. The power supply voltage of the circuit AC expansion circuit 5 is larger than the power supply voltage of the signal display 8.

標準器械(例えばカン形表)で2つのサンプリングスポット交流電流の大きさを測る。参考値を得る。   Measure the magnitude of the two sampling spot AC currents with a standard instrument (for example, a can chart). Get a reference value.

測量値を参考値と比較する。と同時に校正電路6(即ち校正電路6の電位器RP4を調節する)を調節する。測量値が参考値と一致できるまで校正する。   Compare survey values with reference values. At the same time, the calibration circuit 6 (that is, the potential device RP4 of the calibration circuit 6 is adjusted) is adjusted. Calibrate until the survey value matches the reference value.

電磁転換COSΦ拡大サンプリング測量電路でスポット間の交流電流の電度、位相シグナルを測量する:電磁転換COSΦ拡大サンプリング測量電路が小型センサー器と位相表を含む。小型センサーの線圏片側が地面に繋ぐ。サンプリングリード線の電圧シグナル輸出側が工頻交流拡大電路の輸出側と未接続の際に、小型センサー器の線圏片側を工頻交流拡大電路の輸入側と接続する。リード線を小型センサー器の線圏に入れる。位相表の輸入側を工頻交流拡大電路の輸出側と接続する。それで位相表が電度と位相シグナルを得ることが出来る。   Electromagnetic conversion COSΦ expansion sampling surveying circuit to measure the intensity and phase signal of alternating current between spots: Electromagnetic conversion COSΦ expansion sampling surveying circuit includes a small sensor instrument and phase table. One side of the small sensor line is connected to the ground. When the voltage signal export side of the sampling lead is not connected to the export side of the frequent AC expansion circuit, one side of the small sensor line is connected to the import side of the frequent expansion circuit. Put the lead wire into the line area of the small sensor unit. Connect the import side of the phase table to the export side of the frequent AC expansion circuit. So the phase table can get the power and phase signal.

サンプリングリード線のVia抵抗値が確定できるので、それと同時に、工頻交流拡大電路の拡大値と総拡大倍数も確定できる。従い、データによって、オームの法則を用いて電流を確定することが出来る。予算値となる。実際の状況を考慮すると、例えばサンプリングリード線両側のオームと接触し、拡大電路の誤差、リード線の材質、成分変化など。それで予算値と実際値とは通常些細な差異が有る。従い、校正電路が測量値に対する修正を調節することで、実際値(参考値)と一致する。サンプリングVia抵抗両側の実際電流を反応できる。校正電路が校正された後、次回から本考案の交流電動態で装置を検査するのを採用した。校正電路の調節は要らない。   The Via resistance value of the sampling lead can be determined, and at the same time, the expansion value and the total expansion factor of the frequent AC expansion circuit can be determined. Thus, the data can determine the current using Ohm's law. Budget value. Considering the actual situation, for example, contact with the ohmics on both sides of the sampling lead, errors in the enlarged electrical circuit, lead wire material, component changes, etc. Therefore, there is usually a slight difference between the budget value and the actual value. Therefore, the calibration circuit adjusts the correction to the survey value to match the actual value (reference value). The actual current on both sides of the sampling Via resistor can be reacted. After the calibration electric circuit was calibrated, it was adopted from the next time to inspect the device with the AC power of the present invention. There is no need to adjust the calibration circuit.

本実施例において、VIA抵抗値がサンプリングリード線R2の抵抗率とスポット間の幾何特徴を合わせて計算してきた。サンプリングリード線RA2の値、温度/湿度特性がコントロールしやすい。量産の一致性を実現することが簡単。なお、本方案ではサンプリングリード線R2とその回路のオームとの接触の影響はされない。操作とキャンセルするのが非常に便利である。   In this embodiment, the VIA resistance value has been calculated by combining the resistivity of the sampling lead R2 and the geometric feature between the spots. Easy to control sampling lead RA2 value and temperature / humidity characteristics. Easy to achieve mass production consistency. In this method, the contact between the sampling lead R2 and the ohm of the circuit is not affected. It is very convenient to operate and cancel.

実施例2、図3の参考を見てください。本考案の保険装置では、実施例1の交流電動態検査装置の設計理念で実現されたもの。具体的に圧接機構、ロック留め物、駆動機構、電圧比較電路16、及び例1が前記交流電動態検査装置、圧接機構が復位の状態で圧接件30.且つ圧接件30がプレッシャー状態で保護される負荷回路の断電スイッチと繋ぐ。具体的には、圧接機構も本体20、圧接物30を含む。30は本体の20との間に第一復位弾性件40が有る。   See the reference in Example 2 and Figure 3. The insurance device of the present invention is realized by the design philosophy of the AC electrodynamic inspection device of Example 1. Specifically, the pressure contact mechanism, the locking mechanism, the drive mechanism, the voltage comparison circuit 16, and the example 1 are the AC electrodynamic inspection apparatus, and the pressure contact condition is 30. In addition, the pressure contact 30 is connected to a disconnection switch of a load circuit that is protected under pressure. Specifically, the press contact mechanism also includes a main body 20 and a press contact object 30. There is a first inversion elasticity 40 between 30 and 20 of the main body.

交流電動態検査装置の微電位サンプリング電路4が保護される負荷直列と連接。校正電路7の輸出側が電圧比較電路の片側と接続する。定常基準電路3の輸出側と電圧比較電路の片側と接続。電圧比較電路の輸出側が駆動機構と接続。ロック留め物が圧接件30の側面にあり、駆動機構と繋ぐ。駆動機構の影響でロック、或いはプレッシャー圧接件30を解放する。   Connected to the load series in which the micropotential sampling circuit 4 of the AC electrodynamic inspection device is protected. The export side of the calibration circuit 7 is connected to one side of the voltage comparison circuit. Connected to the export side of the steady reference circuit 3 and one side of the voltage comparison circuit. The export side of the voltage comparison circuit is connected to the drive mechanism. A locking fastener is on the side of the press contact 30 and connects to the drive mechanism. The lock or pressure contact 30 is released under the influence of the drive mechanism.

本実施例において、駆動機構が復位弾性件(第二復位弾性件70を定義する)、光電スイッチ、磁鉄80、ロック留め物は電磁品、光電スイッチの正輸入側が電圧比較電路の輸出側と繋ぐ。マイナス輸入側が地面に繋ぐ。光電スイッチ両輸出側、電磁鉄の線圏、供電電圧が直列繋ぐ。具体的には、光電スイッチの輸出側を地面に繋ぐ。もう一つの輸出側が電磁の線圏60の片側と連結する。60の片側が供電電源と繋ぐ。この供電電圧が具体的には220Vの電源である。電磁鉄の芯50は圧接者30と磁石80の間に有る。芯50では磁化される際に磁石80と吸引し、30を解放される。芯50の磁石性能が取り消したら、第二復位弾性件70を通して復位する。   In this embodiment, the drive mechanism is a reverse elastic case (defining the second reverse elastic case 70), the photoelectric switch, magnetic iron 80, the lock fastener is an electromagnetic product, and the positive import side of the photoelectric switch is the export side of the voltage comparison circuit. Connect. The negative importer is connected to the ground. Photoelectric switch both export side, electromagnetic iron wire sphere, power supply voltage are connected in series. Specifically, the export side of the photoelectric switch is connected to the ground. The other exporter connects with one side of the electromagnetic sphere 60. One side of 60 is connected to the power supply. This power supply voltage is specifically a power supply of 220V. The electromagnetic iron core 50 is located between the press contact 30 and the magnet 80. When the core 50 is magnetized, it is attracted to the magnet 80 and 30 is released. If the magnet performance of the core 50 is canceled, it is restored through the second restoring elasticity 70.

本実施例において、圧接件30の側面に第一塊31、鉄芯50の端部に第二塊51を設定させる。31と51が対応して動く。   In the present embodiment, the first lump 31 is set on the side surface of the press contact 30 and the second lump 51 is set on the end of the iron core 50. 31 and 51 move correspondingly.

本実施例において、図3が示したように、電圧比較電路16が芯型式LM358の双運算拡大器U1及び外側電路を含む。外側電路がVia抵抗R18-R23まで含む。工頻交流拡大電路5の輸出側がそれぞれ検波電路6、校正電路7、Via抵抗R21を通して双運算拡大器U1のプラス輸入側と接続。定常基準電路3の輸出側が抵抗R23を通して双運算拡大器U1のマイナス輸入側と繋ぐ。抵抗R18、R20が並列にU1のプラス輸入側と地面の間に繋ぐ。抵抗R19、R22が並列に双運算拡大器U1の負輸入側と地面の間に繋ぐ。光電スイッチは光隔離三端双向駆動器U2である。芯の型式はMOC3021M、プラス輸入側が双運算拡大器U1の輸出側と接続する。マイナス輸入側を地面と繋ぐ。   In the present embodiment, as shown in FIG. 3, the voltage comparison circuit 16 includes the twin-operating expander U1 of the core type LM358 and the outer circuit. Outer circuit includes Via resistance R18-R23. The export side of the work frequency expansion circuit 5 is connected to the plus import side of the double-running expansion device U1 through the detection circuit 6, the calibration circuit 7, and the Via resistance R21. The export side of the steady reference circuit 3 is connected to the minus import side of the double-operating expander U1 through the resistor R23. Resistors R18 and R20 are connected in parallel between the plus import side of U1 and the ground. Resistors R19 and R22 are connected in parallel between the negative import side of the double-operating expander U1 and the ground. The photoelectric switch is a light isolation three-end bidirectional driver U2. The core type is MOC3021M, and the plus importer is connected to the exporter of the double operator U1. Connect the minus import side to the ground.

本考案の保険装置の動く過程は、
圧接物30はプレッシャーが有る際に、第一復位弾性件40が圧縮され、圧接物30側面の第一塊31を鉄芯50の第二塊51に押す。鉄芯50が離れている圧接物30の方向向け動く。第二復位弾性物70を圧縮する。圧接物30のボトムでは断電スイッチ90のオンオフを駆動する。保護される回路を繋ぐ。しかも鉄芯50が復位、第二塊51が第一塊31の上側にあることを利用することで、圧接件30を止め、圧接物30の復位を制限する。
The process of movement of the insurance device of the present invention is as follows:
When the pressure contact 30 is under pressure, the first restoring elastic member 40 is compressed, and the first lump 31 on the side surface of the pressure contact 30 is pressed against the second lump 51 of the iron core 50. The iron core 50 moves in the direction of the pressed object 30 that is separated. The second decompression elastic body 70 is compressed. At the bottom of the press contact 30, the on / off operation of the disconnect switch 90 is driven. Connect protected circuits. Moreover, by utilizing the fact that the iron core 50 is repositioned and the second lump 51 is above the first lump 31, the pressure contact 30 is stopped and the repositioning of the pressure contact 30 is limited.

保護される負荷が故障になる場合、電流値が急に上がると、双運算拡大器U1 のプラス輸入側の電圧が2.5Vの基準電圧より大きい。光電スイッチがオープンする。電磁の線圏60が電気に繋ぐ。鉄芯50が磁化されてから、磁石80に吸引される。それで圧接物30を解放する。圧接物30が上に向いて復位、断電スイッチ90をOFFすることで、負荷回路をストップにする。   When the load to be protected fails, if the current value suddenly increases, the voltage on the plus import side of the double-operating expander U1 is larger than the reference voltage of 2.5V. The photoelectric switch opens. The electromagnetic line zone 60 is connected to electricity. After the iron core 50 is magnetized, it is attracted to the magnet 80. The press contact 30 is then released. The load circuit is stopped by turning the disconnecting switch 90 off by moving the pressure contact 30 upward.

負荷回路が未接続の時、双運算拡大器U1のプラス輸入側の電圧が基準電圧より小さい。光電スイッチが復位、電磁鉄の線圏60が断電、鉄芯50の磁石性が無くして復位する。過流原因を調査し、故障を排除したら、改めて圧接物30を利用する。   When the load circuit is not connected, the voltage on the plus import side of the double arithmetic expander U1 is smaller than the reference voltage. The photoelectric switch is restored, the electromagnetic iron wire sphere 60 is disconnected, and the iron core 50 is no longer magnetized. After investigating the cause of the overflow and eliminating the failure, the pressure contact 30 is used again.

実施例3は図4と図5をご参考ください。本考案の電流表示装置、高圧交流電の電流を測量するのは、実施例1交流電動態検索装置の設計理念を実現することに基づいた。具体的には第一直流供電電路1、電圧が低い第二直流供電電路2、定常基準電路3、せめて二級を拡大の工頻交流拡大電路5、検波電路6、校正電路7、シグナルディスプレー8、高圧センサー14。第一直流供電電路1の電圧輸入側が工頻交流拡大電路5の電源輸入側と接続する。第二直流供電電路2の電圧輸出側シグナルディスプレー8の電源輸入側と接続する。定常基準電路3の電圧輸入側が第二直流供電電路2と接続する、定常基準電路3の電圧輸出側がシグナルディスプレー8の基準電圧輸入側と繋ぐ。工頻交流拡大電路5の輸出側がそれぞれ検波電路6、校正電路7をシグナルディスプレー8の輸入側と繋ぐ。   Refer to Fig. 4 and Fig. 5 for Example 3. The current display device of the present invention and the measurement of the current of the high-voltage AC power are based on realizing the design philosophy of the AC power retrieval device of Example 1. Specifically, the first DC power supply circuit 1, the low voltage second DC power supply circuit 2, the steady reference circuit 3, at least the second class expanded process AC expansion circuit 5, detection circuit 6, calibration circuit 7, signal display 8, high pressure sensor 14. The voltage import side of the first DC power supply circuit 1 is connected to the power import side of the work AC expansion circuit 5. Connect to the power supply import side of the signal display 8 on the voltage export side of the second DC power supply circuit 2. The voltage import side of the steady reference circuit 3 is connected to the second DC power supply circuit 2, and the voltage export side of the steady reference circuit 3 is connected to the reference voltage import side of the signal display 8. The export side of the work frequency expansion circuit 5 connects the detection circuit 6 and the calibration circuit 7 to the import side of the signal display 8 respectively.

前記高圧センサー器14の直径は40cm、それが絶縁構造141、141の外側を回る鋼鉄糸142、141内部を通して回る142の線圏143、線圏143の片側を地面に接続する。もう片側を工頻交流拡大電路5の輸入側に接続する。測量される高圧負荷線13が絶縁構造141のセンター穴144を入れる。第一直流供電電路1と第二直流供電電路2が工頻電11より取る。その以外に、第一直流供電電路と第二直流供電電路がそれぞれ直流電と電池を含む。   The high-pressure sensor 14 has a diameter of 40 cm, which connects the steel thread 142 that rotates around the outside of the insulating structures 141 and 141, the 142 line zone 143 that rotates through the inside of the 141, and one side of the line zone 143 to the ground. Connect the other side to the import side of the work frequency expansion circuit 5. The high-voltage load line 13 to be measured enters the center hole 144 of the insulating structure 141. The first DC power supply circuit 1 and the second DC power supply circuit 2 are taken from the work frequency 11. In addition, the first DC power supply circuit and the second DC power supply circuit include a DC power and a battery, respectively.

上記実施例が只本考案の交流電動態検査装置及び保険装置、電流表示装置の一方進んだ説明であり、本考案の実施例に限定されるものではなく,当業者が、本考案の技術実質に基づき、前記実施例に対するいかなる簡単な修正、類似変化及び修飾は本考案技術案の保護範囲に属する。 The above embodiment is an advanced description of the AC electrodynamic inspection device, insurance device, and current display device of the present invention, and is not limited to the embodiment of the present invention. On the basis of this, any simple modifications, similar changes and modifications to the embodiment belong to the protection scope of the technical solution of the present invention.

Claims (12)

交流電動態検査装置であって、第一直流供電電路、供電電圧が第一直流供電の電路のより低い第二直流供電電路、定常基準電路、微電位サンプリング電路、少なくとも二級拡大を行う工頻交流拡大電路、検波電路、校正電路、シグナルディスプレーを含め、第一直流供電電路の電圧輸出側が工頻交流拡大電路の電源輸入側に接続し、第二直流供電電路の電圧輸出側がシグナルディスプレーの電源輸入側に接続し、定常基準電路の電圧輸入側が第二直流供電電路に接続し、定常基準電路の電圧輸出側がシグナルディスプレーの基準電圧輸入側に接続し、微電位サンプリング電路が測量される交流電に接続し、且つ、そのサンプリング電圧シグナル輸出側が工頻交流拡大電路の輸入側に接続し、工頻交流拡大電路の輸出側が順次に検波電路、校正電路がシグナルディスプレーの輸入側に接続している、
さらに、微電位サンプリング電路の交流電の電度、位相シグナルの測量に用いられる電磁転換COSΦ拡大サンプリング測量電路をも含め、微電位サンプリング電路と工頻交流拡大電路が接続されていない場合、工頻交流拡大電路に接続することを特徴とする交流電動態検査装置。
An AC electrodynamic inspection device, a first DC power supply circuit, a second DC power supply circuit whose supply voltage is lower than that of the first DC power supply circuit, a steady reference circuit, a micropotential sampling circuit, and at least a second class expansion Including the frequent AC expansion circuit, detection circuit, calibration circuit, and signal display, the voltage export side of the first DC power supply circuit is connected to the power import side of the frequent AC expansion circuit, and the voltage export side of the second DC power circuit is the signal display. The voltage import side of the steady reference circuit is connected to the second DC power supply circuit, the voltage export side of the steady reference circuit is connected to the reference voltage import side of the signal display, and the micropotential sampling circuit is surveyed Connect to AC power, and the sampling voltage signal export side is connected to the import side of the frequent AC expanded circuit, and the export side of the frequent AC expanded circuit is the detection circuit and calibration in turn. Road is connected to the import side of the signal display,
Furthermore, if the micropotential sampling circuit is not connected to the frequent AC expanded circuit, including the electromagnetic conversion COSΦ expanded sampling surveying circuit, which is used for the measurement of the AC voltage and phase signal of the micropotential sampling circuit, the alternating current An AC electrodynamic inspection device characterized by being connected to an enlarged electric circuit.
前記微電位サンプリング電路が一部分サンプリングリード線を含み、前記電磁転換COSΦ拡大サンプリング測量電路が位相表と小型センサー器を含め、小型センサー器の線の片側を地面に接続し、リード線のサンプリング電圧シグナル輸出側が工頻交流拡大電路の輸入端末に接続、或いは接続しない場合、小型センサー器の線片側を工頻交流拡大電路の輸入側に接続し、しかも、サンプリングリード線が小型センサー器の線に入れ、前記位相表の輸入側が工頻交流拡大電路の輸出側に接続することを特徴とする請求項1に記載の交流電動態検査装置。 The micro-potential sampling circuit partially includes a sampling lead wire, the electromagnetic conversion COSΦ expansion sampling surveying circuit includes a phase table and a small sensor device, one side of the wire of the small sensor device is connected to the ground, and the sampling voltage signal of the lead wire If the exporter is connected or not connected to the import terminal of the industrial AC expansion circuit, connect one side of the small sensor device to the import side of the industrial circuit expansion circuit, and put the sampling lead into the small sensor device line. 2. The AC electrodynamic inspection apparatus according to claim 1, wherein the import side of the phase table is connected to the export side of the frequent AC expansion circuit. 前記第一直流供電電路が工頻電より取り出し、降圧キャパシタ、Via抵抗放置、整流電路を含み、降圧キャパシタとVIA抵抗放置を接続し、且つ、片側のプラグを通して220Vの交流電火線に接続し、片側整流電路の輸入側に接続し、整流電路の電圧輸出側が工頻交流拡大電路の電源輸入側と接続し、整流電路の電圧負輸出側が工頻交流拡大電路の電源負輸入側に接続することを特徴とする請求項1に記載の交流電動態検査装置。 The first DC power supply circuit is taken out from the electric power supply, including the step-down capacitor, Via resistance leaving, rectifying circuit, connecting the step-down capacitor and VIA resistance leaving, and connecting to the 220V AC line through the plug on one side, Connect to the import side of the rectifier circuit, connect the voltage export side of the rectifier circuit to the power import side of the AC expansion circuit, and connect the negative export side of the rectification circuit to the power negative import side of the AC expansion circuit. The AC electrodynamic inspection apparatus according to claim 1. 前記第二直流供電電路が工頻電より取り出し、降圧キャパシタ、Via抵抗放置、整流電路を含み、降圧キャパシタとVIA抵抗放置を接続し、片側のプラグを通して220Vの交流電火線に接続し、片側整流電路の輸入側に接続し、整流電路の電圧輸出側がシグナルディスプレーの電源輸入側と接続、整流電路の電圧負輸出側がシグナルディスプレーの電圧負輸入側に接続し、定常基準電路の電圧輸入側が整流電路の電圧輸出側に接続することを特徴とする請求項1に記載の交流電動態検査装置。 The second DC power supply circuit is taken out from the construction power line, and includes the step-down capacitor, Via resistance leaving, rectifying circuit, connecting the step-down capacitor and VIA resistance leaving, connecting to the 220V AC line through one side plug, one side rectifying circuit The voltage export side of the rectifier circuit is connected to the power supply import side of the signal display, the voltage negative export side of the rectifier circuit is connected to the voltage negative import side of the signal display, and the voltage import side of the steady reference circuit is connected to the voltage import side of the rectifier circuit 2. The AC electrodynamic inspection apparatus according to claim 1, wherein the AC electrokinetic inspection apparatus is connected to a voltage export side. 前記工頻交流拡大電路が第一運算拡大器と第二運算拡大器を含み、両者がそれぞれ第一直流供電電路を通して供電し、且つ、両者のフィードバックVia抵抗はそれぞれ10MΩであり、第一運算拡大器の輸入側が工頻交流拡大電路の輸入側を構成し、第一運算拡大器の輸出側が第二運算拡大器の輸入側に接続し、第二運算拡大器の輸出側が工頻交流拡大電路の輸出側を構成することを特徴とする請求項1或いは3に記載の交流電動態検査装置。 The working frequency expansion circuit includes a first operation expansion unit and a second operation expansion unit, both supply power through the first DC supply circuit, and both feedback Via resistances are 10 MΩ, respectively. The import side of the expansion unit constitutes the import side of the AC expansion circuit, the export side of the 1st expansion device is connected to the import side of the 2nd expansion device, and the export side of the 2nd expansion device is the AC expansion circuit 4. The AC electrodynamic inspection apparatus according to claim 1, wherein the AC electrokinetic inspection apparatus is configured on the export side. 前記第一直流供電電路の供電電圧は±9Vであり、前記第二直流供電電路の供電電圧は±5Vであり、前記定常基準電路の供電電圧は2.5Vであることを特徴とする請求項1或いは3に記載の交流電動態検査装置。 The power supply voltage of the first DC power supply circuit is ± 9V, the power supply voltage of the second DC power supply circuit is ± 5V, and the power supply voltage of the stationary reference circuit is 2.5V. The AC electrodynamic inspection apparatus according to 1 or 3. 前記小型センサー器用外径2.3cm、内径1cm、高さ1.2cmの磁芯或いは薄膜合金環状体、環状体にΦ0.5mmの紫銅線に100回り回り、絶縁物で固定し、包み、且つ、片ナイフスイッチを含み、サンプリングリード線のサンプリング電圧シグナル輸出側と小型センサー器の線片側がこの高ナイフスイッチを通して工頻交流拡大電路の輸入側に接続することを特徴とする請求項2に記載の交流電動態検査装置。 Magnetic sensor or thin film alloy ring with outer diameter 2.3cm, inner diameter 1cm, height 1.2cm for the small sensor device, around the Φ0.5mm purple copper wire around the ring, fixed with insulation, wrapped, and piece 3. The AC power supply according to claim 2, further comprising a knife switch, wherein the sampling voltage signal export side of the sampling lead wire and the wire piece side of the small sensor device are connected to the import side of the working AC expansion circuit through this high knife switch. Dynamic inspection device. 保険装置であって、圧接機構、ロック留め物、駆動機構、電圧比較電路、及び請求項1-7の何れ一つの交流電動態検査装置を含み、圧接機構に復位の圧接物が設けられ、しかも、圧接機構が押される時に、駆動状態に保護される搭載回路の断電オフオン巣一途に接続され、
前記微電位サンプリング電路と保護される搭載直列接続し、前記校正電路の輸出側が電圧比較電路の片側と接続し、前記定常基準電路の輸出側が電圧比較電路の片側と接続し、電圧比較電路の輸出側が駆動機構と接続し、前記ロック留め物が駆動機構と接続することで、駆動機構ロック或いは圧接物に影響することを特徴とする保険装置。
An insurance device comprising a pressure contact mechanism, a locking object, a drive mechanism, a voltage comparison circuit, and the AC electrodynamic inspection device according to any one of claims 1 to 7, wherein the pressure contact mechanism is provided with a repositioned pressure contact object, When the pressure contact mechanism is pushed, it is connected to the on-off circuit of the mounted circuit that is protected in the drive state,
Connected in series with the micro potential sampling circuit to be protected, the export side of the calibration circuit is connected to one side of the voltage comparison circuit, the export side of the steady reference circuit is connected to one side of the voltage comparison circuit, and the export of the voltage comparison circuit An insurance device characterized in that the side is connected to a drive mechanism, and the lock fastener is connected to the drive mechanism, thereby affecting the drive mechanism lock or pressure contact object.
前記駆動機構が復位弾性物、光電スイッチ、磁石を含み、前記ロック留め物は電磁鉄であり、光電スイッチの正輸入側が前記電圧比較回路の輸出側と接続し、負輸入側が地面に接続し、光電スイッチの両輸出側と電磁鉄の線及び供電電源と直列接続し、電磁鉄の鉄芯が圧接物と磁石の間に有り、且鉄心が磁化される際に磁石と合併吸引し、圧接物が解放され、鉄心が磁石を取り消す際に復位弾性物を通して復位することを特徴とする請求項8に記載の交流電動態検査装置。 The drive mechanism includes a restoring elastic material, a photoelectric switch, a magnet, the locking fastener is electromagnetic iron, the positive import side of the photoelectric switch is connected to the export side of the voltage comparison circuit, the negative import side is connected to the ground, Both export side of photoelectric switch and electromagnetic iron wire and power supply are connected in series, and the iron core of electromagnetic iron is between the press contact and magnet, and when the iron core is magnetized, it is sucked together with the magnet and press contact 9. The AC electrodynamic inspection apparatus according to claim 8, wherein when the iron core is released and the iron core cancels the magnet, the iron core recovers through the recovery elastic material. 前記圧接物の側面に第一塊があり、鉄心側に第二塊があり、第一塊と第二塊が相応作用することを特徴とする請求項9に記載の交流電動態検査装置。 The AC electrokinetic inspection apparatus according to claim 9, wherein the pressure contact has a first lump on a side surface, a second lump on an iron core side, and the first lump and the second lump act accordingly. 前記電圧比較電路が双運算拡大器及び外側電路を含み、前記光電スイッチは光隔離三端に駆動器が有ることを特徴とする請求項9に記載の交流電動態検査装置。 10. The AC electrodynamic inspection apparatus according to claim 9, wherein the voltage comparison circuit includes a double arithmetic expansion device and an outer circuit, and the photoelectric switch has a driver at three ends of light isolation. 高圧交流電の電流の表示に用いる電流表示装置であって、第一直流供電電路、第一直流供電電路の供電電圧より低い第二直流供電電路、定常基準電路、少なくとも二級拡大する工頻交流拡大電路、検波電路、校正電路、シグナルディスプレー、高圧センサー器を含み、第一直流供電電路の電圧輸出側が工頻交流拡大電路の電源輸入側と接続し、第二直流供電電路の電圧輸出側がシグナルディスプレーの電源輸入側と接続し、定常基準電路の電圧輸入側が第二直流供電電路に接続し、定常基準電路の電圧輸出側がシグナルディスプレーの基準電圧輸入側と接続し、工頻交流拡大電路の輸出側がそれぞれ検波電路、校正電路をシグナルディスプレーの輸入側と接続する、
前記高圧センサー器が絶縁構造、絶縁構造外の金属糸に周り、及び絶縁構造内部の金属糸を回る線、その線の片側を地面に接続、片側を工頻交流拡大電路の輸入側に接続し、高圧負荷線が絶縁構造センターを通して入れることを特徴とする電流表示装置。
A current display device used for displaying a current of a high-voltage AC power, wherein the first DC power supply circuit, a second DC power supply circuit lower than the power supply voltage of the first DC power supply circuit, a steady reference circuit, and a process that expands at least second class. Including AC expansion circuit, detection circuit, calibration circuit, signal display, high-voltage sensor device, the voltage export side of the first DC power supply circuit is connected to the power supply import side of the AC expansion circuit, and the voltage export of the second DC power circuit Side is connected to the power import side of the signal display, the voltage import side of the steady reference circuit is connected to the second DC power supply circuit, the voltage export side of the steady reference circuit is connected to the reference voltage import side of the signal display, The export side of each connects the detection circuit and the calibration circuit with the import side of the signal display.
The high-voltage sensor device is connected to the insulation structure, the metal thread outside the insulation structure, and the wire that goes around the metal thread inside the insulation structure, one side of the line is connected to the ground, and one side is connected to the import side of the industrial AC expansion circuit A current display device characterized in that a high-voltage load line is inserted through the insulating structure center.
JP2017003382U 2016-11-29 2017-07-25 AC electrodynamic inspection device, insurance device, current display device Expired - Fee Related JP3216001U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621291279.4 2016-11-29
CN201621291279 2016-11-29

Publications (1)

Publication Number Publication Date
JP3216001U true JP3216001U (en) 2018-05-10

Family

ID=59752149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003382U Expired - Fee Related JP3216001U (en) 2016-11-29 2017-07-25 AC electrodynamic inspection device, insurance device, current display device

Country Status (3)

Country Link
JP (1) JP3216001U (en)
CN (1) CN206863101U (en)
DE (1) DE202017003539U1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509666A (en) * 2020-05-26 2020-08-07 广东顺德锐铂汇电子科技有限公司 Power supply electroless trip switch
CN111650426A (en) * 2020-06-10 2020-09-11 浙江瑞银电子有限公司 Heavy current direct current ammeter based on twin-core technique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502807B2 (en) * 2017-09-05 2019-12-10 Fluke Corporation Calibration system for voltage measurement devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509666A (en) * 2020-05-26 2020-08-07 广东顺德锐铂汇电子科技有限公司 Power supply electroless trip switch
CN111509666B (en) * 2020-05-26 2023-03-31 广东顺德锐铂汇电子科技有限公司 Power supply electroless trip switch
CN111650426A (en) * 2020-06-10 2020-09-11 浙江瑞银电子有限公司 Heavy current direct current ammeter based on twin-core technique
CN111650426B (en) * 2020-06-10 2021-06-25 浙江瑞银电子有限公司 Heavy current direct current ammeter based on twin-core technique

Also Published As

Publication number Publication date
DE202017003539U1 (en) 2017-08-10
CN206863101U (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP3216001U (en) AC electrodynamic inspection device, insurance device, current display device
CN103344839B (en) A kind of busbar joint contact resistance method for wirelessly testing and device
CN101271129B (en) Sensor type high tension electricity energy gauging method
WO2012059061A1 (en) Method and device for quality-monitoring of high-voltage electrical energy
CN101825655A (en) Electric furnace load automatic detection recorder
CN107402324B (en) Power supply sampling circuit and method based on single current transformer and low-voltage circuit breaker thereof
CN104142487B (en) Electrified detecting device for tank type capacitor voltage transformer
CN107064592B (en) AC dynamic detection device and method, safety device and current display device
Guimaraes et al. Smart energy monitoring system with ADE7758 IC
CN201837690U (en) Debugging instrument of reactive compensation device
CN102636688B (en) Detector for unbalance ratio of three-phase current of low-voltage line
CN201829956U (en) Novel large-current sampling submerged arc furnace low-pressure reactive power compensation device
CN203981796U (en) The transmission line power frequency parameter test instrument that the anti-high induction voltage of electronic type disturbs
CN104865455A (en) Distribution transformer transformation ratio measuring instrument and measuring method
CN103777057A (en) True-root-mean-square capacitive current tester
CN102103156B (en) Digital current transformer and method for measuring current of AC (Alternating Current) transmission conductor
CN209606517U (en) Earth resistance tester for home circuit
CN204613298U (en) A kind of ore furnace secondary side current detecting system
CN104267269A (en) Electronic tester for power frequency parameters of same-tower multi-loop electric transmission line and testing method of electronic tester for power frequency parameters of same-tower multi-loop electric transmission line
CN203164247U (en) Portable electric energy metering box
CN206292303U (en) Charging hook table
CN202503297U (en) Dynamic reactive power compensation device
CN205692776U (en) A kind of oscillating bearing and use the chopper of this oscillating bearing
CN204789779U (en) Distribution transformer transformation ratio measuring apparatu
CN205539140U (en) Power transmission and transformation high accuracy current test table

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 3216001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees