JP3215677B2 - Method for manufacturing liquid crystal electro-optical device - Google Patents

Method for manufacturing liquid crystal electro-optical device

Info

Publication number
JP3215677B2
JP3215677B2 JP04778699A JP4778699A JP3215677B2 JP 3215677 B2 JP3215677 B2 JP 3215677B2 JP 04778699 A JP04778699 A JP 04778699A JP 4778699 A JP4778699 A JP 4778699A JP 3215677 B2 JP3215677 B2 JP 3215677B2
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
mixture
substrates
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04778699A
Other languages
Japanese (ja)
Other versions
JPH11287983A (en
Inventor
美知緒 清水
利光 小沼
毅 西
幸司 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP04778699A priority Critical patent/JP3215677B2/en
Publication of JPH11287983A publication Critical patent/JPH11287983A/en
Application granted granted Critical
Publication of JP3215677B2 publication Critical patent/JP3215677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複屈折型または旋光
型の液晶電気光学装置の構成とその作製方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a birefringent or optical rotation type liquid crystal electro-optical device and a method of manufacturing the same.

【0002】本発明は、液晶電気光学装置特に大面積の
液晶電気光学装置の基板間隔(基板間距離)を一定に保
つ為の構造及びその作製方法に関するものである。
[0002] The present invention relates to a structure for maintaining a constant substrate spacing (distance between substrates) of a liquid crystal electro-optical device, particularly a large-area liquid crystal electro-optical device, and a method of manufacturing the same.

【0003】本発明は、液晶材料中から析出させた未硬
化の樹脂を硬化させて得られたカラム状の樹脂を有する
液晶電気光学装置及びその作製方法に関するものであ
る。
[0003] The present invention relates to a liquid crystal electro-optical device having a columnar resin obtained by curing an uncured resin precipitated from a liquid crystal material, and a method of manufacturing the same.

【0004】[0004]

【従来の技術】従来の液晶電気光学装置はネマチック液
晶等を使用したTN型やSTN型のものが広く知られ、
実用化されている。また、最近では強誘電性液晶を使用
したものも知られている。これらの液晶電気光学装置
は、基本的には基板上に電極を有する第1の基板と基板
上に電極を有する第2の基板を電極を有する面を内側に
して対向して設け、この基板間に液晶材料を挟持して液
晶層を形成し、前記基板上の電極によって、前記液晶層
に電圧を印加して、液晶材料自身の誘電率の異方性によ
って、または強誘電性液晶の場合は自発分極によって、
液晶分子の状態を変化させ、その結果液晶分子の状態の
変化に伴う電気光学効果を利用するものである。
2. Description of the Related Art As a conventional liquid crystal electro-optical device, a TN type or STN type using a nematic liquid crystal or the like is widely known.
Has been put to practical use. Recently, a device using a ferroelectric liquid crystal has been known. In these liquid crystal electro-optical devices, basically, a first substrate having an electrode on a substrate and a second substrate having an electrode on the substrate are provided so as to face each other with the surface having the electrode inside. A liquid crystal layer is formed by sandwiching a liquid crystal material on the substrate, a voltage is applied to the liquid crystal layer by an electrode on the substrate, and the anisotropy of the dielectric constant of the liquid crystal material itself, or in the case of a ferroelectric liquid crystal, By spontaneous polarization,
It changes the state of liquid crystal molecules, and as a result utilizes the electro-optic effect accompanying the change in the state of liquid crystal molecules.

【0005】TN、STN型の液晶電気光学装置におい
て、液晶分子は、液晶層の両基板接触面では配向処理の
ために行われるラビングによる規制力に従って、ラビン
グ方向に並ぶ。上下基板においては、このラビング方向
が90゜または200゜〜290゜に位置するようにず
らせてある。液晶層の中間付近では、90゜〜290゜
に位置する上下の分子の間をエネルギーが一番小さくな
るように螺旋状に液晶分子が並ぶことになる。この時、
STN型の場合は必要に応じて液晶材料にカイラル物質
を混合している。
In the TN and STN-type liquid crystal electro-optical devices, liquid crystal molecules are arranged in the rubbing direction on the contact surfaces of the liquid crystal layer with both substrates in accordance with the regulating force of rubbing performed for alignment treatment. In the upper and lower substrates, the rubbing direction is shifted so as to be located at 90 ° or 200 ° to 290 °. In the vicinity of the middle of the liquid crystal layer, the liquid crystal molecules are spirally arranged so that the energy between the upper and lower molecules located at 90 ° to 290 ° becomes the smallest. At this time,
In the case of the STN type, a chiral substance is mixed in the liquid crystal material as needed.

【0006】上記TN、STN型の液晶電気光学装置に
おいて、螺旋状に並んだ液晶分子は両基板間に電圧を印
加することにより、液晶分子の誘電異方性により電界方
向に平行または垂直に並ぶことで螺旋構造を解く。装置
はこのように液晶分子が基板面に対して垂直な場合には
明状態を、平行な場合には暗状態を示す。またこれら液
晶分子の状態は基板間に印加する電圧を変化させること
で連続的に変化するため、印加電圧を適当に制御するこ
とにより階調表示が可能である。
In the above TN and STN type liquid crystal electro-optical devices, the liquid crystal molecules arranged in a spiral form are arranged in parallel or perpendicular to the direction of the electric field due to the dielectric anisotropy of the liquid crystal molecules when a voltage is applied between both substrates. This solves the spiral structure. The device shows a bright state when the liquid crystal molecules are perpendicular to the substrate surface, and shows a dark state when the liquid crystal molecules are parallel to the substrate surface. Further, since the state of these liquid crystal molecules changes continuously by changing the voltage applied between the substrates, gradation display is possible by appropriately controlling the applied voltage.

【0007】強誘電性液晶または、反強誘電性液晶を用
いた液晶電気光学装置において、液晶分子は、少なくと
も一方の基板面において、ラビング処理の規制力に従っ
て並ぶ。これら液晶分子は一方の基板表面からもう一方
の基板面に対して、規則正しく積み重なった層構造をし
ている。
In a liquid crystal electro-optical device using a ferroelectric liquid crystal or an antiferroelectric liquid crystal, liquid crystal molecules are arranged on at least one substrate surface in accordance with the rubbing control force. These liquid crystal molecules have a layer structure that is regularly stacked from one substrate surface to the other substrate surface.

【0008】上記の強誘電性液晶または、反強誘電性液
晶を用いた液晶電気光学装置において、基板と平行に層
構造をなす液晶分子は、両基板間に電圧を印加すること
により液晶分子自身が持つ自発分極の向きを180゜変
化(以下反転という)させる。装置はこの液晶分子の反
転によりラビング方向に並んだ液晶分子の向きをラビン
グ方向からある角度だけ変化させて、明状態から暗状態
または、暗状態から明状態へのスイッチングを行う。
In the above-mentioned liquid crystal electro-optical device using the ferroelectric liquid crystal or the antiferroelectric liquid crystal, the liquid crystal molecules having a layer structure parallel to the substrates are themselves applied by applying a voltage between the substrates. The direction of the spontaneous polarization of is changed by 180 ° (hereinafter referred to as inversion). The device changes the direction of the liquid crystal molecules arranged in the rubbing direction by a certain angle from the rubbing direction by the inversion of the liquid crystal molecules, and performs switching from the bright state to the dark state or from the dark state to the bright state.

【0009】またこれらの液晶電気光学装置において、
液晶材料を挟持する基板の一方の基板の電極を複数の画
素電極とし、各画素にダイオードや薄膜トランジスタ
(TFT)といったスイッチング素子を接続した、いわ
ゆるアクティブマトリクス型の液晶電気光学装置におい
てはさらに高速、高精彩、多階調の表示等、一層高度な
表示が行なわれいている。
In these liquid crystal electro-optical devices,
In a so-called active matrix type liquid crystal electro-optical device in which an electrode of one of the substrates holding a liquid crystal material is a plurality of pixel electrodes and a switching element such as a diode or a thin film transistor (TFT) is connected to each pixel, a higher speed and higher speed are realized. More sophisticated displays such as vivid and multi-tone displays are being performed.

【0010】以上に述べた液晶電気光学装置の一般的な
セルの構造に関して図1を用いて説明する。図示したも
のは単純マトリクス型の装置である。ガラスや樹脂等の
透光性基板1100、1101上に電極パターン110
2、1103を形成する。電極上には液晶を一定の向き
に配列させる為の配向手段1104、1105が形成さ
れる。基板上に散布されたスペーサー1107で最小と
なるところの電極間距離を保ち、シール材料で2枚の基
板を固定している。基板間に液晶材料1106が注入さ
れて液晶層を構成している。
The general cell structure of the liquid crystal electro-optical device described above will be described with reference to FIG. What is shown is a simple matrix type device. An electrode pattern 110 is formed on a transparent substrate 1100 or 1101 such as glass or resin.
2 and 1103 are formed. Alignment means 1104 and 1105 for arranging liquid crystals in a fixed direction are formed on the electrodes. The minimum distance between the electrodes is maintained by the spacers 1107 scattered on the substrates, and the two substrates are fixed with a sealing material. A liquid crystal material 1106 is injected between the substrates to form a liquid crystal layer.

【0011】通常、配向手段としてラビングしたポリイ
ミド膜を用いる場合には、液晶分子は基板面に平行また
はある一定の角度を有して一方向に配列した水平配向と
なる。また、シランカップリング剤を用いた場合には液
晶分子は基板面に垂直な方向に立つ垂直配向となる。こ
のように液晶分子を水平配向にするか垂直配向にするか
は目的とする動作モードによって異なる。
Normally, when a rubbed polyimide film is used as the alignment means, the liquid crystal molecules have a horizontal alignment parallel to the substrate surface or arranged in one direction at a certain angle. When a silane coupling agent is used, the liquid crystal molecules have a vertical alignment that stands in a direction perpendicular to the substrate surface. Whether the liquid crystal molecules are aligned horizontally or vertically depends on the intended operation mode.

【0012】この状態で液晶には電極1102、110
3から電圧が印加される。液晶分子はそこに発生した電
界に応答して、明状態や暗状態が形成される。セル全面
にわたって均一な表示を行うならば基板間距離を一定に
保つこと、しいては2枚の基板を一定の間隔で配置させ
る必要がある。通常基板間距離は、動作モードによって
異なるが、1.2〜20μmの間であり、その精度は
0.05μm以下であることが要求される。
In this state, electrodes 1102 and 110 are provided on the liquid crystal.
Voltage is applied from 3. The liquid crystal molecules form a bright state or a dark state in response to the electric field generated there. If uniform display is performed over the entire surface of the cell, it is necessary to keep the distance between the substrates constant, that is, to arrange two substrates at a constant interval. Usually, the inter-substrate distance depends on the operation mode, but is between 1.2 and 20 μm, and its accuracy is required to be 0.05 μm or less.

【0013】[0013]

【従来技術の問題点】このような液晶電気光学装置に対
して、近年は大面積の画面が要求されるようになり、対
角40インチにも及ぶ巨大な液晶ディスプレイの実現に
向けての努力も払われている。
2. Description of the Related Art In recent years, a large-area screen has been required for such a liquid crystal electro-optical device, and efforts have been made to realize a huge liquid crystal display having a diagonal length of 40 inches. Has also been paid.

【0014】その場合に、画面サイズは大きくなってい
るが、要求される基板間距離は前述の如く1.2〜20
μmと極めて小さく、また、その精度も0.05μm以
下が要求される。
In this case, although the screen size is large, the required distance between the substrates is 1.2 to 20 as described above.
μm, which is extremely small, and the accuracy is required to be 0.05 μm or less.

【0015】前述の対角40インチの場合、大きさ12
0cm□、厚さ1.1mmのガラス基板を対向するだけ
で8kgを超える事になる。基板間の距離が6μmでは
基板間に入る液晶の重量は60gとなる。このような大
きさになると剛直なガラスの基板を用いても面積が大き
いだけに、基板を立てただけでも自重であたかも紙の如
くにたわんでしまう。
In the case of the aforementioned diagonal of 40 inches, a size of 12
It will exceed 8 kg just by opposing a glass substrate of 0 cm square and 1.1 mm thick. When the distance between the substrates is 6 μm, the weight of the liquid crystal entering between the substrates is 60 g. With such a size, even if a rigid glass substrate is used, the area is large, and even if the substrate is erected, the substrate will bend as if by paper under its own weight.

【0016】そのような大きな2枚の基板を貼り合わせ
た液晶セルを直立させた場合には、下側が膨れた瓢箪の
様な形状になってしまう。その結果、下部の基板間距離
は、上部の基板間距離の数倍から数十倍、時によっては
数百倍となり、液晶には一定の電界が生じなくなり均一
な表示ができなかった。
When a liquid crystal cell in which such two large substrates are bonded together is erected, the lower side becomes a swollen gourd-like shape. As a result, the distance between the lower substrates was several times to several tens times, sometimes several hundred times, the distance between the upper substrates, and a constant electric field was not generated in the liquid crystal, so that uniform display was not possible.

【0017】また強誘電性液晶の場合には、液晶の配向
が層構造を形成している為に、基板の変形によりこの層
構造が壊れ、表示不能という致命傷を与えることにな
る。この現象は、表示面積が5cm□程度の小さなもの
でも容易に発生し、強誘電性液晶ディスプレイの一つの
大きな問題となっていた。
In the case of a ferroelectric liquid crystal, since the orientation of the liquid crystal forms a layer structure, the layer structure is broken by the deformation of the substrate, resulting in a fatal damage that display is impossible. This phenomenon easily occurs even when the display area is as small as about 5 cm square, and has been one of the major problems of the ferroelectric liquid crystal display.

【0018】従来の液晶電気光学装置の構造は、図1に
おいて示したが、2枚の基板を一定の間隔で固定してい
るのは、ガラス基板の周囲部のシール材の場所のみであ
って、内部では基板の間隔が狭くなり過ぎないようにス
ペーサーで支えるだけである。従って、シール部からの
距離が離れるほどセルのたわみが生じるのは当然であっ
た。
The structure of a conventional liquid crystal electro-optical device is shown in FIG. 1, but the two substrates are fixed at regular intervals only at the location of the sealing material around the glass substrate. The inside is merely supported by spacers so that the distance between the substrates does not become too narrow. Therefore, it is natural that the longer the distance from the seal portion, the more the cell is bent.

【0019】その対策として従来は、外周のシール接着
剤の他にセル内部に接着剤粒子を散布し、2枚の基板を
接着しようというものがあった。しかしながら、接着剤
の周囲での配向が乱れやすいといった現象が発生してい
た。
Conventionally, as a countermeasure, there has been a method in which adhesive particles are dispersed inside the cell in addition to the seal adhesive on the outer periphery to bond two substrates. However, there has been a phenomenon that the orientation around the adhesive is easily disturbed.

【0020】従来技術の問題点としてさらに述べると、
基板間の液晶分子の状態を決定するのは主に、両基板の
電極に印加される電圧の大きさであるが、従来の装置内
には液晶または配向膜からの電荷を持った不純物が存在
したり、電圧印加時にその電圧とは逆方向の電圧を発生
させる余分な電荷が生じることはよく知られている。
As a further problem of the prior art,
The state of the liquid crystal molecules between the substrates is mainly determined by the magnitude of the voltage applied to the electrodes of the two substrates.However, conventional devices contain liquid crystal or impurities with charges from the alignment film. It is well known that, when a voltage is applied, an extra charge is generated which generates a voltage in a direction opposite to the voltage.

【0021】これら電荷は、電圧印加に伴い両基板間に
挟持された液晶層内を自由に移動する。これら電荷の多
くは移動して配向膜表面に到達するが、本来配向膜は絶
縁性であるために電荷はそれ以上は移動せず配向膜と液
晶層の間(配向膜液晶界面)に蓄積される形となる。
These charges move freely in the liquid crystal layer sandwiched between the two substrates with the application of a voltage. Most of these charges move to reach the surface of the alignment film. However, since the alignment film is originally insulating, the charge does not move any further and is accumulated between the alignment film and the liquid crystal layer (the liquid crystal interface between the alignment film and the liquid crystal). It becomes a form.

【0022】これらの電荷により液晶電気光学装置とし
ては好ましくない問題が発生する。たとえば両基板間に
印加した電圧を打ち消す作用が生じてしまい、液晶分子
を十分に反転させる際には、印加する電圧を自発分極を
反転させるのに必要な電圧より大きくする必要がある。
また、電極間に電圧を印加した際に、液晶層内の電荷量
が経時変化するために液晶分子の状態が安定しない。さ
らに配向膜−液晶界面に蓄積した電荷により電気的に吸
着された液晶分子は、液晶層内部の吸着されていない液
晶分子よりも状態変化に必要とする電圧が大きいために
液晶層内の液晶分子が一斉に状態変化を起こさず、液晶
電気光学装置の特性として一番重要な光の透過特性が安
定しないという問題が生じるのである。
These charges cause a problem which is not preferable for a liquid crystal electro-optical device. For example, an action of canceling the voltage applied between the two substrates occurs, and when sufficiently inverting the liquid crystal molecules, the applied voltage needs to be higher than the voltage necessary for inverting the spontaneous polarization.
In addition, when a voltage is applied between the electrodes, the state of the liquid crystal molecules is not stable because the amount of charge in the liquid crystal layer changes with time. Furthermore, the liquid crystal molecules that are electrically adsorbed by the electric charge accumulated at the interface between the alignment film and the liquid crystal require a higher voltage to change the state than the liquid crystal molecules that are not adsorbed inside the liquid crystal layer. However, there is a problem in that the state changes do not occur at the same time, and the most important light transmission characteristic of the liquid crystal electro-optical device is not stable.

【0023】この問題点を解決すべく、電荷の蓄積を緩
和する配向膜材料の選定をしたり、絶縁膜である配向膜
の代わりに、電極上にSiO2 などを斜方蒸着して液晶
分子を配向させる方法があるが、多くの予備実験を必要
とするため時間がかかりコスト高になること、また材料
的な組合せによりその効果が変化するなど一般的な手法
とは言えない。また、液晶を精製して不純物を取り除く
方法もあるが、この方法では精製して使える液晶は極僅
かであり量産性を考えると大変不向きである。
In order to solve this problem, a material for an alignment film that alleviates the accumulation of electric charges is selected, and instead of an alignment film serving as an insulating film, SiO 2 or the like is obliquely deposited on an electrode to form liquid crystal molecules. Although there is a method of orienting, it is not a general method such that a lot of preliminary experiments are required, it takes a long time and the cost becomes high, and the effect changes depending on a material combination. There is also a method of purifying liquid crystal to remove impurities. However, this method has very few liquid crystals that can be purified and used, which is extremely unsuitable in view of mass productivity.

【0024】また、電荷移動錯体を用いて、液晶層内に
存在する電荷を吸着させたり、結合させたりしてプラス
またはマイナスの電荷をプラスマイナス0の状態にする
(以下キャンセル、または中和するという)方法もある
が、電荷を完全にキャンセルするに丁度よい量の電荷移
動錯体を装置内に測り入れることは困難であり、液晶層
内の電荷移動錯体が不十分であれば不所望な電荷はキャ
ンセル出来ず、過剰な電荷移動錯体は前述の電荷と同様
に液晶層内を移動し、不具合をもたらす。
Further, by using a charge transfer complex, a charge existing in the liquid crystal layer is adsorbed or combined to make a plus or minus charge into a plus or minus 0 state (hereinafter referred to as cancellation or neutralization). However, it is difficult to measure just the right amount of charge-transfer complex into the device to completely cancel the charge. If the charge-transfer complex in the liquid crystal layer is insufficient, an undesired charge is obtained. Cannot be canceled, and the excess charge transfer complex moves in the liquid crystal layer in the same manner as the above-mentioned charge, causing a problem.

【0025】上記のように、液晶層へ印加される電圧変
化を引き起こす要因、つまり液晶分子の経時的な状態変
化を引き起こし装置の光学特性を不安定にする要因であ
る、液晶層内に存在する電荷をキャンセルするには様々
な方法が提案されてはいるが、容易にそして完全にキャ
ンセルする方法はまだ存在しない。
As described above, a factor that causes a change in the voltage applied to the liquid crystal layer, that is, a factor that causes a change in the state of the liquid crystal molecules over time and destabilizes the optical characteristics of the device, exists in the liquid crystal layer. Although various methods have been proposed to cancel charge, there is still no easy and complete method to cancel.

【0026】[0026]

【発明が解決しようとする課題】本発明は前述の如き種
々の問題を解決するものである。すなわち本発明は、液
晶材料の配向状態を乱さずに基板間を接着できる液晶電
気光学装置およびその作製方法を提供するものある。ま
た本発明は、液晶層内の不所望な電荷による影響を排除
して装置の光学特性を安定化し、ちらつきやトーン変化
のない高性能な液晶電気光学装置を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention solves the various problems as described above. That is, the present invention provides a liquid crystal electro-optical device capable of bonding between substrates without disturbing the alignment state of the liquid crystal material, and a method for manufacturing the same. Another object of the present invention is to provide a high-performance liquid crystal electro-optical device which eliminates the influence of undesired charges in the liquid crystal layer, stabilizes the optical characteristics of the device, and has no flicker or tone change.

【0027】[0027]

【問題を解決するための手段】「発明の構成」上記課題
を解決するために本発明は、表面に電極を有する一対の
透光性基板を前記電極を内側にして相対向して設け、前
記一対の基板間に液晶材料と、前記一対の基板のうち少
なくとも一方の基板の内側面上に前記液晶材料を一定の
方向に配列させる配向手段を設け、前記液晶材料中に混
入させていた未硬化樹脂が析出、硬化したことによって
形成されるカラム状に硬化した樹脂が前記配向手段また
は前記基板と接着していることを特徴とする液晶電気光
学装置である。
Means for Solving the Problems To solve the above-mentioned problems, the present invention provides a pair of light-transmitting substrates having electrodes on their surfaces, facing each other with the electrodes inside. A liquid crystal material is provided between a pair of substrates, and an alignment means for arranging the liquid crystal material in a predetermined direction on an inner surface of at least one of the pair of substrates is provided, and the uncured material mixed in the liquid crystal material is provided. A liquid crystal electro-optical device, wherein a resin cured in a column shape formed by precipitation and curing of the resin is adhered to the alignment means or the substrate.

【0028】また本発明は、表面に電極を有する一対の
基板を前記電極面を内側にして相対向して設け、前記一
対の基板間に液晶材料を有し、前記一対の基板のうち少
なくとも一方の基板の内側面上に前記液晶材料を一定の
方向に配列させるための配向手段を設けた液晶電気光学
装置において、前記液晶材料中に硬化した樹脂材料と反
応開始剤とを有することを特徴とする液晶電気光学装置
である。
Further, according to the present invention, a pair of substrates having electrodes on their surfaces are provided so as to face each other with the electrode surface inside, and a liquid crystal material is provided between the pair of substrates, and at least one of the pair of substrates is provided. In a liquid crystal electro-optical device provided with alignment means for aligning the liquid crystal material in a certain direction on the inner surface of the substrate, the liquid crystal material comprises a cured resin material and a reaction initiator in the liquid crystal material, Liquid crystal electro-optical device.

【0029】また本発明は、表面に電極をそれぞれ有す
る一対の基板を前記電極面を内側に相対向して設け、前
記基板間に液晶材料を挟持し、前記一対の少なくとも一
方の基板の電極上に前記液晶材料を一定の方向に配向さ
せるための配向手段を有し、前記液晶材料は反応開始剤
を含んでいることを特徴とする液晶電気光学装置であ
る。
According to the present invention, a pair of substrates each having an electrode on the surface are provided with the electrode surfaces facing each other inside, and a liquid crystal material is sandwiched between the substrates. A liquid crystal electro-optical device, further comprising an alignment unit for aligning the liquid crystal material in a predetermined direction, wherein the liquid crystal material contains a reaction initiator.

【0030】また本発明は、表面に電極をそれぞれ有す
る一対の基板を前記電極面を対向して配設し、前記一対
の基板間に液晶材料を有する液晶電気光学装置におい
て、前記液晶材料中には反応開始剤が存在することを特
徴とする液晶電気光学装置である。
According to the present invention, there is provided a liquid crystal electro-optical device having a pair of substrates each having an electrode on the surface with the electrode surfaces facing each other, and having a liquid crystal material between the pair of substrates. Is a liquid crystal electro-optical device characterized in that a reaction initiator is present.

【0031】また本発明は、内側面に電極と少なくとも
一方の内側面に配向膜を有する一対の相対向する基板間
に、液晶材料と樹脂構成材料と反応開始剤よりなる液晶
混合物を満たす工程と、前記液晶混合物中の前記液晶材
料と前記樹脂構成材料を分離させる工程と、前記反応開
始剤を開裂させる工程とを少なくとも有することを特徴
とする液晶電気光学装置の作製方法である。
The present invention also includes a step of filling a liquid crystal mixture comprising a liquid crystal material, a resin constituent material, and a reaction initiator between a pair of opposed substrates having an electrode on an inner surface and an alignment film on at least one inner surface. And a step of separating the liquid crystal material and the resin constituent material in the liquid crystal mixture and a step of cleaving the reaction initiator.

【0032】また本発明は、内側面に電極を有する一対
の相対向する基板間に、液晶材料と反応開始剤よりなる
液晶混合物を満たす工程と、前記反応開始剤を開裂させ
る工程とを少なくとも有することを特徴とする液晶電気
光学装置の作製方法である。
Further, the present invention comprises at least a step of filling a liquid crystal mixture comprising a liquid crystal material and a reaction initiator between a pair of opposed substrates having electrodes on the inner surface, and a step of cleaving the reaction initiator. A method for manufacturing a liquid crystal electro-optical device, comprising:

【0033】また本発明は、一対の相対向する透光性基
板間の液晶材料と未硬化樹脂との混合物に対し、前記未
硬化樹脂を前記混合物から析出させる工程と、前記液晶
材料を配向させる工程と、前記未硬化樹脂を硬化させる
工程と、前記液晶材料を再び配向させる工程とを有する
ことを特徴とする液晶電気光学装置の作製方法である。
Further, according to the present invention, for a mixture of a liquid crystal material and an uncured resin between a pair of opposing translucent substrates, a step of precipitating the uncured resin from the mixture, and orienting the liquid crystal material A method for manufacturing a liquid crystal electro-optical device, comprising: a step of curing the uncured resin; and a step of re-orienting the liquid crystal material.

【0034】また本発明は、内側面に電極を有する一対
の相対向する基板間に、液晶材料と、紫外線と熱のいず
れにおいても硬化する未硬化の樹脂との混合物を満た
し、前記樹脂を前記混合物中から析出させた後、紫外線
および加熱により前記析出した樹脂を硬化させることを
特徴とする液晶電気光学装置の作製方法である。
Further, according to the present invention, a mixture of a liquid crystal material and an uncured resin which is cured by any of ultraviolet rays and heat is filled between a pair of opposed substrates having electrodes on the inner surface. A method for producing a liquid crystal electro-optical device, comprising: depositing from a mixture; and curing the deposited resin by ultraviolet light and heating.

【0035】また本発明は、少なくとも一方が透光性を
有する一対の相対向する基板間に、前記一対の基板を張
り合わせるシール材と、液晶材料と未硬化樹脂との混合
物とを有し、前記混合物中から前記未硬化樹脂をカラム
状に析出させた後、前記シール材および前記未硬化樹脂
とを同一工程にて硬化させることを特徴とする液晶装置
の作製方法である。
Further, the present invention has a sealing material for bonding the pair of substrates, and a mixture of a liquid crystal material and an uncured resin, between a pair of opposed substrates at least one of which has a light transmitting property. A method of manufacturing a liquid crystal device, comprising: after depositing the uncured resin in a column from the mixture, curing the sealing material and the uncured resin in the same step.

【0036】「構成の説明」本発明は、樹脂構成材料
(モノマーやオリゴマー)および反応開始剤よりなる未
硬化の樹脂材料を液晶材料中に添加した液晶混合物を、
液晶電気光学装置の基板間に挟持して、基板間において
樹脂を硬化させることで、液晶の配向を乱さずに基板間
距離を固定し、また液晶層内の不所望な電荷を取り除く
ものである。また反応開始剤の作用により不所望な電荷
を取り除くものである。
"Description of Structure" The present invention relates to a liquid crystal mixture obtained by adding an uncured resin material comprising a resin constituent material (monomer or oligomer) and a reaction initiator to a liquid crystal material.
By sandwiching between the substrates of a liquid crystal electro-optical device and curing the resin between the substrates, the distance between the substrates is fixed without disturbing the orientation of the liquid crystal, and unwanted charges in the liquid crystal layer are removed. . In addition, an unwanted charge is removed by the action of a reaction initiator.

【0037】本発明の液晶電気光学装置の基本的な構造
の例を図4を用いて説明する。電極及びリード100、
101、偏光板112、113を有する透光性の基板1
02、103の少なくとも一方の基板上に液晶を配向さ
せる手段として配向膜104、105が形成されてい
る。また、基板間隔を一定に維持するためにスペーサー
としてたとえばシリカビーズ106を用い、シール材1
07で両基板を固定している。この基板間に上下基板を
接着したカラム状の樹脂108、あるいは樹脂塊109
と液晶110が、またこれら樹脂および液晶中に反応開
始剤111が拡散した形で挟持され装置が構成されてい
る。
An example of the basic structure of the liquid crystal electro-optical device according to the present invention will be described with reference to FIG. Electrodes and leads 100,
101, a light-transmitting substrate 1 having polarizing plates 112 and 113
Alignment films 104 and 105 are formed on at least one of the substrates 02 and 103 as a means for aligning the liquid crystal. Further, in order to keep the distance between the substrates constant, for example, silica beads 106 are used as spacers, and the sealing material 1 is used.
At 07, both substrates are fixed. A column-shaped resin 108 in which the upper and lower substrates are bonded between the substrates, or a resin block 109
The liquid crystal 110 is sandwiched in such a manner that the reaction initiator 111 is diffused in the resin and the liquid crystal, thereby forming an apparatus.

【0038】本発明の液晶電気光学装置は作製時に添加
してあった反応開始剤が液晶混合物中に均一に拡散し、
室温下において、液晶混合物中から前記樹脂構成材料が
液晶材料に排斥される形で分離析出しても、前記反応開
始剤は液晶混合物内に拡散したままとなり、反応開始剤
が開裂して樹脂材料が硬化しても、残った液晶材料中に
反応開始剤が存在している。また樹脂材料は硬化して、
カラム(柱)状になり、上下基板および配向膜表面等を
接着する、もしくは液晶層中に樹脂塊(樹脂固形物)と
して存在している。
In the liquid crystal electro-optical device according to the present invention, the reaction initiator added at the time of manufacturing is uniformly diffused in the liquid crystal mixture,
At room temperature, even if the resin constituent material separates and precipitates out of the liquid crystal mixture in a form rejected by the liquid crystal material, the reaction initiator remains diffused in the liquid crystal mixture, and the reaction initiator is cleaved and the resin material is cleaved. Even when is cured, the reaction initiator is present in the remaining liquid crystal material. Also, the resin material hardens,
It becomes a column (column) and adheres the upper and lower substrates and the surface of the alignment film, or exists as a resin mass (resin solid) in the liquid crystal layer.

【0039】本発明のカラム状の樹脂を、柱状の樹脂ス
ペーサという意味で重合カラムスペーサ(Polymerized
Column Spacer 、PCSと略す)という。
The column-shaped resin of the present invention is a polymerized column spacer (Polymerized) in the meaning of a column-shaped resin spacer.
Column Spacer, abbreviated as PCS).

【0040】この液晶電気光学装置を作製するには、液
晶材料、樹脂構成材料、反応開始剤を混合し、液晶と樹
脂がよりよく混ざり合うように液晶が等方相を示すまで
加熱、攪はんして作製した液晶混合物を、上記装置の基
板間に挟持させる。この液晶混合物が等方相を示す温度
から徐々に装置の温度を下げてゆくと、液晶混合物中に
混合されていた樹脂構成材料は排斥され、装置内に点在
する形になる。また、反応開始剤は液晶材料中にも拡散
してゆくが、この拡散した反応開始剤は装置の温度を下
げていっても液晶材料中から排斥されることはない。こ
のため液晶装置内の反応開始剤は、樹脂構成材料部分と
液晶材料部分の両方に存在する。
In order to manufacture this liquid crystal electro-optical device, a liquid crystal material, a resin constituent material, and a reaction initiator are mixed, and heated and stirred until the liquid crystal shows an isotropic phase so that the liquid crystal and the resin are more properly mixed. The liquid crystal mixture thus prepared is sandwiched between the substrates of the above device. When the temperature of the device is gradually lowered from the temperature at which the liquid crystal mixture exhibits an isotropic phase, the resin constituent material mixed in the liquid crystal mixture is rejected, and the resin is scattered in the device. The reaction initiator also diffuses into the liquid crystal material, but the diffused reaction initiator is not rejected from the liquid crystal material even if the temperature of the device is lowered. For this reason, the reaction initiator in the liquid crystal device exists in both the resin constituent material portion and the liquid crystal material portion.

【0041】カラム状の樹脂を形成せずに、不所望な電
荷を取り除くだけであれば、樹脂構成材料を使用せず、
反応開始剤のみを液晶材料に混合させてもよい。
If only unwanted charges are removed without forming a columnar resin, no resin constituent material is used,
Only the reaction initiator may be mixed with the liquid crystal material.

【0042】前記液晶混合物は液晶材料が等方相を示す
温度まで加熱、攪はんすることが望ましく、これを液晶
材料が液晶相を示すまで徐冷すると、液晶材料から排斥
するように樹脂構成材料が分離する。
The liquid crystal mixture is desirably heated and stirred to a temperature at which the liquid crystal material exhibits an isotropic phase. When the liquid crystal material is gradually cooled until the liquid crystal material exhibits a liquid crystal phase, the resin composition is excluded from the liquid crystal material. Material separates.

【0043】この装置内の反応開始剤を開裂させると電
荷を発生し、これら反応開始剤からの電荷の一部は樹脂
の硬化に寄与し、一部は装置内の余分な電荷を直接キャ
ンセルすることになる。
When the initiator in the apparatus is cleaved, charges are generated, and some of the charges from these initiators contribute to the curing of the resin, and some directly cancel the extra charges in the apparatus. Will be.

【0044】硬化した樹脂が液晶電気光学装置の表示部
分を占める面積の割合が0.1から20%であれば、液
晶電気光学装置として十分な表示特性と装置自体の強度
を得ることができる。
When the ratio of the area of the cured resin occupying the display portion of the liquid crystal electro-optical device is 0.1 to 20%, sufficient display characteristics and strength of the device itself can be obtained as the liquid crystal electro-optical device.

【0045】また、前記液晶混合物作製にあたり、一般
的に市販されているいわゆる樹脂材料(未硬化樹脂)
は、樹脂構成材料に反応開始剤が添加されたものである
ため、その樹脂材料を液晶材料中に混合して液晶混合物
を作製してもよいし、また樹脂材料中に添加する反応開
始剤量を変化させても、樹脂構成材料と反応開始剤に分
割しておいて、別々に混合しても構わない。
In producing the liquid crystal mixture, a so-called resin material (uncured resin) generally commercially available is used.
Since a reaction initiator is added to a resin constituent material, the resin material may be mixed into a liquid crystal material to prepare a liquid crystal mixture, or the amount of the reaction initiator added to the resin material May be changed, the resin constituent material and the reaction initiator may be divided and mixed separately.

【0046】前記反応開始剤はあらかじめ液晶材料中に
混入されていてもよく、配向手段としての配向膜材料中
に混入されていてもよいし、配向膜面上に塗布されてい
てもよい。すなわち反応開始剤111は、前述の配向膜
104、105中に混在、あるいは表面に塗布されてい
ても構わない。
The reaction initiator may be mixed in the liquid crystal material in advance, may be mixed in the alignment film material as alignment means, or may be applied on the alignment film surface. That is, the reaction initiator 111 may be mixed in the above-described alignment films 104 and 105 or may be applied to the surface.

【0047】反応開始剤としては、紫外線励起開裂型の
反応開始剤が最適である。この場合、偏光板112、1
13は、紫外線を照射して反応開始剤を開裂させた後
に、基板102、103上に設ける。
As the reaction initiator, an ultraviolet-excitation cleavage type reaction initiator is most suitable. In this case, the polarizing plates 112, 1
13 is provided on the substrates 102 and 103 after irradiating ultraviolet rays to cleave the reaction initiator.

【0048】また、反応開始剤の添加量は、基板の清浄
度や液晶材料の精製度に応じて任意に変える事ができる
が、目安として液晶材料に対し0.001〜10%、望
ましくは0.1〜3%の添加が前述の問題解決に有効で
ある。
The addition amount of the reaction initiator can be arbitrarily changed according to the degree of cleanliness of the substrate and the degree of purification of the liquid crystal material. .1 to 3% is effective in solving the above-mentioned problem.

【0049】[0049]

【作用】「カラム状樹脂の形成」本発明は、基板間の液
晶材料と未硬化の樹脂(樹脂構成材料(モノマーやオリ
ゴマー)および反応開始剤)との混合物中から、樹脂構
成材料を分離析出し、液晶材料を配向させ、その後反応
開始剤を開裂させて樹脂をカラム状に硬化させ、両基板
と接着させることで、基板間距離を固定する。
According to the present invention, a resin-constituting material is separated and precipitated from a mixture of a liquid crystal material between substrates and an uncured resin (a resin-constituting material (monomer or oligomer) and a reaction initiator). Then, the liquid crystal material is oriented, and then the reaction initiator is cleaved to cure the resin in a column shape and adhere to both substrates, thereby fixing the distance between the substrates.

【0050】基板間に満たされた液晶材料と未硬化樹脂
との混合物の温度を高くして該混合物中の液晶材料が等
方相の状態では未硬化の樹脂と液晶の区別をする事はで
きず一様であるが、温度が室温程度まで低下してくる
と、未硬化樹脂は、液晶材料から排斥されて析出し基板
間に散在する。この段階で樹脂硬化の為の手段を施すこ
とで、散在している樹脂はカラム(柱)状に硬化して双
方の基板を接着することができる。
When the temperature of the mixture of the liquid crystal material and the uncured resin filled between the substrates is increased and the liquid crystal material in the mixture is in an isotropic state, it is not possible to distinguish between the uncured resin and the liquid crystal. However, when the temperature decreases to about room temperature, the uncured resin is rejected from the liquid crystal material and precipitates and is scattered between the substrates. By applying a means for curing the resin at this stage, the scattered resin is cured in a column (column) shape and the two substrates can be bonded to each other.

【0051】液晶の配向性の向上の為に液晶材料と未硬
化樹脂との混合物を液晶材料が等方相の状態となるまで
加熱した後、液晶相を示す温度まで徐冷を行なうとよ
い。特に秩序性の高いスメクチック相を有する液晶材料
を用いる時には徐冷は効果的であり、配向性を向上させ
る事が出来る。またこの工程により同時に混合物中から
未硬化樹脂を分離析出させることができる。その後の硬
化工程により該樹脂を硬化させる。
In order to improve the orientation of the liquid crystal, it is preferable to heat the mixture of the liquid crystal material and the uncured resin until the liquid crystal material is in an isotropic phase, and then gradually cool the mixture to a temperature indicating the liquid crystal phase. In particular, when a liquid crystal material having a highly ordered smectic phase is used, slow cooling is effective, and the alignment can be improved. In addition, the uncured resin can be simultaneously separated and precipitated from the mixture by this step. The resin is cured in a subsequent curing step.

【0052】本発明はこのように、液晶材料が配向手段
に従って配列した後に樹脂を硬化するために、硬化前の
良好な液晶の配向状態を保つことができ、硬化後の樹脂
が配向に与える影響は極めて少ない。配向状態が良いま
ま樹脂を硬化させるのだから、樹脂硬化後に配向を損な
う結果には至らないのはしごく当然である。
As described above, according to the present invention, since the liquid crystal material is arranged according to the alignment means and the resin is cured, it is possible to maintain a good alignment state of the liquid crystal before curing, and the effect of the cured resin on the alignment. Is extremely small. Since the resin is cured while the alignment state is good, it is quite natural that the alignment is not impaired after the resin is cured.

【0053】液晶材料と未硬化樹脂との混合物中の樹脂
の含有量が0.1〜20%の時に示す液晶材料の配向
は、液晶材料のみを挟持している通常のセルにおいて示
される配向とほぼ同一であり、樹脂の混在によって配向
に与える影響は少ない。
When the content of the resin in the mixture of the liquid crystal material and the uncured resin is 0.1 to 20%, the orientation of the liquid crystal material is different from the orientation shown in a normal cell sandwiching only the liquid crystal material. It is almost the same, and the influence of the mixture of the resins on the orientation is small.

【0054】これを硬化したときの、装置の基板面から
見た表示部分の面積全体に対してカラム(柱状)に硬化
した樹脂の面積がしめる割合は、未硬化樹脂が混合物中
に混入している割合とほぼ一致して0.1〜20%程度
である。すなわち混合した未硬化樹脂のほとんどは硬化
している。残る液晶材料が占める面積の割合は、80〜
99.9%となる。樹脂の混入量は2枚の基板を接着す
るのに必要な力に応じて調整すればよい。当然のように
表示部分において硬化した樹脂の部分が多ければ、液晶
セル自体の強度すなわち基板間距離を一定に維持する力
は強くなるが、光が通過する面積が損なわれ、コントラ
スト比などの電気光学特性は低下する。この強度と電気
光学特性の両方を満足させる数値としては上記の範囲が
好ましかった。
When this is cured, the ratio of the area of the resin cured in a column (column) to the entire area of the display portion viewed from the substrate surface of the apparatus is determined by the ratio of uncured resin mixed into the mixture. It is about 0.1 to 20%, which is almost in agreement with the ratio. That is, most of the mixed uncured resin is cured. The ratio of the area occupied by the remaining liquid crystal material is 80 to
99.9%. The mixing amount of the resin may be adjusted according to the force required for bonding the two substrates. As a matter of course, if the hardened resin portion in the display portion is large, the strength of the liquid crystal cell itself, that is, the force for maintaining the distance between the substrates is increased, but the area through which light passes is impaired, and the electric power such as contrast ratio is reduced. Optical properties are degraded. The above range was preferable as a numerical value satisfying both the strength and the electro-optical characteristics.

【0055】こうした方法を行なう際に使用する樹脂
は、高温状態で液晶材料との混合状態を呈し、温度が低
下した状態では液晶材料と分離し、析出するものである
ことが望ましい。また、2枚の基板間に挟持された状態
で樹脂を硬化する為に未硬化の樹脂には溶媒が含まれて
いないことが極めて望ましい。さらに、液晶材料と樹脂
の分離や液晶材料の配向状態の形成は温度に依存すると
ころが大きいため、樹脂は温度とは別の因子で硬化する
ほうが望ましい。そうした事柄を考慮すると、例えば未
硬化樹脂として紫外線硬化型樹脂、樹脂硬化手段として
紫外線を用いることは本発明の実施に極めて相応しい。
It is desirable that the resin used in such a method exhibits a mixed state with the liquid crystal material at a high temperature, and separates and precipitates from the liquid crystal material at a low temperature. In order to cure the resin while being sandwiched between two substrates, it is extremely desirable that the uncured resin contains no solvent. Further, since the separation of the liquid crystal material from the resin and the formation of the alignment state of the liquid crystal material largely depend on the temperature, it is preferable that the resin is cured by a factor different from the temperature. In consideration of such matters, for example, using an ultraviolet-curable resin as the uncured resin and using ultraviolet rays as the resin curing means is extremely suitable for implementing the present invention.

【0056】「不所望な電荷のキャンセル」また、本発
明者らは、液晶分子状態を不安定にする液晶層内に存在
する不所望な電荷を、液晶層内で樹脂を硬化させる、あ
るいは反応開始剤の開裂させることでキャンセルできる
ことを発見した。これらの方法により従来問題となって
いた電荷の移動や配向膜液晶界面での電荷の蓄積がなく
なる。よって、液晶層を挟む両基板間(電極間)の電圧
に経時変化は起こらず、液晶分子の不所望な状態変化が
起こらないことから、液晶分子の状態変化と光学特性の
制御が容易に行えるようになる。また、基板上に吸着さ
れる液晶分子がなくなるために液晶層全体が電圧印加よ
り同時に状態変化を起こすこととなり、より安定な光学
特性が得られる。
"Cancellation of Undesired Charges" The present inventors have also made use of the fact that undesired charges existing in the liquid crystal layer, which makes the liquid crystal molecular state unstable, cure the resin in the liquid crystal layer, It has been found that it can be canceled by cleavage of the initiator. By these methods, the transfer of electric charge and the accumulation of electric charge at the liquid crystal interface of the alignment film, which have conventionally been problems, are eliminated. Therefore, the voltage between the two substrates (between the electrodes) sandwiching the liquid crystal layer does not change with time, and an undesired state change of the liquid crystal molecules does not occur. Therefore, the state change of the liquid crystal molecules and the control of the optical characteristics can be easily performed. Become like Further, since no liquid crystal molecules are adsorbed on the substrate, the entire liquid crystal layer undergoes a state change at the same time as the application of a voltage, so that more stable optical characteristics can be obtained.

【0057】液晶層内の不所望な電荷をキャンセルする
仕組みは以下の如くであると考える。すなわち、第1に
前記の不所望な電荷を樹脂材料が硬化する際に樹脂中に
取り込むことによりキャンセルする。第2に前記の不所
望な電荷を液晶材料中に拡散した反応開始剤に吸着させ
たり、結合させたりしてキャンセルする。
The mechanism for canceling undesired charges in the liquid crystal layer is considered as follows. That is, first, the unwanted charges are canceled by being taken into the resin when the resin material cures. Second, the unwanted charge is canceled by adsorbing or binding to the reaction initiator diffused in the liquid crystal material.

【0058】上記第1の方法は、紫外線硬化樹脂が硬化
する際の反応を利用したものである。つまり前記紫外線
硬化樹脂の硬化とは、その樹脂構成材料のモノマーとオ
リゴマーが、反応開始剤が熱や特に紫外光などの可視光
以下の短波長光をエネルギーとして与えることにより励
起、開裂して発生した電荷を出発因子として重合反応が
進行してゆくものであり、この重合反応進行中にはモノ
マーおよびオリゴマーの側鎖部分も大変反応性が高くな
る(以下活性であるという)。前述の電荷を樹脂中に取
り込むとはすなわち、この活性な前記側鎖部分と装置内
に存在する不所望な電荷を反応させるということであ
る。また硬化した樹脂は通常容易なことでは分解しない
ために、取り込まれた電荷が再度液晶層中を移動するよ
うなことはない。
The first method utilizes a reaction when the ultraviolet curable resin is cured. In other words, the curing of the ultraviolet curable resin means that the monomers and oligomers of the resin constituent material are excited and cleaved by the reaction initiator giving energy as heat or short-wavelength light such as ultraviolet light, which is less than visible light. The polymerization reaction proceeds with the generated charges as a starting factor, and during the progress of the polymerization reaction, the side chains of the monomers and oligomers also become very reactive (hereinafter referred to as active). Incorporating the charge into the resin means reacting the active side chain moiety with an undesired charge existing in the device. Further, the cured resin does not usually decompose easily, so that the captured electric charge does not move through the liquid crystal layer again.

【0059】上記第2の方法は、徐冷後も液晶材料中に
拡散している反応開始剤が、樹脂硬化の際の積極的な紫
外線照射により、不所望な電荷をキャンセルするだけの
充分な電荷を発生さる。また、この第2の方法で不所望
な電荷をキャンセルするに必要な分以上に発生した過剰
な電荷はそれら自身と再結合して安定状態となる。
According to the second method, the reaction initiator diffused in the liquid crystal material even after the slow cooling is sufficiently irradiated with active ultraviolet irradiation at the time of curing the resin to cancel the unwanted charges. Generates electric charge. In addition, excess charges generated by the second method in excess of that required to cancel undesired charges are recombined with themselves and become stable.

【0060】したがって樹脂構成材料を用いずに反応開
始剤のみを液晶材料に混入しても、液晶電気光学装置内
に存在する不所望な電荷自体をキャンセルできる。
Therefore, even if only the reaction initiator is mixed into the liquid crystal material without using the resin constituent material, the undesired electric charge itself existing in the liquid crystal electro-optical device can be canceled.

【0061】これら上記の第1および第2の方法による
電荷の発生率は、通常反応開始剤1つからは1つ以上、
一般には2つ以上の電荷が、またモノマー1分子からは
1つ以上の、オリゴマー1分子からは1つ以上、通常は
2つ以上の電荷が発生する。
The rate of charge generation by the above first and second methods is usually one or more from one reaction initiator.
Generally, two or more charges are generated, one or more charges are generated from one molecule of monomer, and one or more, usually two or more are generated from one molecule of oligomer.

【0062】反応開始剤は自然に開裂することもある
が、熱や特に紫外光などの可視光以下の短波長光をエネ
ルギーとして与えることにより励起、開裂して電荷を発
生させやすい。また発生した電荷は反応性が高いため、
他に存在する電荷と容易に反応する。もし他に電荷が存
在しなければ、開裂したもう一方の自分自身の電荷と反
応して安定な状態となる。
The reaction initiator may be cleaved spontaneously, but is easily excited and cleaved by applying heat or short-wavelength light such as ultraviolet light or the like as energy to generate charges. The generated charge is highly reactive,
Reacts readily with other charges. If no other charge is present, it reacts with the own charge of the other cleaved and becomes stable.

【0063】不所望な電荷がキャンセルされたかどうか
ということは、見て直接確認することはできないので、
一般的には装置にある電圧を一定時間印加した時の電流
値の経時変化や、印加電圧を連続的に変化したときの電
流値変化としてとらえることができる。
Whether or not the unwanted charge has been canceled cannot be directly confirmed by looking at it.
In general, it can be regarded as a temporal change of a current value when a certain voltage is applied to the device for a certain period of time, or as a current value change when the applied voltage is continuously changed.

【0064】本発明を用いた図4の液晶電気光学装置に
対して、電極間に±30V、5Hzの三角波を印加して
電圧変化に対する電流値を測定した結果を図5に示す。
図5からわかるように、本発明の液晶電気光学装置は電
流の正負の方向に自発分極の反転に伴う電流ピーク(以
下Psピークという)が確認されるのみである。これに
対し、従来の液晶電気光学装置では液晶層内に不所望な
電荷が存在するため、図7に示すように図5のようなP
sピークの他に別のピーク(以下第2ピークという)が
発生する。この第2ピークが不所望な電荷による余分な
電流を示すものであり、第2ピークが大きいほど液晶分
子の状態が不安定な傾向を示した。本発明の液晶電気光
学装置はこの第2ピークがほとんど発生せず、液晶分子
の状態が極めて安定する。
FIG. 5 shows the result of measuring a current value with respect to a voltage change by applying a ± 30 V, 5 Hz triangular wave between the electrodes to the liquid crystal electro-optical device of FIG. 4 using the present invention.
As can be seen from FIG. 5, in the liquid crystal electro-optical device of the present invention, only a current peak (hereinafter referred to as a Ps peak) associated with reversal of spontaneous polarization is observed in the positive and negative directions of the current. On the other hand, in the conventional liquid crystal electro-optical device, since undesired electric charges exist in the liquid crystal layer, as shown in FIG.
Another peak (hereinafter, referred to as a second peak) occurs in addition to the s peak. The second peak indicates an extra current due to undesired charges, and the larger the second peak, the more unstable the state of the liquid crystal molecules. In the liquid crystal electro-optical device of the present invention, the second peak hardly occurs, and the state of liquid crystal molecules is extremely stable.

【0065】また液晶電気光学装置には基板材料として
ガラスやポリエチレンテレフタレート(PET)など
が、また液晶分子の一軸性とそれに伴う偏光を利用する
ために、ポリビニルアルコール(PVA)やポリカーボ
ネートを主材料とする偏光板や位相差板が使用される。
時にはこれら偏光板や位相差板に紫外線吸収剤を混合し
たり、装置に紫外線吸収フィルターを付加することもあ
る。これらガラスや偏光板、位相差板、紫外線吸収剤も
しくは紫外線吸収フィルターは可視光以下の波長域の光
を積極的に吸収するために、通常の装置動作時には液晶
材料と樹脂に可視光以下の波長の光が到達することはほ
とんどなく、装置完成後に不用な反応開始剤の開裂を起
こす事はない。
In the liquid crystal electro-optical device, glass or polyethylene terephthalate (PET) is used as a substrate material, and polyvinyl alcohol (PVA) or polycarbonate is used as a main material in order to utilize the uniaxiality of the liquid crystal molecules and the accompanying polarization. A polarizing plate or a retardation plate is used.
Occasionally, an ultraviolet absorber may be mixed with the polarizing plate or the retardation plate, or an ultraviolet absorbing filter may be added to the apparatus. These glasses, polarizers, retarders, UV absorbers or UV-absorbing filters actively absorb light in the wavelength range below the visible light. Light hardly reaches, and unnecessary cleavage of the initiator after completion of the apparatus does not occur.

【0066】よって、液晶に添加された反応開始剤が自
然に開裂して、装置内に存在する液晶分子の不所望な状
態変化を引き起こす電荷をキャンセルした際には、その
後は開裂することなく安定状態を得る。
Therefore, when the reaction initiator added to the liquid crystal is cleaved spontaneously and cancels the electric charge that causes an undesired state change of the liquid crystal molecules existing in the device, the reaction is stable without being cleaved thereafter. Get the state.

【0067】また、前述したような装置内に存在する液
晶分子の不所望な状態変化を引き起こす電荷が反応開始
剤の自然な開裂による電荷だけではキャンセルしきれな
い場合、積極的に例えば紫外線照射などのエネルギーを
与えることにより、上記電荷をキャンセルするに必要な
だけの反応開始剤からの電荷を提供することができる。
そして、キャンセルに必要な分以上に発生した反応開始
剤からの過剰な電荷はそれ自身と再結合して安定な状態
となる。
In the case where the electric charge that causes an undesired change in the state of the liquid crystal molecules existing in the device as described above cannot be completely canceled only by the electric charge caused by the natural cleavage of the reaction initiator, for example, ultraviolet light irradiation or the like is used. , The charge from the reaction initiator required to cancel the charge can be provided.
Then, the excess charge from the reaction initiator generated more than the amount necessary for cancellation is recombined with itself and becomes a stable state.

【0068】また、反応開始剤を液晶材料に添加すると
液晶材料が劣化することが懸念されるが、本発明におい
ては液晶材料の劣化は全く見られない。
Also, when the reaction initiator is added to the liquid crystal material, there is a concern that the liquid crystal material is deteriorated. However, in the present invention, no deterioration of the liquid crystal material is observed.

【0069】本発明において、液晶の動作モードとして
は様々なものが利用できる。例えば誘電異方性が正のネ
マチック液晶を用いて、基板間における液晶分子の配向
方向が90°ねじれているTN型、180〜270°ね
じれているSTN型、STN型で基板面と液晶分子との
なす角(プレチルト角)が3〜10°のもの、また配向
手段として垂直配向処理が施され、液晶材料として誘電
異方性が負のネマチック液晶を用いたもの、さらにスメ
クチック液晶を用いたもの等である。
In the present invention, various operation modes of the liquid crystal can be used. For example, by using a nematic liquid crystal having a positive dielectric anisotropy, the orientation of liquid crystal molecules between substrates is twisted by 90 ° in a TN type, a STN type in which a liquid crystal molecule is twisted by 180 to 270 °, and a STN type in which a substrate surface and liquid crystal molecules are twisted. The angle (pre-tilt angle) is 3 to 10 °, the liquid crystal material is a liquid crystal material which has been subjected to a vertical alignment process and has a negative dielectric anisotropy, and further has a smectic liquid crystal. And so on.

【0070】「樹脂硬化後の再配向」一方、樹脂は硬化
時に体積収縮があり、樹脂、液晶の分離後に未硬化樹脂
の周りで無理なく配向していた液晶分子が、樹脂硬化の
際の体積収縮に伴い、配向乱れを生じ、光学特性特に暗
状態低下に伴う、コントラストの低下を引き起こすこと
がある。
[Reorientation after Curing of Resin] On the other hand, the resin undergoes volume shrinkage upon curing, and the liquid crystal molecules which have been orientated around the uncured resin after the separation of the resin and liquid crystal are easily replaced by the volume upon curing of the resin. The shrinkage may cause a disorder in the alignment, which may cause a decrease in contrast due to a decrease in optical characteristics, particularly in a dark state.

【0071】これら光学特性が時間経過に伴い安定であ
るかどうかを示す指標の1つとして電圧保持率がある。
電圧保持率とは1画素に短時間印加した電圧が、電圧除
去後にどれほど保持されるかを示した値である。言い替
えれば、液晶分子の配向がいかに保持されるかというこ
とでもある。よって、電圧保持率を上げるためには、液
晶分子がより安定であり配向は一様に揃っていることが
望ましい。
A voltage holding ratio is one of indexes indicating whether or not these optical characteristics are stable with time.
The voltage holding ratio is a value indicating how much a voltage applied to one pixel for a short time is held after voltage removal. In other words, it is how the alignment of the liquid crystal molecules is maintained. Therefore, in order to increase the voltage holding ratio, it is desirable that the liquid crystal molecules are more stable and the alignment is uniform.

【0072】そのためにも、硬化後のカラム状樹脂の体
積収縮に伴う該樹脂周りを含む液晶材料の配向乱れを防
いで配向性を向上させ、電圧保持率の向上、ひいては光
学特性の向上を促すことが望まれる。
For this purpose, it is possible to prevent the disorder of the alignment of the liquid crystal material including the periphery of the resin due to the volume shrinkage of the cured column-shaped resin, thereby improving the alignment property, promoting the voltage holding ratio, and further improving the optical characteristics. It is desired.

【0073】これを解決するために、一対の相対向する
透光性基板間の液晶材料と未硬化樹脂との混合物に対
し、前記未硬化樹脂を前記混合物から析出させる工程
と、前記液晶材料を配向させる工程と、前記未硬化樹脂
を硬化させる工程と、前記液晶材料を再び配向させる工
程とにより作製するとよい。
To solve this problem, a step of precipitating the uncured resin from the mixture between the liquid crystal material and the uncured resin between the pair of opposing translucent substrates, The liquid crystal material may be formed by a step of aligning, a step of curing the uncured resin, and a step of realigning the liquid crystal material.

【0074】すなわち、まずセル内の液晶材料と未硬化
樹脂の混合物に対し徐冷等により未硬化樹脂材料の析出
および液晶材料の配向をなさしめ、その後未硬化樹脂を
硬化させる。この時樹脂の体積の収縮が大きいと樹脂周
りの液晶の配向に乱れが生じることがあるが、この後液
晶材料を例えば加熱・徐冷工程により再配向させる工程
(以下エージング工程という)を加えることで、樹脂周
りを含む配向の乱れが無くなり、電圧保持率の向上、ひ
いては光学特性の向上を促すことができる。
That is, first, the mixture of the liquid crystal material and the uncured resin in the cell is gradually cooled to precipitate the uncured resin material and to orient the liquid crystal material, and then the uncured resin is cured. At this time, if the volume shrinkage of the resin is large, the alignment of the liquid crystal around the resin may be disturbed. After that, a step of re-aligning the liquid crystal material by, for example, a heating / slow cooling step (hereinafter referred to as an aging step) is added. Thus, the disorder of the orientation including around the resin is eliminated, and the improvement of the voltage holding ratio and the improvement of the optical characteristics can be promoted.

【0075】「シール材とカラム状樹脂の同時硬化」ま
た、カラム状樹脂を有する液晶電気光学装置を作製する
際の、樹脂と液晶の混合物(液晶混合物)のセル内への
注入は、あらかじめ基板同士を貼り合わせた空セル中に
真空法または、加熱毛細管現象法により行うが、この場
合、真空引き等の手間と時間、大がかりな設備等が必要
となる。またカラム状樹脂析出・硬化工程が必要となる
ため、一般の液晶電気光学装置に比べて工程数が多くな
ってしまう。
[Simultaneous Curing of Sealing Material and Column-shaped Resin] Further, in producing a liquid crystal electro-optical device having a column-shaped resin, a resin-liquid crystal mixture (liquid crystal mixture) is injected into a cell in advance by a substrate. This is performed in a vacuum cell or a heated capillary phenomenon method in an empty cell where the cells are bonded to each other. In this case, labor and time for evacuation and the like, large-scale equipment and the like are required. Further, since a columnar resin deposition / hardening step is required, the number of steps is increased as compared with a general liquid crystal electro-optical device.

【0076】作製工程の簡略化、作製時間の短縮を図る
ために、基板の周辺シール材と混合物中からカラム状に
析出させた未硬化樹脂の硬化を同一工程にて行なうとよ
い。
In order to simplify the manufacturing process and shorten the manufacturing time, it is preferable to cure the uncured resin deposited in a column from the mixture with the peripheral sealing material of the substrate in the same process.

【0077】例えば、第1の基板の周辺部にシール材を
形成する工程と、前記第1の基板上に、液晶材料と未硬
化樹脂との混合物を滴下する工程と、前記混合物を滴下
した面に第2の基板を張り合わせる工程と、前記混合物
中から前記未硬化樹脂を析出させる工程と、前記シール
材および前記未硬化樹脂を硬化させる工程とにより液晶
電気光学装置を作製すればよい。
For example, a step of forming a sealing material around the first substrate, a step of dropping a mixture of a liquid crystal material and an uncured resin on the first substrate, and a step of dropping the mixture. Then, a liquid crystal electro-optical device may be manufactured by a step of bonding a second substrate to the substrate, a step of depositing the uncured resin from the mixture, and a step of curing the sealing material and the uncured resin.

【0078】このとき、シール材および未硬化樹脂とし
て紫外線硬化型樹脂、シール材および未硬化樹脂の硬化
手段として紫外線を用いることが有効である。
At this time, it is effective to use an ultraviolet curable resin as the sealing material and the uncured resin, and to use ultraviolet rays as a curing means for the sealing material and the uncured resin.

【0079】この構成により、カラム状樹脂を用いた液
晶電気光学装置を作製するに必要な工程は、液晶滴下−
基板張り合わせ−カラム状樹脂析出−紫外線照射(シー
ル材、カラム状樹脂硬化)となり、液晶注入工程は不要
としかつ紫外線照射工程は1回のみとすることができ
る。
With this configuration, the steps required to fabricate a liquid crystal electro-optical device using a columnar resin are as follows:
Substrate bonding-column-like resin deposition-ultraviolet irradiation (curing of a sealing material and a columnar resin) is performed, so that the liquid crystal injection step is not required and the ultraviolet irradiation step can be performed only once.

【0080】すなわち、基板を貼り合わせる際に、一方
の基板に液晶混合物を滴下し、両基板で挟み込んでセル
内に液晶混合物を満たす。そして液晶材料中から樹脂を
析出させカラム状とし、このカラム状に樹脂が析出した
後に、シール部を含むセル全面に紫外線を照射すること
によって、シール部およびカラム状の樹脂を1つの工程
で硬化させることができる。また再ギャップ工程も不要
となる。したがって、作製工程の簡略化と作製時間の短
縮が図れる。
That is, when the substrates are bonded to each other, the liquid crystal mixture is dropped on one of the substrates and sandwiched between the two substrates to fill the cell with the liquid crystal mixture. Then, the resin is precipitated from the liquid crystal material to form a column, and after the resin is precipitated in the column, the entire surface of the cell including the sealing portion is irradiated with ultraviolet rays to cure the sealing portion and the column-shaped resin in one step. Can be done. Also, a re-gap step is not required. Therefore, the manufacturing process can be simplified and the manufacturing time can be reduced.

【0081】「紫外線と熱による硬化」また、一般に、
アクティブ型の液晶電気光学装置においてはTFTやM
IM素子を基板上に有する場合、それら素子と対向する
側の基板には、動作の安定化のため素子に対する光の照
射を防ぐ遮光膜が設けられている。よって、カラム状の
樹脂を形成するために通常の紫外線硬化型樹脂を用いた
場合、素子部分に存在する未硬化樹脂には対向基板側か
ら照射される紫外線が届かずに未硬化のまま残ってしま
い、十分な基板強度が得られなくなってしまうことがあ
った。
"Curing by ultraviolet light and heat"
In an active type liquid crystal electro-optical device, TFT or M
In the case where the IM elements are provided on a substrate, a light-shielding film for preventing light from being applied to the elements is provided on the substrate on the side facing the elements to stabilize the operation. Therefore, when a normal ultraviolet-curable resin is used to form a column-shaped resin, the uncured resin existing in the element portion remains uncured without the ultraviolet rays irradiated from the counter substrate side reaching the uncured resin. As a result, sufficient substrate strength may not be obtained.

【0082】また、このような未硬化のまま残った樹脂
は、温度が上がると液晶材料中に溶解して不純物として
作用し、表示が不安定になるなど装置の動作に悪影響を
与えてしまうことがあった。
When the temperature rises, such uncured resin dissolves in the liquid crystal material and acts as an impurity, which adversely affects the operation of the apparatus, such as instability of display. was there.

【0083】この遮光膜のような紫外線が遮光される領
域を有する部分の未硬化状樹脂を硬化させ、装置の機械
的強度と動作特性の低下を防ぐために、紫外線照射に加
えて加熱を用いて未硬化樹脂を硬化させてもよい。この
場合、樹脂として、紫外線、熱のいずれにおいても硬化
する樹脂としてアクリル変成エポキシ樹脂を用いるとよ
い。
In order to cure the uncured resin in the portion having the region where the ultraviolet light is shielded, such as the light shielding film, and to prevent the mechanical strength and operation characteristics of the apparatus from being deteriorated, heat is applied in addition to the ultraviolet irradiation. The uncured resin may be cured. In this case, it is preferable to use an acrylic modified epoxy resin as a resin that cures both in ultraviolet light and heat.

【0084】すなわち、カラム状樹脂となる樹脂材料
を、紫外線でも熱でも硬化するアクリル変成エポキシ樹
脂を用い、紫外線が遮光される部分の樹脂は主に熱によ
って硬化させ、それ以外の部分の樹脂は紫外線によって
硬化させる。
That is, an acrylic modified epoxy resin that cures with ultraviolet light and heat is used as the resin material to be the column resin, and the resin in the portion where the ultraviolet light is shielded is mainly cured by heat, and the resin in the other portions is not cured. Cured by ultraviolet light.

【0085】このようにすることにより、紫外線照射が
妨げられない部分にカラム状に析出した樹脂は、紫外線
照射で完全硬化する。他の部分の樹脂材料は遮光されて
いるので、紫外線を硬化のエネルギー源として使用でき
ないが、加熱することでこの部分の樹脂を硬化させるこ
とが可能となり、遮光膜等があっても装置の機械的強度
と動作特性の低下を防ぐことができる。
By doing so, the resin deposited in a column at the portion where the irradiation of ultraviolet rays is not hindered is completely cured by the irradiation of ultraviolet rays. Since the other parts of the resin material are shielded from light, ultraviolet light cannot be used as a curing energy source.However, it is possible to cure the resin in this part by heating. It is possible to prevent a decrease in the target strength and the operation characteristics.

【0086】「効果」以上の如く、本発明により、液晶
材料の配向を損なうことなく、基板間に樹脂を散在させ
て、両面の基板をその樹脂で固着する事が出来る。その
結果大面積の液晶セルであっても基板間距離を一定に保
つ事ができるようになる。
[Effects] As described above, according to the present invention, a resin can be scattered between substrates and the substrates on both sides can be fixed by the resin without impairing the alignment of the liquid crystal material. As a result, even if the liquid crystal cell has a large area, the distance between the substrates can be kept constant.

【0087】また本発明により従来の液晶電気光学装置
で問題となっていた、装置内部の電荷による液晶分子の
余計な状態変化を、装置内に存在する電荷自身を反応開
始剤からの電荷により積極的にキャンセルすることによ
り解決することができる。
According to the present invention, an unnecessary change in the state of the liquid crystal molecules due to the electric charge in the device, which is a problem in the conventional liquid crystal electro-optical device, is positively caused by the electric charge existing in the device due to the electric charge from the reaction initiator. The problem can be solved by canceling it.

【0088】また、本発明によれば、従来のように電荷
移動錯体を用いることで問題となっていた、過剰なキャ
ンセル分の電荷が発生しないことから、長期にわたる装
置の光学安定性が得られる。
Further, according to the present invention, since the use of a charge transfer complex as in the prior art does not generate an excessive amount of charge for cancellation, optical stability of the device can be obtained for a long period of time. .

【0089】[0089]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0090】[0090]

【実施例】『実施例1』実施例1〜8は、液晶セル内に
カラム状樹脂を形成した例を示す。本発明を強誘電性液
晶を用いた液晶電気光学装置に対して実施した例を図2
を用いて記述する。
[Embodiment 1] Embodiments 1 to 8 show examples in which a columnar resin is formed in a liquid crystal cell. FIG. 2 shows an example in which the present invention is applied to a liquid crystal electro-optical device using a ferroelectric liquid crystal.
Describe using.

【0091】10cm□の青板ガラス1110、1111
にインジウム・チン・オキサイド(ITOと省略する)
1112、1113をスパッタ法や蒸着法にて500〜
2000Å、ここでは1000Åの膜厚に成膜し、通常
のフォトリソ工程でパターニングした。この基板上にス
ピンコート法でポリイミド1114、1115を塗布し
280℃で焼成した。ポリイミドとしては日立化成製L
Q5200、または東レ製LP−64、日産化学製RN
−305を用いた。厚さは100〜300Å、ここでは
100Åであった。この基板をラビング処理を施して一
軸配向処理とした。一方の基板上には、シリカ粒子であ
る触媒化成製真絲球のスペーサー1118を散布し、他
方の基板にエポキシ樹脂製のシール材1119をスクリ
ーン印刷で形成した。両基板はスペーサーにより電極間
の距離を約1.5μmとして貼り合わせ、セルを形成し
た。
10 cm square blue plate glass 1110, 1111
Indium-tin-oxide (abbreviated as ITO)
1112 and 1113 are formed by sputtering or vapor deposition 500 to
A film was formed to a thickness of 2000 °, here 1000 °, and patterned by a usual photolithography process. Polyimides 1114 and 1115 were applied on the substrate by spin coating and baked at 280 ° C. Hitachi Chemical L
Q5200, Toray LP-64, Nissan Chemical RN
-305 was used. The thickness was 100-300 °, here 100 °. This substrate was subjected to a rubbing treatment to obtain a uniaxial orientation treatment. On one substrate, a spacer 1118 made of a silica particle, which is a catalyzed chemical fiber ball, was sprayed, and on the other substrate, an epoxy resin sealing material 1119 was formed by screen printing. The two substrates were bonded to each other with a spacer having a distance between electrodes of about 1.5 μm to form a cell.

【0092】液晶材料1116としては、ビフェニル系
の強誘電性液晶混合物を用いた。構造式としては C8 17O−C6 4 −C6 4 −COO−C* HCH
3 2 51021O−C6 4 −C6 4 −COO−C* HCH
3 2 5 を1:1で混合したものである。相系列は、等方相−ス
メクチックA相−スメクチックC* −結晶を示すもので
ある。また樹脂としては市販の紫外線硬化型樹脂を用い
た。未硬化樹脂と液晶材料との混合物において未硬化樹
脂の混入率を5%および15%とした。残りの95%お
よび85%が液晶材料である。樹脂を混合することで液
晶材料の等方相から液晶相への転移点は5〜20℃低下
した。
As the liquid crystal material 1116, a biphenyl-based ferroelectric liquid crystal mixture was used. C 8 H 17 O-C 6 H 4 -C as Formula 6 H 4 -COO-C * HCH
3 C 2 H 5 C 10 H 21 O-C 6 H 4 -C 6 H 4 -COO-C * HCH
3 C 2 H 5 is mixed at a ratio of 1: 1. The phase sequence shows an isotropic phase-smectic A phase-smectic C * -crystal. A commercially available ultraviolet-curable resin was used as the resin. The mixing ratio of the uncured resin in the mixture of the uncured resin and the liquid crystal material was set to 5% and 15%. The remaining 95% and 85% are liquid crystal material. The transition point of the liquid crystal material from the isotropic phase to the liquid crystal phase was lowered by 5 to 20 ° C. by mixing the resin.

【0093】セルと液晶を100℃に加熱し、真空下で
前述のセルに注入した。この後2〜20℃/hr、ここ
では3℃/hrで室温へ徐冷した。徐冷後の室温におけ
る配向状態を偏光顕微鏡で観察すると、液晶材料の配向
は、ラビング方向に沿って一軸配向となった。つまり、
偏光顕微鏡下で良好な消光位を確認する事ができた。
The cell and the liquid crystal were heated to 100 ° C. and injected into the cell under vacuum. Thereafter, it was gradually cooled to room temperature at 2 to 20 ° C / hr, here 3 ° C / hr. When the alignment state at room temperature after slow cooling was observed with a polarizing microscope, the alignment of the liquid crystal material was uniaxial along the rubbing direction. That is,
A good extinction position could be confirmed under a polarizing microscope.

【0094】樹脂は、その液晶材料の間に点在するよう
に析出した。樹脂は複屈折を示さず、偏光顕微鏡下では
黒状態となって観察することができた。この状態で液晶
材料と未硬化樹脂を分離することが出来ている。
The resin was deposited so as to be interspersed between the liquid crystal materials. The resin did not show birefringence and could be observed in a black state under a polarizing microscope. In this state, the liquid crystal material and the uncured resin can be separated.

【0095】次に、このセルに紫外線を照射してセル内
部の樹脂を硬化した。紫外線強度は3〜30mW/cm2
ここでは10mW/cm2 、照射時間は0.5〜5分ここ
では1分であった。
Next, the cell was irradiated with ultraviolet rays to cure the resin inside the cell. UV intensity is 3~30mW / cm 2
Here, the irradiation time was 10 mW / cm 2 , and the irradiation time was 0.5 to 5 minutes.

【0096】紫外線照射後の液晶材料の配向は、紫外線
照射前の顕微鏡観察の時とほぼ一致しており良好な配向
状態となっていた。
The orientation of the liquid crystal material after the irradiation of the ultraviolet light almost coincided with that at the time of microscopic observation before the irradiation of the ultraviolet light, and was in a favorable alignment state.

【0097】このセルに方形波を印加し、コントラスト
比を測定した結果を表1に示す。
Table 1 shows the results of measuring a contrast ratio by applying a square wave to this cell.

【0098】[0098]

【表1】 [Table 1]

【0099】表1に示すように、混合物中の樹脂の割合
が高い方がスイッチングしない部分の面積が増加する為
にON透過率がやや低下したが、OFFの時にはその影
響がでなかった。コントラスト比は、それらの値の商で
あるがそれ程差はなく、良好なコントラスト比が得られ
た。また基板側から肉眼で見た際には樹脂の存在は全く
認識できなかった。これらの結果から、混合物中の未硬
化樹脂の割合は0.1〜20%程度であれば従来の装置
と比較して遜色のないものとすることができることがわ
かった。すなわち表示部の面積を液晶材料が占める割合
が80〜99.9%であればよい。
As shown in Table 1, when the proportion of the resin in the mixture was high, the ON transmittance was slightly decreased due to the increase in the area of the non-switching portion. The contrast ratio was a quotient of these values, but there was no significant difference, and a good contrast ratio was obtained. Also, when seen from the substrate side with the naked eye, the presence of the resin could not be recognized at all. From these results, it was found that if the proportion of the uncured resin in the mixture was about 0.1 to 20%, it could be comparable to a conventional apparatus. That is, the ratio of the area of the display portion to the liquid crystal material may be 80 to 99.9%.

【0100】次に、徐冷の効果を見る為に、冷却速度を
変化したときの配向状態の変化を観察した。その結果を
表2に示す。
Next, in order to see the effect of the slow cooling, the change in the orientation state when the cooling rate was changed was observed. Table 2 shows the results.

【0101】[0101]

【表2】 [Table 2]

【0102】表2に示すように、本実施例においては徐
冷速度100℃/hr以上では液晶材料が一軸配向しな
い部分が生じた。20℃/hr程度以下では実用上全く
問題の無い良好な一軸配向を得る事ができた。このよう
に徐冷によって良好な一軸配向が得ることができた。こ
の後、基板1110、1111に偏光板1120、11
21を貼り、セルが完成した。
As shown in Table 2, in this example, a portion where the liquid crystal material was not uniaxially oriented was formed at a slow cooling rate of 100 ° C./hr or more. At about 20 ° C./hr or less, it was possible to obtain a good uniaxial orientation having no practical problem. Thus, good uniaxial orientation could be obtained by slow cooling. After that, the polarizing plates 1120, 11
21 was pasted, and the cell was completed.

【0103】このようにして、均一な電極間距離を有す
るセルを作製することができた。完成したセルを垂直に
しても表示ムラ等は全く認識できなかった。基板の変形
等が生じることもなく、使用した強誘電性液晶の層構造
が壊れることもなかった。
In this way, a cell having a uniform distance between electrodes could be manufactured. Even when the completed cell was made vertical, display unevenness and the like could not be recognized at all. There was no deformation of the substrate and the layer structure of the used ferroelectric liquid crystal was not broken.

【0104】基板をはがして、液晶をアルコールで洗浄
除去した後、基板上に残存する樹脂を走査型電子顕微鏡
で観察すると、図27に示す様に両基板を固定していた
カラム状の樹脂を観察する事が出来た。
After the substrate was peeled off and the liquid crystal was washed away with alcohol, the resin remaining on the substrate was observed with a scanning electron microscope. As shown in FIG. 27, the columnar resin fixing both substrates was removed. I was able to observe.

【0105】この樹脂の形状は、液晶材料の相転移系列
や徐冷速度等によって変化する。またカラム状樹脂の存
在する間隔は10〜100μm程度であった。
The shape of the resin changes depending on the phase transition sequence of the liquid crystal material, the slow cooling rate, and the like. The interval between the columnar resins was about 10 to 100 μm.

【0106】図3にこの樹脂が表示部の面積を占める割
合と混合物中の未硬化樹脂の混入率の関係を示す。図3
からわかるように、両者はほぼ一致していた。すなわち
混入した未硬化樹脂のほとんどがカラム状に硬化してい
たことがわかった。
FIG. 3 shows the relationship between the ratio of the resin occupying the display area and the mixing ratio of the uncured resin in the mixture. FIG.
As can be seen, the two were almost identical. That is, it was found that most of the mixed uncured resin was cured in a column shape.

【0107】『実施例2』液晶の動作モードとしてST
N型を用いた時の実施例について記述する。ITOを成
膜しパターニングを行った対角15インチを有する基板
上に配向膜として日産化学製SE−4110またはSE
−610をストライプコータを用いたオフセット印刷の
手法で成膜した。焼成温度は200〜300℃ここでは
280℃であった。膜厚は、600〜1000Åここで
は800Åであった。上下の基板を対向させた時のラビ
ング方向のなす角度が240°になるように、2枚の基
板をラビング処理した。さらに一方の基板上には6.5
μmのシリカ製スペーサーを散布し、他方の基板上には
シール印刷を施し、両者処理面を内向きにして加圧し、
加熱固定した。
[Embodiment 2] ST is set as the operation mode of the liquid crystal.
An embodiment using the N type will be described. Nissan Chemical Industries SE-4110 or SE-4110 as an alignment film on a 15-inch diagonal substrate on which ITO was formed and patterned.
-610 was formed by an offset printing method using a stripe coater. The sintering temperature was 200 to 300 ° C, here 280 ° C. The film thickness was 600-1000 °, here 800 °. The two substrates were rubbed so that the angle formed by the rubbing directions when the upper and lower substrates faced each other was 240 °. 6.5 on one of the substrates
μm silica spacers are sprayed, seal printing is performed on the other substrate, and the pressure is applied with both processing surfaces facing inward,
Heated and fixed.

【0108】液晶材料としては、メルク製ZLI−22
93を用い、カイラル剤としてS−811を0.1〜3
%ここでは0.12%添加し、ピッチ調整を行い、ピッ
チに対するセル厚の比率を0.50から0.55とし
た。ここに紫外線硬化樹脂を液晶に対して5%添加した
ものを前述のセル中に真空注入した。注入後セルをプレ
スし余分な液晶を排除した後、120℃、1時間加熱
後、室温まで徐冷した。
As a liquid crystal material, ZLI-22 manufactured by Merck was used.
93 and 0.1 to 3 of S-811 as a chiral agent.
% Here, 0.12% was added to adjust the pitch, and the ratio of the cell thickness to the pitch was changed from 0.50 to 0.55. Here, what added 5% of the ultraviolet curable resin to the liquid crystal was vacuum injected into the above-mentioned cell. After the injection, the cell was pressed to remove excess liquid crystal, heated at 120 ° C. for 1 hour, and then gradually cooled to room temperature.

【0109】このセルに3〜30mW/cm2 ここでは1
0mW/cm2 の紫外線を照射し、内部の樹脂を硬化させ
た。樹脂はセル中で散在していた。偏光板と色補償板を
組み合わせて、TSTNパネルとした。
In this cell, 3 to 30 mW / cm 2, where 1
Ultraviolet rays of 0 mW / cm 2 were irradiated to cure the resin inside. The resin was scattered throughout the cell. A TSTN panel was obtained by combining a polarizing plate and a color compensator.

【0110】2枚の基板は内部の樹脂で固定化されてい
るために対角15インチと言う大面積であるにもかかわ
らず、均一な電極間距離とすることができた。このセル
をデューティ200で駆動した時のコントラスト比は1
5であり、樹脂を含んでいない従来の装置と同等のコン
トラスト比のパネルを得ることができた。
Since the two substrates were fixed by the resin inside, they had a uniform area between the electrodes despite having a large area of 15 inches diagonally. When this cell is driven at a duty of 200, the contrast ratio is 1
As a result, a panel having a contrast ratio equivalent to that of a conventional device containing no resin was obtained.

【0111】『実施例3』本発明を複屈折制御効果型液
晶電気光学装置に実施した場合について記述する。配向
膜として日産化学製SE−7511L、RN715又は
日立化成製LQ−1800をITO付基板上にスピナー
を用いて塗布し、250〜300℃ここでは300℃で
焼成した。膜厚は500〜1000Åここでは600Å
であった。この配向膜はネマチック液晶に対して容易に
垂直配向を形成させる疎水性の高い配向膜である。この
基板を用いて電極間距離が6μmのセルを形成した。こ
こに誘電異方性が負のメルク製ZLI−4318ネマチ
ック液晶に対して紫外線硬化樹脂を5%含有した混合物
を前記セルに注入した。この液晶材料の誘電異方性は、
−2.0であった。
Embodiment 3 A case where the present invention is applied to a birefringence control effect type liquid crystal electro-optical device will be described. As an alignment film, Nissan Chemical's SE-7511L, RN715 or Hitachi Chemical LQ-1800 was applied on a substrate with ITO using a spinner, and baked at 250 to 300 ° C, here 300 ° C. The film thickness is 500 to 1000 (here, 600)
Met. This alignment film is a highly hydrophobic alignment film that easily forms vertical alignment with the nematic liquid crystal. Using this substrate, a cell having an interelectrode distance of 6 μm was formed. Here, a mixture containing 5% of an ultraviolet curable resin with respect to Merck's ZLI-4318 nematic liquid crystal having a negative dielectric anisotropy was injected into the cell. The dielectric anisotropy of this liquid crystal material is
-2.0.

【0112】徐冷後、紫外線を照射して、散在している
樹脂を硬化した。この状態で偏光顕微鏡でコノスコープ
像を観察すると、十字の像が観察され、基板面に対して
液晶分子が垂直に配列していることがわかった。このセ
ルに対し駆動電圧を印加した時のコントラスト比は80
であり、また極めて表示ムラの少ないものとすることが
できた。このようにして配向状態及びコントラスト比に
おいて樹脂を含んでいない時の液晶特性を残したまま、
両基板を樹脂で固着させることができた。
After the cooling, ultraviolet rays were irradiated to cure the dispersed resin. When a conoscopic image was observed with a polarizing microscope in this state, a cross image was observed, and it was found that the liquid crystal molecules were arranged perpendicular to the substrate surface. The contrast ratio when a drive voltage is applied to this cell is 80.
In addition, it was possible to make display unevenness extremely small. In this way, while maintaining the liquid crystal properties when the resin is not included in the alignment state and the contrast ratio,
Both substrates could be fixed with resin.

【0113】『実施例4』30cm□、1.1mm厚の一
対のガラス基板にそれぞれ電極材料であるインジウム・
チン・オキサイド(ITOと省略する)をスパッタ法や
蒸着法にて500〜2000Å、本実施例では1000
Åの膜厚に成膜し、通常のフォトリソ工程で電極をパタ
ーニングした。この基板上にスピンコート法でポリイミ
ドを塗布し、280℃で焼成した。ポリイミドとしては
日産化学製RN−305、東レ製LP−64ここでは東
レ製LP−64を用いた。ポリイミド膜厚は100〜8
00Å、本実施例では150Åであった。この基板にラ
ビング処理を施して一軸配向処理を行った。一方の基板
上には、シリカ粒子である触媒化成製真絲球をスペーサ
ーとして散布し、一方の基板上には、エポキシ樹脂製の
シール材をスクリーン印刷にて形成した。両基板は電極
間距離を約1.5μmとして貼り合わせて、セルを形成
した。電極間のショートを防止するために、基板上の電
極およびリードを覆って絶縁膜を設け、その上に配向膜
を設けてもよい。
Example 4 A pair of glass substrates 30 cm square and 1.1 mm thick were each formed of indium, an electrode material.
Tin oxide (abbreviated as ITO) is formed by sputtering or vapor deposition at 500 to 2000 Å,
A film was formed to a film thickness of Å, and the electrode was patterned by a usual photolithography process. Polyimide was applied on this substrate by a spin coating method and baked at 280 ° C. Nissan Chemical's RN-305 and Toray's LP-64 were used here as the polyimide. Polyimide film thickness is 100-8
00 °, and 150 ° in this embodiment. The substrate was subjected to a rubbing treatment to perform a uniaxial orientation treatment. On one substrate, a silica fiber-made sphere made of catalyst chemicals was sprayed as a spacer, and on one substrate, a sealing material made of epoxy resin was formed by screen printing. The two substrates were attached to each other with a distance between the electrodes of about 1.5 μm to form a cell. In order to prevent a short circuit between the electrodes, an insulating film may be provided to cover the electrodes and the leads on the substrate, and an alignment film may be provided thereon.

【0114】本実施例で使用した液晶材料としては、チ
ッソ社製の強誘電性液晶、CS1014である。この液
晶のPsは5.4nC/cm2 であり、相系列はI(等
方相)−N(ネマチック相)−A(スメクチックA相)
−C* (スメクチックC* 相)である。
The liquid crystal material used in this embodiment is CS1014, a ferroelectric liquid crystal manufactured by Chisso Corporation. The Ps of this liquid crystal is 5.4 nC / cm 2 , and the phase sequence is I (isotropic phase) -N (nematic phase) -A (smectic A phase).
-C * (smectic C * phase).

【0115】また本実施例で用いた樹脂材料は、市販の
紫外線硬化型樹脂であり、樹脂材料中の反応開始剤とし
ては、本発明の効果が最も良く得られるもののうちから
反応性の高いチバガイギー製イルガキュア369を用い
た。
The resin material used in this example is a commercially available ultraviolet-curable resin, and as a reaction initiator in the resin material, one having the highest reactivity among the ones which can obtain the best effect of the present invention is used. Irgacure 369 was used.

【0116】液晶材料95%と、樹脂材料として反応開
始剤を添加した樹脂構成材料を5%混合し、混合した樹
脂材料が液晶材料中によりよく混合するように、100
℃で液晶が等方相を示すまで加熱、攪はんして樹脂を液
晶材料中に均一に混合して液晶混合物とした。反応開始
剤と樹脂構成材料の総量に対し反応開始剤の添加量は3
%であった。
[0116] 95% of the liquid crystal material and 5% of a resin constituent material to which a reaction initiator is added as a resin material are mixed, and 100% is mixed so that the mixed resin material is more well mixed in the liquid crystal material.
The mixture was heated and stirred at ℃ until the liquid crystal showed an isotropic phase to uniformly mix the resin in the liquid crystal material to form a liquid crystal mixture. The addition amount of the reaction initiator is 3 with respect to the total amount of the reaction initiator and the resin constituent materials.
%Met.

【0117】セルと液晶混合物を100℃に加熱し、真
空下で前述のセルに注入後2〜20℃/hr、本実施例
では2℃/hrで室温まで徐冷した。徐冷後の室温での
配向状態を偏光顕微鏡で観察すると、樹脂材料はセル中
に点在しており、液晶材料の配向は樹脂を添加しない液
晶材料と同様に、液晶は配向膜のラビング方向に沿って
一軸配向となり、良好な消光位が得られた。
The cell and the liquid crystal mixture were heated to 100 ° C., and after being poured into the above-mentioned cell under vacuum, the mixture was gradually cooled to room temperature at 2 to 20 ° C./hr, in this example, 2 ° C./hr. When the alignment state at room temperature after slow cooling is observed with a polarizing microscope, the resin material is scattered in the cell, and the liquid crystal is aligned in the rubbing direction of the alignment film in the same manner as the liquid crystal material to which no resin is added. And a good extinction position was obtained.

【0118】このセルに紫外線を、強度3〜30mW/
cm2 、照射時間0.5〜5min、本実施例では強度
20mW/cm2 で1minの照射を行って樹脂を硬化
させた。紫外線照射後も液晶は配向膜のラビング方向に
沿って一軸配向となっており、良好な消光位が得られ
た。またこのセルの表示部分の面積を樹脂材料が占める
割合は、約5%であった。この硬化した樹脂は顕微鏡で
は観察できたが、肉眼では全くその存在を確認できなか
った。このセルに偏光板等を加えて液晶電気光学装置を
作製した。
Ultraviolet light was applied to this cell at an intensity of 3 to 30 mW /
cm 2, irradiation time 0.5~5Min, the resin was cured by performing the irradiation of 1min at intensity 20 mW / cm 2 in the present embodiment. The liquid crystal was uniaxially aligned along the rubbing direction of the alignment film even after irradiation with ultraviolet light, and a good extinction position was obtained. The ratio of the area of the display portion of the cell to the resin material was about 5%. Although the cured resin could be observed with a microscope, its presence could not be confirmed with the naked eye. A polarizing plate and the like were added to this cell to produce a liquid crystal electro-optical device.

【0119】この液晶電気光学装置の上下電極間に±3
0V、5Hzの三角波を印可して電圧を連続的に変化さ
せた時の電流の特性(以下電流−電圧特性という)を測
定すると、図5のようにある電圧値において液晶分子が
自発分極の向きを180°かえる、つまり反転するPs
ピークのみが観察できた。
± 3 between the upper and lower electrodes of the liquid crystal electro-optical device.
When a current characteristic (hereinafter referred to as a current-voltage characteristic) when a voltage is continuously changed by applying a triangular wave of 0 V and 5 Hz is measured, as shown in FIG. Is changed by 180 °, that is, Ps is inverted.
Only peaks could be observed.

【0120】この装置の電極間に1μsec、15Vの
パルスを1sec毎に印加(非印可時開放)して動作さ
せた時の光学特性を図6に示す(なお、本明細書中の実
施例において、電流−電圧特性および光学特性を示す図
はそれぞれの要素の相対値を示した)。図から明らかな
ようにPsピーク電圧以上の電圧印加時に急峻な明暗
(Bright、Dark)の反転が起こり、なおかつ
その状態は安定していることが分かる。また短絡時のメ
モリー性も良好であった。
FIG. 6 shows the optical characteristics when the device is operated by applying a pulse of 1 μsec, 15 V between the electrodes of the device every 1 second (opening when no application is performed) (in the embodiment of the present specification). , Current-voltage characteristics and optical characteristics show relative values of each element). As is clear from the figure, when a voltage higher than the Ps peak voltage is applied, a sharp change in brightness (Bright, Dark) occurs, and the state is stable. Also, the memory property at the time of short circuit was good.

【0121】液晶混合物中の樹脂の割合を0.1%から
20%まで変化させてみても、硬化後のセル中の樹脂の
表示部分を占める面積の割合は混合した樹脂の割合と同
様に0.1%から20%でありセル中に分散していた。
またこれら樹脂硬化後のセルを厚さ方向に分断し、液晶
をメタノールで洗浄除去して樹脂部分の形状をSEMに
て観察したところ、上下基板を接着するカラム形状や樹
脂塊として存在していることが確認できた。
Even if the ratio of the resin in the liquid crystal mixture is changed from 0.1% to 20%, the ratio of the area occupying the display portion of the resin in the cured cell is 0% as in the case of the mixed resin. 0.1% to 20%, and were dispersed in the cell.
The cells after curing of the resin were divided in the thickness direction, and the liquid crystal was washed and removed with methanol, and the shape of the resin portion was observed with an SEM. That was confirmed.

【0122】このようにして作製された液晶電気光学装
置は表示ムラ、チラツキ等はみられず、安定した光学特
性を有する極めて高性能な装置とすることができた。ま
た、一方の基板の内側表面に複数の画素電極とそれに接
続する薄膜トランジスタを形成したアクティブマトリク
ス型の液晶電気光学装置を本実施例の液晶混合物をセル
内に満たして作製したところ、高速かつ高いコントラス
ト比を有する装置とすることができた。また樹脂により
基板間距離一定に保たれ、30cm□という大面積である
にもかかわらず、装置を立てて使用して場合の基板のた
わみによる基板間距離の拡大、および基板面を指などで
押した場合の基板間距離の縮小も発生せず、表示ムラや
液晶の層構造、配向の乱れもなかった。
The thus manufactured liquid crystal electro-optical device was free from display unevenness, flicker, and the like, and was a very high-performance device having stable optical characteristics. Further, an active matrix type liquid crystal electro-optical device in which a plurality of pixel electrodes and a thin film transistor connected to the pixel electrodes were formed on the inner surface of one substrate was manufactured by filling the liquid crystal mixture of this example in a cell, and high speed and high contrast were obtained. A device having a ratio was obtained. In addition, the distance between the substrates is kept constant by the resin, and despite the large area of 30cm □, the distance between the substrates is increased due to the bending of the substrate when the device is used upright and the substrate surface is pushed with a finger or the like. In this case, the distance between the substrates did not decrease, and there was no display irregularity, no disturbance in the layer structure of liquid crystal, and no alignment.

【0123】比較のため、樹脂材料すなわち未硬化樹脂
材料および反応開始剤を液晶材料中に混合せずに同じセ
ル構造、作製条件、液晶材料で特性の測定を行った。液
晶とセルを100℃に加熱し、セル中に真空下で注入、
徐冷した。徐冷後の配向状態を偏光顕微鏡で観察する
と、液晶は配向膜のラビング方向に沿って一軸配向とな
り、良好な消光位が得られた。このセルに偏光板等を加
えて液晶電気光学装置を作製した。
For comparison, characteristics were measured using the same cell structure, manufacturing conditions, and liquid crystal material without mixing the resin material, that is, the uncured resin material and the reaction initiator into the liquid crystal material. The liquid crystal and the cell are heated to 100 ° C. and injected into the cell under vacuum,
Cooled slowly. When the alignment state after slow cooling was observed with a polarizing microscope, the liquid crystal was uniaxially aligned along the rubbing direction of the alignment film, and a good extinction position was obtained. A polarizing plate and the like were added to this cell to produce a liquid crystal electro-optical device.

【0124】この液晶電気光学装置に±30V、5Hz
の三角波を印可して電流−電圧特性を測定すると、図7
のようにPsピークと、装置内の電荷の移動と考えられ
る電流の増減即ち第2ピークが測定される。
The liquid crystal electro-optical device has ± 30 V, 5 Hz
When the current-voltage characteristics were measured by applying a triangular wave of FIG.
The Ps peak and the increase / decrease of the current considered to be the movement of the electric charge in the device, that is, the second peak are measured.

【0125】この装置に1μsec、15Vのパルスを
1sec毎に印加して動作させた時の光学特性を図8に
示す。電圧印加で液晶分子が反転して暗状態になるもの
の、この暗状態は時間経過に伴い明状態側へその後また
暗状態側へと不安定に変化してしまう。またこの暗状態
もあまり良好ではなかった。
FIG. 8 shows the optical characteristics when the device was operated by applying a 1 μsec, 15 V pulse every 1 second. Although the liquid crystal molecules are inverted by a voltage application to be in a dark state, this dark state is unstablely changed to a bright state side and then to a dark state side with time. The dark state was not very good.

【0126】また装置を立てて使用すると基板の下部に
液晶材料が溜まって基板間隔が大きくなる部分が発生
し、また指で押すとその部分の基板間距離が縮小し、共
に液晶の層構造が崩れ、表示ムラが発生してしまった。
When the apparatus is used upright, liquid crystal material accumulates in the lower part of the substrate, causing a portion where the substrate interval becomes large, and when pressed with a finger, the distance between the substrates is reduced, and the liquid crystal layer structure is reduced. Collapse and display unevenness have occurred.

【0127】次に液晶材料と樹脂材料をそれぞれ95
%、5%として混合し、樹脂材料中の反応開始剤添加量
を樹脂構成材料と反応開始剤の合計量に対し0〜10%
まで変化させた。
Next, a liquid crystal material and a resin material
% And 5%, and the addition amount of the reaction initiator in the resin material is 0 to 10% with respect to the total amount of the resin constituent material and the reaction initiator.
Changed.

【0128】反応開始剤の添加量が0%の場合、液晶は
配向膜のラビング方向に沿って一軸配向となり良好な消
光位は得られたが、三角波電圧を印加して電流−電圧特
性を測定するとPsピークと、第2ピークが測定され
る。この装置に1μsec、15Vのパルスを1sec
毎に印加して動作させた時の光学特性を図9に示す。電
圧印加で液晶分子が反転して暗状態になるものの、この
暗状態は経時変化して少し明状態に移る。前述の樹脂を
加えない例(図8)と比較してやや良好な特性を示すも
のの、不安定性は残った。また樹脂は当然硬化しない。
When the amount of the reaction initiator added was 0%, the liquid crystal was uniaxially aligned along the rubbing direction of the alignment film, and a good extinction position was obtained. However, the current-voltage characteristics were measured by applying a triangular wave voltage. Then, the Ps peak and the second peak are measured. 1μsec, 15V pulse for 1sec
FIG. 9 shows the optical characteristics when the operation is performed by applying the voltage every time. Although the liquid crystal molecules are inverted by a voltage application to be in a dark state, the dark state changes with time and shifts to a slightly bright state. Although the characteristics are slightly better than those of the above-described example (FIG. 8) in which the resin is not added, the instability remains. Also, the resin does not naturally cure.

【0129】本実施例で使用した反応開始剤の場合、添
加量を0.3%以上とした場合、樹脂も硬化し、第2ピ
ークの発生も抑えられ、特性の改善ができた。
In the case of the reaction initiator used in this example, when the addition amount was 0.3% or more, the resin was cured, the generation of the second peak was suppressed, and the characteristics were improved.

【0130】『実施例5』本実施例における装置の構造
および液晶と樹脂の割合、また樹脂中の反応開始剤種お
よび添加量は実施例4と同じである。本実施例の液晶材
料としてはチッソ社製のPsが6.6nC/cm2 の相
系列がI−N−A−C* を示すCS1015を使用し
た。液晶材料中に樹脂材料を添加し、液晶材料中により
よく混合するために、90℃に加熱、攪はんし、90℃
に加熱したセルに真空下で注入、徐冷後、紫外線照射で
樹脂を硬化した。液晶はラビング方向に沿って一軸配向
となり、良好な消光位が得られた。このセルに偏光板等
を加えて液晶電気光学装置とした。
Example 5 The structure of the device, the ratio of liquid crystal and resin, the type of reaction initiator in the resin and the amount added are the same as in Example 4 in this example. As a liquid crystal material of the present example, CS1015 manufactured by Chisso and having a phase sequence of 6.6 nC / cm 2 , which shows INAC * was used. Add the resin material to the liquid crystal material, and heat and stir to 90 ° C to mix well in the liquid crystal material.
The mixture was poured into a heated cell under vacuum, cooled slowly, and then cured by ultraviolet irradiation. The liquid crystal was uniaxially oriented along the rubbing direction, and a good extinction position was obtained. A polarizing plate or the like was added to the cell to obtain a liquid crystal electro-optical device.

【0131】この液晶電気光学装置に±30V、5Hz
の三角波を印加し電流−電圧特性を測定すると、図10
のようにPsピークのみが観察できた。
The liquid crystal electro-optical device has ± 30 V, 5 Hz.
When the current-voltage characteristic is measured by applying a triangular wave of FIG.
, Only the Ps peak could be observed.

【0132】この装置に1μsec、15Vのパルスを
1sec毎に印加(非印加時開放)して動作させた時の
光学特性は実施例4と同じであり、電圧印荷に伴い明暗
の急峻な反転が起こり、この明および暗状態は経時変化
せず安定であった。短絡時のメモリー性も良好であっ
た。
The optical characteristics when the device is operated by applying a 1 μsec, 15 V pulse every 1 sec (open when no voltage is applied) are the same as those of the fourth embodiment. And the light and dark states were stable without change over time. The memory property at the time of short circuit was also good.

【0133】このようにして作製された液晶電気光学装
置は表示ムラ、チラツキ等はみられず、安定した光学特
性を有する極めて高性能な装置とすることができた。ま
た、一方の基板の内側表面に複数の画素電極とそれに接
続する薄膜トランジスタを形成したアクティブマトリク
ス型の液晶電気光学装置を本実施例の液晶混合物をセル
内に満たして作製したところ、高速かつ高いコントラス
ト比を有する装置とすることができた。また樹脂により
基板間距離一定に保たれ、30cm□という大面積である
にもかかわらず、装置を立てて使用して場合の基板のた
わみによる基板間距離の拡大、および基板面を指などで
押した場合の基板間距離の縮小も発生せず、表示ムラや
液晶の層構造、配向の乱れもなかった。
The liquid crystal electro-optical device manufactured in this manner was free from display unevenness and flicker, and could be an extremely high-performance device having stable optical characteristics. Further, an active matrix type liquid crystal electro-optical device in which a plurality of pixel electrodes and a thin film transistor connected to the pixel electrodes were formed on the inner surface of one substrate was manufactured by filling the liquid crystal mixture of this example in a cell, and high speed and high contrast were obtained. A device having a ratio was obtained. In addition, the distance between the substrates is kept constant by the resin, and despite the large area of 30cm □, the distance between the substrates is increased due to the bending of the substrate when the device is used upright and the substrate surface is pushed with a finger or the like. In this case, the distance between the substrates did not decrease, and there was no display irregularity, no disturbance in the layer structure of liquid crystal, and no alignment.

【0134】比較のため本実施例の構成において、樹脂
構成材料および反応開始剤を添加せずに液晶材料のみを
セル中に満たして特性を調べた。液晶は配向膜のラビン
グ方向に沿って一軸配向となり、良好な消光位が得られ
たが、電極間に三角波を印加して電流−電圧特性を測定
すると、図11のようにPsピークと、第2ピークが観
察された。
For comparison, in the configuration of this example, the characteristics were examined by filling only the liquid crystal material in the cell without adding the resin constituent material and the reaction initiator. The liquid crystal was uniaxially aligned along the rubbing direction of the alignment film, and a good extinction position was obtained. However, when a triangular wave was applied between the electrodes and the current-voltage characteristics were measured, as shown in FIG. Two peaks were observed.

【0135】この装置に1μsec、15Vのパルスを
1sec毎に印加して動作させた時の光学特性を図12
に示す。電圧印加で液晶分子が反転して暗状態になるも
のの、すぐに明状態側へと不安定に変化してしまった。
FIG. 12 shows the optical characteristics when the device was operated by applying a pulse of 1 μsec and 15 V every 1 second.
Shown in Although the liquid crystal molecules were inverted by the voltage application to be in a dark state, the liquid crystal molecules immediately changed to the light state in an unstable manner.

【0136】また装置を立てて使用すると基板の下部に
液晶材料が溜まって基板間隔が大きくなる部分が発生
し、また指で押すとその部分の基板間距離が縮小し、共
に液晶の層構造が崩れ、表示ムラが発生してしまった。
When the apparatus is used upright, liquid crystal material accumulates in the lower part of the substrate, causing a portion where the distance between the substrates increases, and when pressed with a finger, the distance between the substrates in that portion is reduced, and the layer structure of the liquid crystal is reduced. Collapse and display unevenness have occurred.

【0137】『実施例6』本実施例における装置の構造
および液晶と樹脂の割合、また樹脂中の反応開始剤種お
よび添加量は実施例4と同じである。ただし本実施例の
液晶材料はチッソ社製のPsが9.3nC/cm2 の相
系列がI−N−A−C* を示すCS1017を使用し
た。添加した樹脂材料を液晶中によりよく混合するため
に、80℃に加熱、攪はんし、80℃に加熱したセルに
真空下で注入、徐冷後、紫外線照射で樹脂を硬化した。
液晶は配向膜のラビング方向に沿って一軸配向となり、
良好な消光位が得られた。偏光板等を加えて装置として
完成させた。
Example 6 The structure of the device, the ratio between liquid crystal and resin, the type of reaction initiator in the resin and the amount added are the same as in Example 4 in this example. However, as the liquid crystal material of the present example, CS1017 manufactured by Chisso and having a phase sequence of 9.3 nC / cm 2 , which shows INAC * was used. In order to better mix the added resin material in the liquid crystal, the resin was heated and stirred at 80 ° C., poured into a cell heated to 80 ° C. under vacuum, cooled slowly, and then cured by irradiation with ultraviolet rays.
The liquid crystal is uniaxially aligned along the rubbing direction of the alignment film,
A good extinction position was obtained. The device was completed by adding a polarizing plate and the like.

【0138】この液晶電気光学装置に印加する電圧を連
続的に変化させた時の電流を測定すると、図13のよう
にPsピークのみが観察できた。
When the current when the voltage applied to the liquid crystal electro-optical device was continuously changed was measured, only the Ps peak could be observed as shown in FIG.

【0139】この装置に1μsec、15Vのパルスを
1sec毎に印加(非印加時開放)して動作させた時の
光学特性は実施例4と同じで、電圧印荷に伴い明暗の急
峻な反転が起こり、この明および暗状態は経時変化せず
安定であった。短絡時のメモリー性も良好であった。
The optical characteristics when the device is operated by applying a 1 μsec, 15 V pulse every 1 sec (open when no voltage is applied) are the same as in the fourth embodiment. Occurred, the light and dark states were stable with no change over time. The memory property at the time of short circuit was also good.

【0140】このようにして作製された液晶電気光学装
置は表示ムラ、チラツキ等はみられず、安定した光学特
性を有する極めて高性能な装置とすることができた。ま
た、一方の基板の内側表面に複数の画素電極とそれに接
続する薄膜トランジスタを形成したアクティブマトリク
ス型の液晶電気光学装置を本実施例の液晶混合物をセル
内に満たして作製したところ、高速かつ高いコントラス
ト比を有する装置とすることができた。また樹脂により
基板間距離一定に保たれ、30cm□という大面積である
にもかかわらず、装置を立てて使用して場合の基板のた
わみによる基板間距離の拡大、および基板面を指などで
押した場合の基板間距離の縮小も発生せず、表示ムラや
液晶の層構造、配向の乱れもなかった。
The liquid crystal electro-optical device manufactured in this manner was free from display unevenness, flicker and the like, and could be an extremely high-performance device having stable optical characteristics. Further, an active matrix type liquid crystal electro-optical device in which a plurality of pixel electrodes and a thin film transistor connected to the pixel electrodes were formed on the inner surface of one substrate was manufactured by filling the liquid crystal mixture of this example in a cell, and high speed and high contrast were obtained. A device having a ratio was obtained. In addition, the distance between the substrates is kept constant by the resin, and despite the large area of 30cm □, the distance between the substrates is increased due to the bending of the substrate when the device is used upright and the substrate surface is pushed with a finger or the like. In this case, the distance between the substrates did not decrease, and there was no display irregularity, no disturbance in the layer structure of liquid crystal, and no alignment.

【0141】比較のため液晶材料には樹脂構成材料およ
び反応開始剤を混合せずにセルを作製した。液晶はラビ
ング方向に沿って一軸配向となり、良好な消光位が得ら
れたが、この装置に三角波を印加して電流−電圧特性を
調べると図14のようにPsピークと、第2ピークが観
察された。
For comparison, a cell was prepared without mixing the resin constituent material and the reaction initiator in the liquid crystal material. The liquid crystal was uniaxially oriented along the rubbing direction, and a good extinction position was obtained. However, when a triangular wave was applied to this device and the current-voltage characteristics were examined, the Ps peak and the second peak were observed as shown in FIG. Was done.

【0142】この装置に1μsec、15Vのパルスを
1sec毎に印加して動作させた時の光学特性は実施例
5の図12とほぼ同様であった。電圧印加で液晶分子が
反転して暗状態になるものの、すぐに明状態側へと不安
定に変化してしまった。
The optical characteristics when this device was operated by applying a pulse of 1 μsec and 15 V every one second were almost the same as those in FIG. 12 of the fifth embodiment. Although the liquid crystal molecules were inverted by the voltage application to be in a dark state, the liquid crystal molecules immediately changed to the light state in an unstable manner.

【0143】また装置を立てて使用すると基板の下部に
液晶材料が溜まって基板間隔が大きくなる部分が発生
し、また指で押すとその部分の基板間距離が縮小し、共
に液晶の層構造が崩れ、表示ムラが発生してしまった。
When the apparatus is used upright, liquid crystal material accumulates in the lower part of the substrate, causing a portion where the distance between the substrates increases, and when pressed with a finger, the distance between the substrates in that portion is reduced, and the layer structure of the liquid crystal is reduced. Collapse and display unevenness have occurred.

【0144】『実施例7』本実施例における装置の構造
および、液晶混合物中の液晶と樹脂の混合割合は、実施
例4と同じである。ただし本実施例の液晶材料として
は、ビフェニル系でPsが10.9nC/cm2 の相系
列がI−A−C* を示す強誘電性液晶を用いた。樹脂材
料は市販の紫外線硬化型樹脂である。この樹脂中の反応
開始剤としてはチバガイギー製イルガキュア184を樹
脂構成材料と反応開始剤の合計量に対して1%となるよ
うに混合した。
[Embodiment 7] The structure of the device in this embodiment and the mixing ratio of the liquid crystal and the resin in the liquid crystal mixture are the same as in Embodiment 4. However, as the liquid crystal material of this example, a biphenyl-based ferroelectric liquid crystal having a phase sequence of 10.9 nC / cm 2 showing IAC * was used. The resin material is a commercially available ultraviolet curable resin. As a reaction initiator in this resin, Ciba Geigy's Irgacure 184 was mixed so as to be 1% with respect to the total amount of the resin constituent material and the reaction initiator.

【0145】添加した樹脂材料を液晶中によりよく混合
するために、120℃で液晶が等方相を示すまで加熱、
攪はんし、120℃に加熱したセルに、真空下で注入、
徐冷後、紫外線照射して樹脂を硬化させた。配向状態は
樹脂を添加しない液晶材料と同様、液晶は配向膜のラビ
ング方向に沿って一軸配向となり、良好な消光位が得ら
れた。偏光板等を加えて液晶電気光学装置として完成さ
せた。
In order to better mix the added resin material in the liquid crystal, heat the mixture at 120 ° C. until the liquid crystal shows an isotropic phase.
Stir and inject under vacuum into the cell heated to 120 ° C.
After slow cooling, the resin was cured by irradiation with ultraviolet rays. The liquid crystal was uniaxially aligned along the rubbing direction of the alignment film as in the case of the liquid crystal material to which no resin was added, and a good extinction position was obtained. A liquid crystal electro-optical device was completed by adding a polarizing plate and the like.

【0146】この液晶電気光学装置に印加する電圧を連
続的に変化させた時の電流を測定すると、図15のよう
にPsピークのみが観察できた。
When the current when the voltage applied to the liquid crystal electro-optical device was continuously changed was measured, only the Ps peak could be observed as shown in FIG.

【0147】この装置に1μsec、15Vのパルスを
1sec毎に印加(非印加時開放)して動作させた時の
光学特性を図16に示す。図から明らかなように電圧印
加時に明暗の反転が起こり、光学特性、特に暗状態が良
好となりこの状態も安定していることが分かる。また短
絡時のメモリー性も良好であった。
FIG. 16 shows the optical characteristics when the device is operated by applying a 1 μsec, 15 V pulse every 1 second (open when no voltage is applied). As is apparent from the figure, when the voltage is applied, the reversal of light and dark occurs, and the optical characteristics, particularly the dark state, become good, and this state is also stable. Also, the memory property at the time of short circuit was good.

【0148】このようにして作製された液晶電気光学装
置は表示ムラ、チラツキ等はみられず、安定した光学特
性を有する極めて高性能な装置とすることができた。ま
た、一方の基板の内側表面に複数の画素電極とそれに接
続する薄膜トランジスタを形成したアクティブマトリク
ス型の液晶電気光学装置を本実施例の液晶混合物をセル
内に満たして作製したところ、高速かつ高いコントラス
ト比を有する装置とすることができた。また樹脂により
基板間距離一定に保たれ、30cm□という大面積である
にもかかわらず、装置を立てて使用して場合の基板のた
わみによる基板間距離の拡大、および基板面を指などで
押した場合の基板間距離の縮小も発生せず、表示ムラや
液晶の層構造、配向の乱れもなかった。
The thus manufactured liquid crystal electro-optical device was free from display unevenness and flicker, and could be an extremely high-performance device having stable optical characteristics. Further, an active matrix type liquid crystal electro-optical device in which a plurality of pixel electrodes and a thin film transistor connected to the pixel electrodes were formed on the inner surface of one substrate was manufactured by filling the liquid crystal mixture of this example in a cell, and high speed and high contrast were obtained. A device having a ratio was obtained. In addition, the distance between the substrates is kept constant by the resin, and despite the large area of 30cm □, the distance between the substrates is increased due to the bending of the substrate when the device is used upright and the substrate surface is pushed with a finger or the like. In this case, the distance between the substrates did not decrease, and there was no display irregularity, no disturbance in the layer structure of liquid crystal, and no alignment.

【0149】比較のため液晶材料には樹脂材料は添加せ
ずにセルを作製した。液晶はラビング方向に沿って一軸
配向となり、良好な消光位が得られたが、電流−電圧特
性を測定すると、図17のようにPsピークと第2ピー
クが観察された。
For comparison, a cell was prepared without adding a resin material to the liquid crystal material. The liquid crystal was uniaxially oriented along the rubbing direction, and a good extinction position was obtained. However, when the current-voltage characteristics were measured, a Ps peak and a second peak were observed as shown in FIG.

【0150】この装置に1μsec、15Vのパルスを
1sec毎に印加して動作させた時の光学特性を図18
に示す。電圧印加で液晶分子が反転して暗状態になるも
のの、この状態変化は緩やかであり、暗状態が充分安定
しなかった。
FIG. 18 shows the optical characteristics when the device was operated by applying a pulse of 1 μsec and 15 V every 1 second.
Shown in Although the liquid crystal molecules were inverted by the voltage application and turned into a dark state, this state change was gradual, and the dark state was not sufficiently stabilized.

【0151】また装置を立てて使用すると基板の下部に
液晶材料が溜まって基板間隔が大きくなる部分が発生
し、また指で押すとその部分の基板間距離が縮小し、共
に液晶の層構造が崩れ、表示ムラが発生してしまった。
When the apparatus is used upright, liquid crystal material accumulates in the lower part of the substrate, causing a portion where the distance between the substrates increases, and when pressed with a finger, the distance between the substrates in that portion is reduced, and the layer structure of the liquid crystal is reduced. Collapse and display unevenness have occurred.

【0152】『実施例8』10cm□のガラス基板にイン
ジウム・チン・オキサイド(ITOと省略する)をスパ
ッタ法や蒸着法にて500〜2000Å、本実施例では
1000Åの膜厚に成膜し、通常のフォトリソ工程で電
極をパターニングした。この基板上に日産化学製SE−
4110または、SE−610ここではSE−4110
をストライプコーターにてオフセット印刷し、200〜
300℃本実施例では280℃で焼成して配向膜とし
た。膜厚は600〜1000Å、本実施例では800Å
であった。この基板を電極面を対向させた時にラビング
方向が90゜となるように処理し、一方の基板上に6.
5μmのシリカ粒子を散布、もう一方の基板上にシール
材をスクリーン印刷し貼り合わせ、TN用セルとした。
Example 8 Indium tin oxide (abbreviated as ITO) was formed on a 10 cm square glass substrate by sputtering or vapor deposition to a thickness of 500 to 2000 Å, and in this embodiment, 1000 Å. The electrodes were patterned by a normal photolithography process. Nissan Chemical SE-
4110 or SE-610, here SE-4110
Offset printing with a stripe coater, 200 ~
300 ° C. In this example, the film was fired at 280 ° C. to form an alignment film. The film thickness is 600 to 1000 °, and 800 ° in this embodiment.
Met. This substrate is processed so that the rubbing direction is 90 ° when the electrode surfaces are opposed to each other.
5 μm silica particles were scattered, and a sealing material was screen-printed and bonded on the other substrate to form a cell for TN.

【0153】使用した液晶材料としては、誘電異方性が
正のシアノビフェニル系のネマチック液晶95%に対
し、樹脂材料は市販の紫外線硬化型樹脂を5%の割合で
用いた。樹脂を液晶中によりよく混合するために、90
℃で液晶が等方相を示すまで加熱、攪はんし、真空下で
前記セル中に注入、徐冷後、樹脂を硬化した。
The liquid crystal material used was a cyanobiphenyl nematic liquid crystal having a positive dielectric anisotropy of 95%, and the resin material was a commercially available ultraviolet curable resin at a ratio of 5%. To better mix the resin in the liquid crystal,
The mixture was heated and stirred at 液晶 ° C. until the liquid crystal showed an isotropic phase, poured into the cell under vacuum, and gradually cooled, after which the resin was cured.

【0154】この完成した液晶電気光学装置に10Vの
電圧を印加した時の液晶層にかかる電圧は急峻に変化
し、経時変化しない。光学特性も電圧変化に伴い暗から
明状態に急峻に変化し、経時変化はなかった。また装置
を立てて使用しても樹脂により基板間距離が大きくなら
ずに一定に保たれ、表示ムラの発生はなかった。
When a voltage of 10 V is applied to the completed liquid crystal electro-optical device, the voltage applied to the liquid crystal layer changes sharply and does not change with time. The optical characteristics also changed sharply from dark to bright with the voltage change, and there was no change with time. Further, even when the apparatus was used upright, the distance between the substrates was kept constant without being increased by the resin, and no display unevenness occurred.

【0155】このようにして作製された液晶電気光学装
置は表示ムラ、チラツキ等はみられず、安定した光学特
性を有する極めて高性能な装置とすることができた。ま
た、一方の基板の内側表面に複数の画素電極とそれに接
続する薄膜トランジスタを形成したアクティブマトリク
ス型の液晶電気光学装置を本実施例の液晶混合物をセル
内に満たして作製したところ、高速かつ高いコントラス
ト比を有する装置とすることができた。
The liquid crystal electro-optical device manufactured in this manner was free from display unevenness and flicker, and could be an extremely high-performance device having stable optical characteristics. Further, an active matrix type liquid crystal electro-optical device in which a plurality of pixel electrodes and a thin film transistor connected to the pixel electrodes were formed on the inner surface of one substrate was manufactured by filling the liquid crystal mixture of this example in a cell, and high speed and high contrast were obtained. A device having a ratio was obtained.

【0156】比較のため液晶材料には樹脂は添加せずに
装置を作製した。この液晶電気光学装置に10Vの電圧
を印加した時の電極間(液晶層間)の電圧は大きく経時
変化し、光学特性もこの電圧の経時変化に伴い変化し
た。
For comparison, a device was prepared without adding a resin to the liquid crystal material. When a voltage of 10 V was applied to this liquid crystal electro-optical device, the voltage between the electrodes (the liquid crystal layer) changed greatly with time, and the optical characteristics also changed with the time.

【0157】『実施例9』実施例9〜12は、液晶材料
に反応開始剤を混入した例を示す。10cm□のガラス基
板に電極用材料であるインジウム・チン・オキサイド
(ITOと省略する)をスパッタ法や蒸着法にて500
〜2000Å、本実施例では1000Åの膜厚に成膜
し、通常のフォトリソ工程で電極をパターニングした。
この基板上にスピンコート法でポリイミドを塗布し、2
80℃で焼成した。ポリイミドとしては日産化学製RN
−305、東レ製LP−64を用いた。ポリイミド膜厚
は100〜800Å、本実施例では150Åであった。
この基板にラビング処理を施して一軸配向処理を行っ
た。一方の基板上には、シリカ粒子である触媒化成製真
し球をスペーサーとして散布し、一方の基板上には、エ
ポキシ樹脂製のシール材をスクリーン印刷した。両基板
は電極間距離を約1.5μmとして貼り合わせて、セル
を形成した。
Example 9 Examples 9 to 12 show examples in which a reaction initiator was mixed in a liquid crystal material. Indium tin oxide (abbreviated as ITO), which is an electrode material, is applied to a 10 cm square glass substrate by sputtering or vapor deposition.
A film was formed to a thickness of 2000 to 2000 Å, and 1000 Å in this embodiment, and the electrodes were patterned by a normal photolithography process.
Polyimide is applied on this substrate by spin coating,
It was baked at 80 ° C. Nissan Chemical's RN as polyimide
-305, Toray LP-64 was used. The polyimide film thickness was 100 to 800 °, and in this example was 150 °.
The substrate was subjected to a rubbing treatment to perform a uniaxial orientation treatment. On one of the substrates, a catalyst chemical sphere made of silica particles was sprayed as spacers, and on one of the substrates, an epoxy resin sealing material was screen-printed. The two substrates were attached to each other with a distance between the electrodes of about 1.5 μm to form a cell.

【0158】本実施例で使用した液晶材料としては、チ
ッソ社製の強誘電性液晶、CS1014である。この液
晶のPs(自発分極)は5.4nC/cm2 であり、相
系列はI(等方相)−N(ネマチック相)−A(スメク
チックA相)−C* (スメクチックC* 相)である。ま
た反応開始剤として、本発明の効果が最も良いもののう
ちからチバガイギー製イルガキュア369を用いた。
The liquid crystal material used in this example is CS1014, a ferroelectric liquid crystal manufactured by Chisso Corporation. The Ps (spontaneous polarization) of this liquid crystal is 5.4 nC / cm 2 , and the phase sequence is I (isotropic phase) -N (nematic phase) -A (smectic A phase) -C * (smectic C * phase). is there. As a reaction initiator, Irgacure 369 manufactured by Ciba-Geigy was used from among those having the best effects of the present invention.

【0159】上記、液晶中に反応開始剤を0.1〜3
%、本実施例では、3%添加し、添加した反応開始剤を
液晶中によりよく混合するために、100℃で液晶が等
方相を示すまで加熱、攪はんして反応開始剤を液晶内に
均一に混合した。(以下液晶混合物という)
The above-mentioned reaction initiator is added to the liquid crystal in an amount of from 0.1 to 3%.
%, In this example, 3% was added. In order to better mix the added initiator in the liquid crystal, the reaction initiator was heated and stirred at 100 ° C. until the liquid crystal showed an isotropic phase. Into the mixture. (Hereinafter referred to as liquid crystal mixture)

【0160】セルと液晶混合物を100℃に加熱し、真
空下で前述のセルに注入した。この後2〜20℃/h
r、本実施例では2℃/hrで室温まで徐冷した。徐冷
後の室温での配向状態を偏光顕微鏡で観察すると、反応
開始剤を添加しない液晶材料と同様、液晶はラビング方
向に沿って一軸配向となり良好な消光位が得られた。
The cell and the liquid crystal mixture were heated to 100 ° C. and injected under vacuum into the cell. After this, 2-20 ° C / h
r In this example, the temperature was gradually cooled to room temperature at 2 ° C./hr. When the alignment state at room temperature after the slow cooling was observed with a polarizing microscope, the liquid crystal was uniaxially aligned along the rubbing direction, and a good extinction position was obtained, as in the case of the liquid crystal material to which no reaction initiator was added.

【0161】この液晶電気光学装置に対し、電極間に±
20V、5Hzの三角波を印加して印加する電圧を連続
的に変化させた時の電流−電圧特性を測定すると、図1
9(任意単位で示す)のようなある電圧値において液晶
分子が自発分極の向きを180°変える、つまり反転す
るピーク(以下Psピークという)のみが観察できた。
With respect to this liquid crystal electro-optical device, ±
When the current-voltage characteristics when the applied voltage was continuously changed by applying a triangular wave of 20 V and 5 Hz were measured, FIG.
At a certain voltage value such as 9 (shown in an arbitrary unit), only the peak at which the liquid crystal molecules change the direction of spontaneous polarization by 180 °, that is, the inversion (hereinafter referred to as Ps peak) was observed.

【0162】この装置に1μmsec、15Vのパルス
を1sec毎に印加して動作させた時の光学特性を図2
0に示す。図から明かなようにPsピーク電圧以上の電
圧印加時に明暗(Brigth、Dark)の反転が起
こり、急峻な明暗の状態が起こりなおかつその状態は安
定していることが分かる。
FIG. 2 shows the optical characteristics when the device was operated by applying a pulse of 1 μmsec and 15 V every 1 second.
0 is shown. As is clear from the figure, when a voltage equal to or higher than the Ps peak voltage is applied, inversion of light and dark (Bright and Dark) occurs, and a steep light and dark state still occurs and the state is stable.

【0163】『実施例10』本実施例における装置の構
造および使用した液晶材料、反応開始剤は実施例1と同
じである。ただし本実施例の反応開始剤添加量は液晶材
料中に1%である。添加した反応開始剤を液晶中により
よく混合するために、実施例9と同様、100℃で液晶
が等方相を示すまで加熱、攪はんして反応開始剤を液晶
内に均一に混合し、液晶混合物を作製した。
Example 10 The structure of the device, the liquid crystal material and the reaction initiator used in this example are the same as in Example 1. However, the amount of the reaction initiator added in this example is 1% in the liquid crystal material. To better mix the added initiator in the liquid crystal, heat and stir at 100 ° C. until the liquid crystal shows an isotropic phase, and uniformly mix the initiator in the liquid crystal as in Example 9. Thus, a liquid crystal mixture was prepared.

【0164】セルと液晶混合物を100℃に加熱し、真
空下で前述のセルに注入した。この後2〜20℃/h
r、本実施例では実施例9と同様に2℃/hrで室温ま
で徐冷した。徐冷後の室温での配向状態を偏光顕微鏡で
観察すると、反応開始剤を添加しない液晶材料と同様、
液晶はラビング方向に沿って一軸配向となり、良好な消
光位が得られた。
The cell and the liquid crystal mixture were heated to 100 ° C. and injected into the cell under vacuum. After this, 2-20 ° C / h
r, in this example, as in Example 9, it was gradually cooled to room temperature at 2 ° C./hr. Observation of the alignment state at room temperature after slow cooling with a polarizing microscope shows that, like the liquid crystal material without the addition of a reaction initiator,
The liquid crystal was uniaxially oriented along the rubbing direction, and a good extinction position was obtained.

【0165】実施例9と同様にこの液晶電気光学装置の
電極間に±20V、5Hzの三角波を印加して電流−電
圧特性を測定すると、実施例9と同様にある電圧値にお
いてPsピークのみが観察される特性となった。
When a current-voltage characteristic was measured by applying a triangular wave of ± 20 V and 5 Hz between the electrodes of the liquid crystal electro-optical device in the same manner as in the ninth embodiment, only the Ps peak was found at a certain voltage value as in the ninth embodiment. The observed characteristics.

【0166】この装置に1μmsec 15Vのパルス
を1sec毎に印加して動作させた時の光学特性を図2
1に示す。図から明かなようにPsピーク電圧以上の電
圧印加時に明暗の反転が起こり、一度暗状態になるが、
この状態は時間経過に伴い明状態側へと変化してしま
う。
FIG. 2 shows the optical characteristics when the device was operated by applying a pulse of 1 μm sec. 15 V every 1 second.
It is shown in FIG. As is clear from the figure, when a voltage equal to or higher than the Ps peak voltage is applied, inversion of light and dark occurs, and a dark state occurs once.
This state changes to the bright state side over time.

【0167】この装置に反応開始剤からのさらなる電荷
供給のために紫外光を照射した。この時の紫外光の照射
強度は20mW/cm2、照射時間は1minであっ
た。電流−電圧特性を観察すると紫外光照射前と同様P
sピークのみが確認された。光学特性は実施例9と同様
に急峻な明暗の反転が起こり、この状態は経時変化せず
安定であった。
The apparatus was irradiated with ultraviolet light to supply more electric charge from the reaction initiator. At this time, the irradiation intensity of the ultraviolet light was 20 mW / cm2, and the irradiation time was 1 min. Observation of the current-voltage characteristics shows that P
Only the s peak was confirmed. As in the case of Example 9, the optical characteristics showed a sharp change in light and dark, and this state was stable without a change over time.

【0168】『実施例11』本実施例で使用した液晶材
料としては、ビフェニル系でPsが10.9nC/cm
2の相系列がI(等方相)−A(スメクチックA相)−
* (スメクチックC* 相)を示す強誘電性液晶であ
る。また反応開始剤としては、チバガイギー製イルガキ
ュア184を用い、添加量は液晶材料中に1%とした。
Embodiment 11 The liquid crystal material used in this embodiment is a biphenyl-based material having a Ps of 10.9 nC / cm.
Phase series 2 is I (isotropic phase) -A (smectic A phase)-
It is a ferroelectric liquid crystal showing C * (smectic C * phase). As a reaction initiator, Irgacure 184 manufactured by Ciba-Geigy was used, and the amount added was 1% in the liquid crystal material.

【0169】添加した反応開始剤を液晶中によりよく混
合するために、120℃で液晶が等方相を示すまで加
熱、攪はんして反応開始剤を液晶内に均一に混合し、液
晶混合物を作製した。
In order to better mix the added initiator in the liquid crystal, the mixture was heated and stirred at 120 ° C. until the liquid crystal showed an isotropic phase, and the reaction initiator was uniformly mixed in the liquid crystal. Was prepared.

【0170】実施例9と同様の構造のセルを用意し、こ
のセルと液晶混合物を120℃に加熱し、真空下で前述
のセルに注入した。この後2〜20℃/hr、本実施例
では2℃/hrで室温まで徐冷した。徐冷後の室温での
配向状態を偏光顕微鏡で観察すると、反応開始剤を添加
しない液晶材料と同様、液晶は配向膜のラビング方向に
沿って一軸配向となり、良好な消光位が得られた。
A cell having the same structure as in Example 9 was prepared, and this cell and the liquid crystal mixture were heated to 120 ° C. and injected into the cell under vacuum. Thereafter, the temperature was gradually cooled to room temperature at 2 to 20 ° C./hr, in this example, 2 ° C./hr. When the alignment state at room temperature after the slow cooling was observed with a polarizing microscope, the liquid crystal was uniaxially aligned along the rubbing direction of the alignment film, and a good extinction position was obtained, as in the case of the liquid crystal material to which no reaction initiator was added.

【0171】この液晶電気光学装置において電極間に±
20V、5Hzの三角波を印加したときの電流−電圧特
性を測定すると、前述の実施例と同様なある電圧値にお
けるPsピークのみが観察できた。
In this liquid crystal electro-optical device, ±
When the current-voltage characteristics when a triangular wave of 20 V and 5 Hz was applied were measured, only the Ps peak at a certain voltage value similar to the above-described example could be observed.

【0172】この装置に1μmsec、15Vのパルス
を1sec毎に印加して動作させた時の光学特性を図2
2に示す。電圧印加で明暗が反転して暗状態になるもの
の、この暗状態は時間経過に伴い明状態側へと変化して
しまう。またこの暗状態はあまり良好ではなかった。
FIG. 2 shows the optical characteristics when the device was operated by applying a pulse of 1 μm sec and 15 V every 1 second.
It is shown in FIG. Although the darkness is reversed by application of a voltage, the dark state changes to the bright state over time. This dark state was not very good.

【0173】この装置に反応開始剤からのさらなる電荷
供給のために紫外光を照射した。この時の照射紫外光強
度は20mW/cm2 、照射時間は1minであった。
この液晶電気光学装置において電流−電圧特性を測定す
ると、紫外光照射前と同様なある電圧値においてのPs
ピークのみが観察できた。
The device was irradiated with ultraviolet light to supply more charge from the initiator. At this time, the irradiation ultraviolet light intensity was 20 mW / cm 2 , and the irradiation time was 1 min.
When the current-voltage characteristics of this liquid crystal electro-optical device were measured, Ps at a certain voltage value similar to that before irradiation with ultraviolet light was obtained.
Only peaks could be observed.

【0174】この装置に紫外光照射前と同様に1μms
ec、15Vのパルスを1sec毎に印加して動作させ
た時の光学特性を図23に示す。すると電圧印加時に明
暗の反転が起こり、光学特性、特に暗状態が良好となり
この状態も安定していることが分かる。
[0174] In this apparatus, 1 µms
FIG. 23 shows the optical characteristics when operating by applying a pulse of ec, 15 V every 1 sec. Then, when the voltage is applied, light / dark inversion occurs, and it can be seen that the optical characteristics, particularly the dark state, are good and this state is also stable.

【0175】『実施例12』10cm□のガラス基板に電
極用材料であるインジウム・チン・オキサイド(ITO
と省略する)をスパッタ法や蒸着法にて500〜200
0Å、本実施例では1000Åの膜厚に成膜し、通常の
フォトリソ工程で電極をパターニングした。この基板上
に日産化学製SE−4110または、、SE−610を
ストライプコーターにてオフセット印刷し、200〜3
00℃本実施例では280℃で焼成して配向膜とした。
膜厚は600〜1000Å、本実施例では800Åであ
った。この基板を電極面を対向させた時にラビング方向
が90゜となるように処理し、一方の基板上に6.5μ
mのシリカ粒子を散布、もう一方の基板上にシール材を
印刷し貼り合わせ、TN用セルとした。
Example 12 A 10 cm square glass substrate was coated with indium tin oxide (ITO) as an electrode material.
500 to 200 by sputtering or vapor deposition.
A film was formed to a thickness of 0 °, in this example, 1000 °, and the electrodes were patterned by a usual photolithography process. On this substrate, Nissan Chemical's SE-4110 or SE-610 was offset-printed with a stripe coater, and 200 to 3
00 ° C. In this example, the film was fired at 280 ° C. to form an alignment film.
The film thickness was 600 to 1000 °, and 800 ° in this example. This substrate is treated so that the rubbing direction is 90 ° when the electrode surfaces are opposed to each other, and 6.5 μm is formed on one substrate.
m silica particles were scattered, and a sealing material was printed on the other substrate and bonded to form a cell for TN.

【0176】使用した液晶材料としては、誘電異方性が
正のシアノビフェニル系のネマチック液晶を用いた。反
応開始剤としては、イルガキュア369を液晶中に3%
添加し、添加した反応開始剤を液晶中によりよく混合す
るために、90℃で液晶が等方相を示すまで加熱、攪は
んして反応開始剤を液晶内に均一に混合し、液晶混合物
を作製、前記セル中に注入した。
As the liquid crystal material used, a cyanobiphenyl nematic liquid crystal having a positive dielectric anisotropy was used. As a reaction initiator, 3% of Irgacure 369 is contained in the liquid crystal.
In order to better mix the added initiator in the liquid crystal, heat and stir at 90 ° C. until the liquid crystal shows an isotropic phase, uniformly mix the initiator in the liquid crystal, and mix the liquid crystal. Was prepared and injected into the cell.

【0177】この液晶電気光学装置に10Vの電圧を印
加した時の液晶層にかかる電圧は急峻に変化し、経時変
化しない。光学特性も電圧変化に伴い暗から明状態に急
峻に変化し、経時変化はなかった。
When a voltage of 10 V is applied to the liquid crystal electro-optical device, the voltage applied to the liquid crystal layer changes sharply and does not change with time. The optical characteristics also changed sharply from dark to bright with the voltage change, and there was no change with time.

【0178】『比較例1』本比較例における装置の構造
および液晶材料は実施例9および10と同じである。た
だし本比較例の液晶材料には反応開始剤は添加されてい
ない。
Comparative Example 1 The structure of the device and the liquid crystal material in this comparative example are the same as in Examples 9 and 10. However, no reaction initiator was added to the liquid crystal material of this comparative example.

【0179】セルと液晶材料を100℃に加熱し、真空
下で前述のセルに注入した。この後2〜20℃/hr、
本実施例では2℃/hrで室温まで徐冷した。徐冷後の
室温での配向状態を偏光顕微鏡で観察すると、液晶はラ
ビング方向に沿って一軸配向となり、良好な消光位が得
られた。
The cell and the liquid crystal material were heated to 100 ° C. and injected into the cell under vacuum. After this, 2-20 ° C / hr,
In this example, the temperature was gradually cooled to room temperature at 2 ° C./hr. When the alignment state at room temperature after slow cooling was observed with a polarizing microscope, the liquid crystal was uniaxially aligned along the rubbing direction, and a good extinction position was obtained.

【0180】この液晶電気光学装置の電流−電圧特性を
測定すると、図24のようにPsピークと、装置内の電
荷の移動と考えられる電流の増減(以下第2ピークとい
う)が測定される。通常この第2ピークはPsピークと
近接して存在しているため、装置動作時に印加する電圧
を決定することが困難である。
When the current-voltage characteristics of the liquid crystal electro-optical device are measured, the Ps peak and the increase or decrease of the current (hereinafter, referred to as a second peak), which are considered to be the movement of charges in the device, are measured as shown in FIG. Normally, this second peak exists close to the Ps peak, so it is difficult to determine the voltage to be applied during operation of the device.

【0181】この装置に1μmsec、15Vのパルス
を1sec毎に印加して動作させた時の光学特性を図2
5に示す。電圧印加で液晶分子が反転して暗状態になる
ものの、この暗状態は時間経過に伴い明状態側へその後
また暗状態側へと不安定に変化してしまう。
FIG. 2 shows the optical characteristics when the device was operated by applying a pulse of 1 μmsec and 15 V every 1 second.
It is shown in FIG. Although the liquid crystal molecules are inverted by a voltage application to be in a dark state, this dark state is unstablely changed to a bright state side and then to a dark state side with time.

【0182】『比較例2』本比較例における装置の構造
および液晶材料は実施例11と同じである。ただし本比
較例の液晶材料には反応開始剤は添加されていない。
Comparative Example 2 The structure of the device and the liquid crystal material in this comparative example are the same as in Example 11. However, no reaction initiator was added to the liquid crystal material of this comparative example.

【0183】実施例11と同様に、上記セル中に真空下
で液晶を注入した。この液晶電気光学装置の電流−電圧
特性をを測定すると、比較例1と同様にPsピークと、
第2ピークが測定された。
As in Example 11, liquid crystal was injected into the above cell under vacuum. When the current-voltage characteristics of this liquid crystal electro-optical device were measured, the Ps peak and the
A second peak was measured.

【0184】この装置に1μmsec、15Vのパルス
を1sec毎に印加して動作させた時の光学特性を図2
6に示す。電圧印加で明暗の状態が反転するがその状態
変化は緩やかである。
FIG. 2 shows the optical characteristics when the device was operated by applying a pulse of 1 μm sec, 15 V every 1 second.
6 is shown. The light / dark state is reversed by the application of the voltage, but the state change is gradual.

【0185】『比較例3』本比較例における装置の構造
および液晶材料は実施例12と同じである。ただし本比
較例の液晶材料には反応開始剤は添加されていない。こ
の液晶を実施例12と同様に注入した。
Comparative Example 3 The structure of the device and the liquid crystal material in this comparative example are the same as in Example 12. However, no reaction initiator was added to the liquid crystal material of this comparative example. This liquid crystal was injected as in Example 12.

【0186】この液晶電気光学装置に10Vの電圧を印
加した時の液晶にかかる電圧は経時変化し、光学特性も
この電圧の経時変化に伴い変化した。
When a voltage of 10 V was applied to the liquid crystal electro-optical device, the voltage applied to the liquid crystal changed with time, and the optical characteristics also changed with the time.

【0187】『実施例13』本実施例は、樹脂硬化後に
再び液晶材料を配向させた例を示す。10cm□のガラス
基板に電極材料であるインジウム・チン・オキサイド
(ITOと省略する)をスパッタ法や蒸着法にて500
〜2000Å、本実施例では1000Åの膜厚に成膜
し、通常のフォトリソ工程で電極をパターニングした。
この基板上にスピンコート法でポリイミドを塗布し、2
80℃で焼成した。配向膜となるポリイミドとしては日
産化学製RN−305、東レ製LP−64を用いた。ポ
リイミド膜厚は100〜800Å、本実施例では150
Åであった。この基板にラビング処理を施して一軸配向
処理を行った。一方の基板上には、シリカ粒子である触
媒化成製真絲球をスペーサーとして散布し、一方の基板
上には、エポキシ樹脂製のシール材をスクリーン印刷に
て形成した。両基板は電極間距離を約1.5μmとして
貼り合わせて、セルを形成した。
[Embodiment 13] This embodiment shows an example in which the liquid crystal material is oriented again after the resin is cured. Indium tin oxide (abbreviated as ITO), which is an electrode material, is placed on a 10 cm square glass substrate by sputtering or vapor deposition.
A film was formed to a thickness of 2000 to 2000 Å, and 1000 Å in this embodiment, and the electrodes were patterned by a normal photolithography process.
Polyimide is applied on this substrate by spin coating,
It was baked at 80 ° C. Nissan Chemical's RN-305 and Toray's LP-64 were used as the polyimide to be the alignment film. The polyimide film thickness is 100 to 800 °, and in this embodiment, 150
Was Å. The substrate was subjected to a rubbing treatment to perform a uniaxial orientation treatment. On one substrate, a silica fiber-made sphere made of catalyst chemicals was sprayed as a spacer, and on one substrate, a sealing material made of epoxy resin was formed by screen printing. The two substrates were attached to each other with a distance between the electrodes of about 1.5 μm to form a cell.

【0188】本実施例で使用した液晶材料としては、チ
ッソ社製の強誘電性液晶、CS1014である。この液
晶のPsは5.4nC/cm2 であり、相系列はI(等
方相)−N(ネマチック相)−A(スメクチックA相)
−C(スメクチックC* 相)である。
The liquid crystal material used in this example is CS1014, a ferroelectric liquid crystal manufactured by Chisso Corporation. The Ps of this liquid crystal is 5.4 nC / cm 2 , and the phase sequence is I (isotropic phase) -N (nematic phase) -A (smectic A phase).
-C (smectic C * phase).

【0189】本実施例で用いた樹脂材料は市販のウレタ
ン系オリゴマーとアクリル系モノマーの混合物である。
The resin material used in this example is a commercially available mixture of a urethane oligomer and an acrylic monomer.

【0190】上記液晶材料95%と、未硬化樹脂材料5
%(重量比)を混合し、混合した樹脂が液晶材料中によ
りよく混合するように90℃で液晶が等方相を示すまで
加熱、攪はんして樹脂を液晶材料中に均一に混合した
(以下液晶混合物という)。
The liquid crystal material 95% and the uncured resin material 5
% (Weight ratio), and the mixture was heated and stirred at 90 ° C. until the liquid crystal showed an isotropic phase so that the mixed resin was better mixed in the liquid crystal material, and the resin was uniformly mixed in the liquid crystal material. (Hereinafter referred to as a liquid crystal mixture).

【0191】セルと液晶混合物を90℃に加熱し、真空
下で前述のセルに注入後2〜20℃/hr、本実施例で
は2℃/hrで室温まで徐冷した。徐冷後の室温での配
向状態を偏光顕微鏡で観察すると、樹脂材料はセル中に
点在しており、液晶材料の配向は樹脂を添加しない液晶
材料と同様に、液晶は配向膜のラビング方向に沿って一
軸配向となり、良好な消光位が得られた。
The cell and the liquid crystal mixture were heated to 90 ° C., poured into the above-described cell under vacuum, and gradually cooled to room temperature at 2 to 20 ° C./hr, in this example, 2 ° C./hr. When the alignment state at room temperature after slow cooling is observed with a polarizing microscope, the resin material is scattered in the cell, and the liquid crystal is aligned in the rubbing direction of the alignment film in the same manner as the liquid crystal material to which no resin is added. And a good extinction position was obtained.

【0192】このセルに紫外線を、強度3〜30mW/
cm2 、照射時間0.5〜5min、本実施例では強度
20mW/cm2 で1min、照射して樹脂を硬化させ
た。紫外線照射後も液晶は配向膜のラビング方向に沿っ
て一軸配向となり、良好な消光位が得られた。
Ultraviolet light was applied to this cell at an intensity of 3 to 30 mW /
cm 2, irradiation time 0.5~5Min, 1min at an intensity 20 mW / cm 2 in this embodiment was cured by irradiating the resin. The liquid crystal was uniaxially aligned along the rubbing direction of the alignment film even after ultraviolet irradiation, and a good extinction position was obtained.

【0193】このセルに±30Vの三角波を印加して光
学特性を測定した。動作状態を注意深く観察すると暗状
態表示時に樹脂周りから微量だが光が抜けていることが
分かった。この時の明状態値(任意値で示す)は35.
26、暗状態値は1.131、コントラストは31.1
6、このセルに±20V、60μmのパルスを印加した
時の電圧保持率を測定したところ、45.0%であっ
た。このセルをエージングした後に観察すると樹脂周り
の光の抜けは目視でもかなり改善され、この時の明状態
値は40.08、暗状態値は0.924、コントラスト
は43.39、このセルの電圧保持率を測定したとこ
ろ、49.0%となり、実際の特性も大幅に改善され
た。
An optical characteristic was measured by applying a triangular wave of ± 30 V to the cell. Careful observation of the operating state revealed that a small amount of light escaped from around the resin when the dark state was displayed. At this time, the bright state value (indicated by an arbitrary value) is 35.
26, dark state value 1.131, contrast 31.1
6. The voltage holding ratio when a pulse of ± 20 V and 60 μm was applied to this cell was measured and found to be 45.0%. Observation after aging of this cell, light leakage around the resin was significantly improved by visual observation. At this time, the light state value was 40.08, the dark state value was 0.924, the contrast was 43.39, and the voltage of this cell was When the retention was measured, it was 49.0%, and the actual characteristics were significantly improved.

【0194】『実施例14』本実施例は、樹脂硬化後に
液晶材料を再び配向させた例を示す。本実施例における
装置の構成および液晶材料、樹脂材料は実施例13と同
様のものを使用した。
[Embodiment 14] This embodiment shows an example in which the liquid crystal material is oriented again after the resin is cured. The configuration of the device, the liquid crystal material, and the resin material in this example were the same as those in Example 13.

【0195】上記液晶材料85%と、未硬化樹脂材料1
5%を混合し、混合した樹脂が液晶材料中によりよく混
合するに、90℃で液晶が等方相を示すまで加熱、攪は
んして液晶混合物とした。
The liquid crystal material 85% and the uncured resin material 1
5% was mixed and the mixture was heated and stirred at 90 ° C. until the liquid crystal showed an isotropic phase to make the mixed resin better mixed in the liquid crystal material to form a liquid crystal mixture.

【0196】セルと液晶混合物を90℃に加熱し、真空
下で前述のセルに注入後2〜20℃/hr、本実施例で
は2℃/hrで室温まで徐冷した。徐冷後の室温での配
向状態を偏光顕微鏡で観察すると、樹脂材料はセル中に
点在しており、液晶材料の配向は樹脂を添加しない液晶
材料と同様に、液晶は配向膜のラビング方向に沿って一
軸配向となり、良好な消光位が得られた。
The cell and the liquid crystal mixture were heated to 90 ° C., and after being injected into the above-described cell under vacuum, the mixture was gradually cooled to room temperature at 2 to 20 ° C./hr, in this example, 2 ° C./hr. When the alignment state at room temperature after slow cooling is observed with a polarizing microscope, the resin material is scattered in the cell, and the liquid crystal is aligned in the rubbing direction of the alignment film in the same manner as the liquid crystal material to which no resin is added. And a good extinction position was obtained.

【0197】このセルに紫外線を、強度3〜30mW/
cm2 、照射時間0.5〜5min、本実施例では強度
20mW/cm2 で1minの照射を行って樹脂を硬化
させた。紫外線照射後も液晶は配向膜のラビング方向に
沿って一軸配向となり、良好な消光位が得られた。
Ultraviolet light was applied to this cell at an intensity of 3 to 30 mW /
cm 2, irradiation time 0.5~5Min, the resin was cured by performing the irradiation of 1min at intensity 20 mW / cm 2 in the present embodiment. The liquid crystal was uniaxially aligned along the rubbing direction of the alignment film even after ultraviolet irradiation, and a good extinction position was obtained.

【0198】このセルに±30Vの三角波を印加して光
学特性を測定した。動作状態を注意深く観察すると暗状
態表示時に樹脂周りから微量だが光が抜けていることが
分かった。この時の明状態値(任意値で示す)は22.
89、暗状態値は3.491、コントラストは6.6、
電圧保持率は61.0%であった。このセルをエージン
グした後に観察すると樹脂周りの光の抜けは目視でもか
なり改善され、この時の明状態値は31.48、暗状態
値は3.162、コントラストは10、電圧保持率は7
1.0%となり、実際の特性も大幅に改善された。
An optical characteristic was measured by applying a triangular wave of ± 30 V to the cell. Careful observation of the operating state revealed that a small amount of light escaped from around the resin when the dark state was displayed. At this time, the bright state value (indicated by an arbitrary value) is 22.
89, dark state value is 3.491, contrast is 6.6,
The voltage holding ratio was 61.0%. Observation after aging of this cell, light leakage around the resin was significantly improved by visual observation. At this time, the light state value was 31.48, the dark state value was 3.162, the contrast was 10, and the voltage holding ratio was 7
1.0%, and the actual characteristics were also greatly improved.

【0199】『実施例15』本実施例では、シール材と
未硬化樹脂を同時に硬化して作製した例を示す。本実施
例で使用した液晶材料としては、チッソ社製の強誘電性
液晶、CS1014である。この液晶のPsは5.4n
C/cm2 であり、相系列はI(等方相)−N(ネマチ
ック相)−A(スメクチックA相)−C(スメクチック
* 相)である。
[Embodiment 15] This embodiment shows an example in which a sealing material and an uncured resin are simultaneously cured. The liquid crystal material used in this example is CS1014, a ferroelectric liquid crystal manufactured by Chisso Corporation. The Ps of this liquid crystal is 5.4n
C / cm 2 , and the phase sequence is I (isotropic phase) -N (nematic phase) -A (smectic A phase) -C (smectic C * phase).

【0200】本実施例で用いた樹脂材料は市販のウレタ
ン系オリゴマーとアクリル系モノマーの混合物である。
上記材料を重量比で液晶95%と、未硬化樹脂5%で混
合し、混合した樹脂と液晶がよりよく混合するように、
90℃で液晶が等方相を示すまで加熱、攪はんして樹脂
を液晶材料中に均一に混合した(以下液晶混合物とい
う)。
The resin material used in this example is a commercially available mixture of a urethane oligomer and an acrylic monomer.
The above materials are mixed in a weight ratio of 95% of the liquid crystal and 5% of the uncured resin, so that the mixed resin and the liquid crystal are mixed better.
The resin was heated and stirred at 90 ° C. until the liquid crystal showed an isotropic phase to uniformly mix the resin in the liquid crystal material (hereinafter referred to as a liquid crystal mixture).

【0201】10cm□のガラス基板に電極材料であるイ
ンジウム・チン・オキサイド(ITOと省略する)をス
パッタ法や蒸着法にて500〜2000Å、本実施例で
は1000Åの膜厚に成膜し、通常のフォトリソ工程で
電極をパターニングした。この基板上にスピンコート法
でポリイミドを塗布し、280℃で焼成した。配向膜と
なるポリイミドとしては日産化学製RN−305、東レ
製LP−64、ここでは東レ製LP−64を用いた。ポ
リイミド膜厚は100〜800Å、本実施例では150
Åであった。この基板にラビング処理を施して一軸配向
処理を行った。この一方の基板上には、スペーサーとし
てシリカ粒子である触媒化成製真し球を散布し、もう一
方の基板上には、紫外線硬化型樹脂をシール材としてス
クリーン印刷にて形成した。
An indium tin oxide (abbreviated as ITO), which is an electrode material, is formed on a 10 cm square glass substrate by sputtering or vapor deposition to a thickness of 500 to 2000 Å, and in this embodiment, 1000 Å. The electrodes were patterned in the photolithography process described above. Polyimide was applied on this substrate by a spin coating method and baked at 280 ° C. Nissan Chemical's RN-305 and Toray's LP-64, here, Toray's LP-64, were used as the polyimide to be the alignment film. The polyimide film thickness is 100 to 800 °, and in this embodiment, 150
Was Å. The substrate was subjected to a rubbing treatment to perform a uniaxial orientation treatment. On one of the substrates, catalyzed chemical spheres, which are silica particles, were scattered as spacers, and on the other substrate, an ultraviolet-curable resin was used as a sealant by screen printing.

【0202】両基板を液晶混合物の転移点以上に温め、
シールをスクリーン印刷した基板上に、等方相の液晶混
合物を適量滴下した。この基板に液晶混合物を挟持する
ように、もう一方のスペーサーを散布した基板を上から
押圧することによって、基板間隔が1.5μmのセルを
作製した。このセルを室温まで徐冷し、液晶材料と未硬
化樹脂の分離を行ったところ、偏光顕微鏡下で液晶は着
色して観察でき、樹脂を添加しない液晶材料と同様に液
晶は配向膜のラビング方向に沿って一軸配向となり良好
な消光位が得られ、樹脂はセル内に点在して観察でき
た。
Heating both substrates above the transition point of the liquid crystal mixture,
An appropriate amount of an isotropic liquid crystal mixture was dropped on a substrate on which a seal was screen-printed. By pressing the substrate on which the other spacer was sprayed so as to sandwich the liquid crystal mixture between the substrates, a cell having a substrate interval of 1.5 μm was produced. When the cell was gradually cooled to room temperature and the liquid crystal material and the uncured resin were separated, the liquid crystal could be colored and observed under a polarizing microscope. And a good extinction position was obtained, and the resin could be observed scattered in the cell.

【0203】次に、このセルのシール部を含む全面に紫
外線を、強度3〜30mW/cm2、照射時間0.5〜
5min、本実施例では強度20mW/cm2 で1mi
n、照射してシール部および表示部に点在する樹脂を硬
化させた。樹脂硬化後においても樹脂硬化前と同様に液
晶は配向膜のラビング方向に沿って一軸配向となり、良
好な消光位が得られた。
Next, ultraviolet light was applied to the entire surface of the cell including the sealing portion at an intensity of 3 to 30 mW / cm 2 and an irradiation time of 0.5 to 30 mW / cm 2 .
5 min, 1 mi at an intensity of 20 mW / cm 2 in this embodiment
n, irradiation was performed to cure the resin scattered on the seal portion and the display portion. Even after the resin was cured, the liquid crystal was uniaxially oriented along the rubbing direction of the alignment film as in the case before the resin was cured, and a good extinction position was obtained.

【0204】『実施例16』本実施例は、紫外線照射と
加熱により樹脂を硬化した例を示す。10cm□のガラス
基板上にスイッチング素子としてTFT(薄膜トランジ
スタ)とこれに接続するITO(インジウム・チン・オ
キサイド)の画素電極、信号電極、走査電極等を形成し
た。
[Embodiment 16] This embodiment shows an example in which a resin is cured by ultraviolet irradiation and heating. As a switching element, a TFT (thin film transistor) and a pixel electrode, a signal electrode, a scanning electrode and the like of ITO (indium tin oxide) connected to the TFT were formed on a glass substrate of 10 cm square.

【0205】別の基板に対向電極としてITOを設け
た。該基板のTFTを有する基板と対向させて各TFT
素子に対向する部位にあたるITO上にCrやAlおよ
びその酸化膜などにより遮光膜を設けた。この基板上に
スピンコート法を用いてポリイミドを塗布し、焼成して
配向膜を形成し、ラビング処理を施して一軸配向処理を
行った。
On another substrate, ITO was provided as a counter electrode. Each TFT is opposed to a substrate having a TFT of the substrate.
A light-shielding film made of Cr, Al, an oxide film thereof, or the like was provided on ITO corresponding to a portion facing the element. Polyimide was applied to the substrate by spin coating, baked to form an alignment film, and rubbed to perform a uniaxial alignment process.

【0206】一方の基板上にはスペーサーを散布し、他
方の基板上には、エポキシ樹脂製のシール材をスクリー
ン印刷にて形成した。両基板は電極間距離を約3μmと
して貼り合わせて、セルを形成した。
A spacer was sprayed on one substrate, and a sealing material made of epoxy resin was formed on the other substrate by screen printing. The two substrates were attached to each other with a distance between the electrodes of about 3 μm to form a cell.

【0207】本実施例で使用した液晶材料としては、チ
ッソ社製の強誘電性液晶、CS1014である。この液
晶のPsは5.4nC/cm2 であり、相系列はI(等
方相)−N(ネマチック相)−A(スメクチックA相)
−C(スメクチックC* 相)である。
The liquid crystal material used in this example is CS1014, a ferroelectric liquid crystal manufactured by Chisso Corporation. The Ps of this liquid crystal is 5.4 nC / cm 2 , and the phase sequence is I (isotropic phase) -N (nematic phase) -A (smectic A phase).
-C (smectic C * phase).

【0208】本実施例で用いた樹脂材料は市販のアクリ
ル変性エポキシ樹脂であり、紫外線でも硬化し、かつ熱
により完全硬化するものである。このときの樹脂硬化温
度は液晶が等方相を示す温度よりも高いことが望まし
い。
The resin material used in this example is a commercially available acrylic-modified epoxy resin, which is cured by ultraviolet rays and completely cured by heat. The resin curing temperature at this time is desirably higher than the temperature at which the liquid crystal exhibits an isotropic phase.

【0209】上記材料を重量比で液晶95%と、未硬化
樹脂5%で混合する。(以下液晶混合物という)。この
場合、液晶と樹脂がよりよく混合するために樹脂が硬化
しない温度、望ましくは液晶混合物が等方相を示すまで
加温してもよい。
The above materials are mixed in a weight ratio of 95% of liquid crystal and 5% of uncured resin. (Hereinafter referred to as a liquid crystal mixture). In this case, the mixture may be heated to a temperature at which the resin does not cure because of better mixing of the liquid crystal and the resin, preferably until the liquid crystal mixture exhibits an isotropic phase.

【0210】セルと液晶混合物を90℃に加熱し、真空
下で前述のセルに注入後、室温まで冷却した。冷却後の
セルの室温での配向状態を偏光顕微鏡で観察すると、樹
脂材料はセル中に点在しており、液晶材料の配向は樹脂
を添加しない液晶材料と同様に、液晶は配向膜のラビン
グ方向に沿って一軸配向となり、良好な消光位が得られ
た。
The cell and the liquid crystal mixture were heated to 90 ° C., injected into the cell under vacuum, and cooled to room temperature. When the alignment state of the cooled cell at room temperature was observed with a polarizing microscope, the resin material was scattered in the cell, and the liquid crystal material was rubbed in the same manner as the liquid crystal material to which no resin was added. Uniaxial orientation was obtained along the direction, and a good extinction position was obtained.

【0211】このセルに紫外線を、強度3〜30mW/
cm2 、照射時間0.5〜5min、本実施例では強度
20mW/cm2 で1min、照射して樹脂を硬化させ
た。さらに、このセルを160℃のオーブン中で2.5
h加熱し、樹脂を完全硬化させた。
Ultraviolet light was applied to this cell at an intensity of 3 to 30 mW /
cm 2, irradiation time 0.5~5Min, 1min at an intensity 20 mW / cm 2 in this embodiment was cured by irradiating the resin. The cell was further placed in a 160 ° C. oven for 2.5
h, and the resin was completely cured.

【0212】樹脂の紫外線照射での硬化、および加熱に
よる樹脂の完全硬化後において、液晶は配向膜のラビン
グ方向に沿って一軸配向となり、良好な消光位が得ら
れ、樹脂は点在していることが観察できた。
After the resin is cured by irradiation with ultraviolet rays and completely cured by heating, the liquid crystal is uniaxially oriented along the rubbing direction of the alignment film, and a good extinction position is obtained, and the resin is scattered. This was observed.

【0213】このセルの光学特性を測定したところ、コ
ントラスト比100の電気光学装置としての充分な特性
を得ることができた。
When the optical characteristics of this cell were measured, sufficient characteristics as an electro-optical device having a contrast ratio of 100 could be obtained.

【0214】次にこのセルの基板を剥して、液晶をアル
コールで洗浄除去し、カラム状に硬化した樹脂の残存状
態をSEMにて観察した結果、樹脂は光学顕微鏡で観察
したのと同じに、基板上に、点在するカラムとして、ま
た素子部も同様のカラムとして存在していることが観察
できた。
Next, the substrate of this cell was peeled off, the liquid crystal was washed off with alcohol, and the residual state of the resin cured in a column was observed by SEM. As a result, the resin was observed in the same manner as observed with an optical microscope. It was observed that the columns existed on the substrate as the same as the columns, and that the element portions also existed as the same columns.

【0215】熱硬化をしない以外は同様の条件でセルを
作製し、SEMにて基板上を観察したところ、基板上の
大部分において樹脂はカラム状に硬化した樹脂として観
察できたが、素子部およびその対向部では樹脂の痕跡が
わずかに観察できただけでカラム状には硬化していなっ
た。
A cell was prepared under the same conditions except that the thermosetting was not performed, and the surface of the substrate was observed by SEM. As a result, most of the resin on the substrate could be observed as a column-cured resin. In addition, only traces of the resin could be slightly observed in the opposite portion, and the resin was not cured in a column shape.

【0216】[0216]

【発明の効果】以上詳述したように、本発明のように樹
脂材料を用いることにより、上下基板をカラム状に接着
することができる。これにより特に大面積の液晶電気光
学装置で問題となっていた、基板間距離の維持を確実に
でき、液晶の層構造の崩れや表示ムラ等の発生を抑え、
装置を立てて使用することも可能となった。
As described above in detail, by using a resin material as in the present invention, the upper and lower substrates can be bonded in a column shape. This can ensure the maintenance of the distance between the substrates, which has been a problem particularly in a large-area liquid crystal electro-optical device, and suppresses the collapse of the liquid crystal layer structure and the occurrence of display unevenness.
The device can be used upright.

【0217】また、本発明によれば、液晶材料に未硬化
の樹脂材料、すなわちモノマーやオリゴマーなどの樹脂
構成材料と反応開始剤を添加することにより、従来の液
晶電気光学装置で問題となっていた装置内部の電荷を、
積極的にキャンセルすることができた。この結果、不所
望な電荷による液晶分子の状態の不安定性を排除し、安
定な光学特性が得られる。
Further, according to the present invention, the addition of an uncured resin material, that is, a resin constituent material such as a monomer or an oligomer, and a reaction initiator to a liquid crystal material causes a problem in a conventional liquid crystal electro-optical device. Charge inside the device
I was able to cancel positively. As a result, instability of the state of the liquid crystal molecules due to undesired charges is eliminated, and stable optical characteristics can be obtained.

【0218】これにより液晶電気光学装置の表示のチラ
ツキ、階調あるいは色調の経時変化、表示ムラ等をなく
し高性能な液晶電気光学装置とすることができた。特に
強誘電性液晶を用いた液晶電気光学装置では、単純マト
リクス型の場合、メモリー性を高め、高コントラスト
化、また高速化できた。またアクティブマトリクス型特
にTFT駆動型の場合、高コントラスト化、高速化でき
た。またネマチック液晶を用いた液晶電気光学装置にお
いても、コントラスト比や表示状態の改善をすることが
できた。
As a result, it was possible to obtain a high-performance liquid crystal electro-optical device by eliminating flickering of display, change in gradation or color tone over time, display unevenness, and the like of the liquid crystal electro-optical device. In particular, in a liquid crystal electro-optical device using a ferroelectric liquid crystal, in the case of a simple matrix type, it was possible to improve the memory performance, increase the contrast, and increase the speed. Also, in the case of the active matrix type, especially in the case of the TFT drive type, high contrast and high speed could be achieved. Also in a liquid crystal electro-optical device using a nematic liquid crystal, the contrast ratio and the display state could be improved.

【0219】また、液晶に樹脂構成材料は添加せず反応
開始剤のみを添加しても、従来の液晶電気光学装置で問
題となっていた、装置内部の電荷による液晶分子の余計
な状態変化を、装置内に存在する電荷自身を反応開始剤
からの電荷により積極的にキャンセルすることにより解
決することができ、装置の光学特性を安定にし、ちらつ
きやトーン変化のない時分割駆動の可能な、高性能な液
晶電気光学装置とすることができた。
Further, even if only the reaction initiator is added to the liquid crystal without adding the resin constituent material, the unnecessary state change of the liquid crystal molecules due to the electric charge inside the device, which has been a problem in the conventional liquid crystal electro-optical device, can be prevented. The problem can be solved by positively canceling the charge itself present in the device by the charge from the reaction initiator, stabilizing the optical characteristics of the device, and enabling time-division driving without flicker or tone change. A high-performance liquid crystal electro-optical device was obtained.

【0220】また、本発明によれば、従来のように電荷
移動錯体を用いることで問題となっていた、過剰なキャ
ンセル分の電荷が発生しないことから、長期にわたる装
置の光学安定性が得られ、本発明が液晶電気光学装置と
しての特性安定性に寄与するところは大きい。
Further, according to the present invention, since the use of a charge-transfer complex as in the prior art does not generate an excessive amount of charge for cancellation, optical stability of the device can be obtained for a long time. The present invention greatly contributes to the characteristic stability of the liquid crystal electro-optical device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の液晶セルの概要を示す。FIG. 1 shows an outline of a conventional liquid crystal cell.

【図2】 本発明の液晶セルの基本的な構造を示す。FIG. 2 shows a basic structure of a liquid crystal cell of the present invention.

【図3】 実施例1で得られた、樹脂が表示部の面積を
占める割合と混合物中の未硬化樹脂の混入率の関係を示
した図
FIG. 3 is a diagram showing the relationship between the ratio of the resin occupying the display area and the mixing ratio of the uncured resin in the mixture, obtained in Example 1.

【図4】 本発明の液晶電気光学装置の構成概略図を示
す。
FIG. 4 is a schematic configuration diagram of a liquid crystal electro-optical device according to the present invention.

【図5】 実施例4の液晶電気光学装置の電流−電圧特
性を示す。
FIG. 5 shows current-voltage characteristics of the liquid crystal electro-optical device of Example 4.

【図6】 実施例4および実施例5、6の液晶電気光学
装置にパルス電圧を印加した時の光学特性を示す。
FIG. 6 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical devices of Examples 4 and 5 and 6.

【図7】 実施例4における比較例の液晶電気光学装置
の電流−電圧特性を示す。
FIG. 7 shows a current-voltage characteristic of a liquid crystal electro-optical device of a comparative example in Example 4.

【図8】 実施例4における比較例の液晶電気光学装置
にパルス電圧を印加した時の光学特性を示す。
FIG. 8 shows optical characteristics when a pulse voltage is applied to a liquid crystal electro-optical device of a comparative example in Example 4.

【図9】 実施例4における他の比較例の液晶電気光学
装置にパルス電圧を印加した時の光学特性を示す。
FIG. 9 shows optical characteristics when a pulse voltage is applied to a liquid crystal electro-optical device of another comparative example in Example 4.

【図10】 実施例5の液晶電気光学装置の電流−電圧
特性を示す。
FIG. 10 shows current-voltage characteristics of the liquid crystal electro-optical device of Example 5.

【図11】 実施例5における比較例の液晶電気光学装
置の電流−電圧特性を示す。
11 shows current-voltage characteristics of a liquid crystal electro-optical device of a comparative example in Example 5. FIG.

【図12】 実施例5および実施例6における比較例の
液晶電気光学装置にパルス電圧を印加した時の光学特性
を示す。
FIG. 12 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical devices of Comparative Examples in Example 5 and Example 6.

【図13】 実施例6の液晶電気光学装置の電流−電圧
特性を示す。
FIG. 13 shows current-voltage characteristics of the liquid crystal electro-optical device of Example 6.

【図14】 実施例6の比較例の液晶電気光学装置の電
流−電圧特性を示す。
FIG. 14 shows current-voltage characteristics of a liquid crystal electro-optical device according to a comparative example of Example 6.

【図15】 実施例7の液晶電気光学装置の電流−電圧
特性を示す。
FIG. 15 shows current-voltage characteristics of the liquid crystal electro-optical device of Example 7.

【図16】 実施例7の液晶電気光学装置にパルス電圧
を印加した時の光学特性を示す。
FIG. 16 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device of Example 7.

【図17】 実施例7の比較例の液晶電気光学装置の電
流−電圧特性を示す。
17 shows current-voltage characteristics of a liquid crystal electro-optical device according to a comparative example of Example 7. FIG.

【図18】 実施例7の比較例の液晶電気光学装置にパ
ルス電圧を印加した時の光学特性を示す。
FIG. 18 shows optical characteristics when a pulse voltage is applied to a liquid crystal electro-optical device of a comparative example of Example 7.

【図19】 実施例9および10の電流−電圧特性を示
す。
FIG. 19 shows current-voltage characteristics of Examples 9 and 10.

【図20】 実施例9および実施例10の紫外光照射後
の液晶電気光学装置にパルス電圧を印加した時の光学特
性を示す。
FIG. 20 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device after irradiation with ultraviolet light in Examples 9 and 10.

【図21】 実施例10の紫外光照射前の液晶電気光学
装置にパルス電圧を印加した時の光学特性を示す。
FIG. 21 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device before irradiation with ultraviolet light in Example 10.

【図22】 実施例11の紫外光照射前の液晶電気光学
装置にパルス電圧を印加した時の光学特性を示す。
FIG. 22 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device before irradiation with ultraviolet light in Example 11.

【図23】 実施例11の紫外光照射後の液晶電気光学
装置にパルス電圧を印加した時の光学特性を示す。
FIG. 23 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device after ultraviolet light irradiation in Example 11.

【図24】 比較例1および比較例2の電流−電圧特性
を示す。
FIG. 24 shows current-voltage characteristics of Comparative Examples 1 and 2.

【図25】 比較例1の液晶電気光学装置にパルス電圧
を印加した時の光学特性を示す。
FIG. 25 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device of Comparative Example 1.

【図26】 比較例2の液晶電気光学装置にパルス電圧
を印加した時の光学特性を示す。
FIG. 26 shows optical characteristics when a pulse voltage is applied to the liquid crystal electro-optical device of Comparative Example 2.

【図27】 基板上に形成された微細なパターンのSE
M写真を示す。
FIG. 27 shows a fine pattern SE formed on a substrate.
An M photograph is shown.

【符号の説明】[Explanation of symbols]

100、101 透明導電膜 102、103 基板 104、105 液晶配向手段 106 スペーサー 107 シール部 108 カラム状樹脂 109 樹脂塊 110 液晶材料 111 反応開始剤 112、113 偏光板 1100、1101 透光性基板 1102、1103 電極 1104、1105 配向手段 1106 液晶材料 1107 スペーサー 1108 シール材 1110、1111 透光性基板 1112、1113 電極 1114、1115 配向手段 1116 液晶材料 1117 樹脂 1118 スペーサー 1119 シール材 1120、1121 偏光板 100, 101 Transparent conductive film 102, 103 Substrate 104, 105 Liquid crystal aligning means 106 Spacer 107 Seal portion 108 Columnar resin 109 Resin lump 110 Liquid crystal material 111 Reaction initiator 112, 113 Polarizing plate 1100, 1101 Translucent substrate 1102, 1103 Electrode 1104, 1105 Alignment means 1106 Liquid crystal material 1107 Spacer 1108 Sealing material 1110, 1111 Translucent substrate 1112, 1113 Electrode 1114, 1115 Alignment means 1116 Liquid crystal material 1117 Resin 1118 Spacer 1119 Sealing material 1120, 1211 Polarizing plate

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平5−139397 (32)優先日 平成5年5月18日(1993.5.18) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−177195 (32)優先日 平成5年5月20日(1993.5.20) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−142884 (32)優先日 平成5年5月21日(1993.5.21) (33)優先権主張国 日本(JP) (56)参考文献 特開 昭60−69632(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1339 500 G02F 1/13 101 G02F 1/1334 ──────────────────────────────────────────────────続 き Continuation of the front page (31) Priority claim number Japanese Patent Application No. 5-139397 (32) Priority date May 18, 1993 (May 18, 1993) (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application No. 5-177195 (32) Priority date May 20, 1993 (1993.5.20) (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application No. 5-128484 (32) Priority Date May 21, 1993 (May 21, 1993) (33) Countries claiming priority Japan (JP) (56) References JP-A-60-69632 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1339 500 G02F 1/13 101 G02F 1/1334

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内側面に電極と少なくとも一方の内側面に
配向膜とを有する一対の基板間に、 液晶材料と樹脂材料と反応開始剤とを有する混合物を満
たし、 前記混合物中の前記液晶材料と前記樹脂材料を分離さ
せ、 前記反応開始剤を開裂させ、 樹脂スペーサを形成することを特徴とする液晶電気光学
装置の作製方法。
1. An electrode and an electrode on at least one inner surface
A mixture containing a liquid crystal material, a resin material, and a reaction initiator is filled between a pair of substrates having an alignment film.
Plus, of separating the liquid crystal material and the resin material of said mixture
Allowed to cleave the initiators, liquid crystal electro-optical, which comprises forming a resin spacer
Method for manufacturing the device.
【請求項2】内側面に電極を有する一対の基板間に、加
熱した液晶材料と反応開始剤とを有する混合物を満た
し、 前記混合物を徐冷し、 前記反応開始剤を開裂させ、 樹脂スペーサを形成することを特徴とする液晶電気光学
装置の作製方法。
2. A space between a pair of substrates having electrodes on the inner surface.
Filled with a mixture having a heated liquid crystal material and an initiator.
And slowly cooling the mixture to cleave the reaction initiator to form a resin spacer.
Method for manufacturing the device.
【請求項3】請求項1または2において、紫外線照射に
より前記反応開始剤を開裂させることを特徴とする液晶
電気光学装置の作製方法。
3. The method according to claim 1, wherein the ultraviolet irradiation is performed.
Liquid crystal characterized by further cleaving the reaction initiator
Method for manufacturing electro-optical device.
【請求項4】一対の透光性基板間の液晶材料と未硬化樹
脂との混合物から、前記未硬化樹脂を析出させ、 前記液晶材料を配向させ、 前記未硬化樹脂を硬化させ、 前記液晶材料を再び配向させることを特徴とする液晶電
気光学装置の作製方法。
4. An uncured resin is precipitated from a mixture of a liquid crystal material and an uncured resin between a pair of translucent substrates, the liquid crystal material is oriented, and the uncured resin is cured. And a liquid crystal electro-optical device.
【請求項5】一対の基板間の液晶材料と未硬化樹脂との
混合物に対し、前記混合物中の液晶材料が等方相を示す
まで加熱し、 前記混合物を徐冷し、 前記未硬化樹脂を硬化させ、 前記液晶材料を加熱し、 前記液晶材料を徐冷することを特徴とする液晶電気光学
装置の作製方法。
5. A mixture of a liquid crystal material and an uncured resin between a pair of substrates is heated until the liquid crystal material in the mixture shows an isotropic phase, and the mixture is gradually cooled. Curing, heating the liquid crystal material, and gradually cooling the liquid crystal material, a method for manufacturing a liquid crystal electro-optical device.
【請求項6】内側面に電極を有する一対の基板間に、液
晶材料と、紫外線と熱のいずれにおいても硬化する未硬
化の樹脂との混合物を満たし、 前記樹脂を前記混合物中から析出させ、 紫外線および加熱により前記析出した樹脂を硬化させる
ことを特徴とする液晶電気光学装置の作製方法。
6. A space between a pair of substrates having electrodes on an inner surface thereof, filled with a mixture of a liquid crystal material and an uncured resin that cures with any of ultraviolet light and heat, and causing the resin to precipitate out of the mixture. A method for manufacturing a liquid crystal electro-optical device, wherein the precipitated resin is cured by ultraviolet light and heating.
【請求項7】請求項6において、前記樹脂はアクリル変
成エポキシ樹脂であることを特徴とする液晶電気光学装
置の作製方法。
7. The method according to claim 6, wherein the resin is an acrylic modified epoxy resin.
【請求項8】少なくとも一方が透光性を有する一対の基
板間に、前記一対の基板を張り合わせるシール材と、液
晶材料と未硬化樹脂との混合物とを保持し、 前記混合物中から前記未硬化樹脂をカラム状に析出さ
せ、 前記シール材および前記未硬化樹脂とを同一工程にて硬
化させることを特徴とする液晶電気光学装置の作製方
法。
8. A sealing material for bonding the pair of substrates and a mixture of a liquid crystal material and an uncured resin are held between the pair of substrates, at least one of which has a light-transmitting property. A method for manufacturing a liquid crystal electro-optical device, comprising: depositing a cured resin in a column shape; and curing the sealing material and the uncured resin in the same step.
【請求項9】第1の基板の周辺部にシール材を形成し、 前記第1の基板上に、液晶材料と未硬化樹脂との混合物
を滴下し、 前記混合物を滴下した面に第2の基板を張り合わせ、 前記混合物中から前記未硬化樹脂を析出させ、 前記シール材および前記未硬化樹脂を硬化させることを
特徴とする液晶電気光学装置の作製方法。
9. A sealing material is formed around the first substrate, a mixture of a liquid crystal material and an uncured resin is dropped on the first substrate, and a second surface is dropped on the surface where the mixture is dropped. A method of manufacturing a liquid crystal electro-optical device, comprising: bonding a substrate; precipitating the uncured resin from the mixture; and curing the sealing material and the uncured resin.
【請求項10】請求項9において、前記シール材および
前記未硬化樹脂として紫外線硬化樹脂を用い、前記シー
ル材および前記未硬化樹脂の硬化手段として紫外線を用
いることを特徴とする液晶電気光学装置の作製方法。
10. The liquid crystal electro-optical device according to claim 9, wherein an ultraviolet curable resin is used as said seal material and said uncured resin, and ultraviolet light is used as a curing means for said seal material and said uncured resin. Production method.
JP04778699A 1993-02-19 1999-02-25 Method for manufacturing liquid crystal electro-optical device Expired - Fee Related JP3215677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04778699A JP3215677B2 (en) 1993-02-19 1999-02-25 Method for manufacturing liquid crystal electro-optical device

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP5523793 1993-02-19
JP9260693 1993-03-26
JP11007193 1993-04-13
JP13939793 1993-05-18
JP17719593 1993-05-20
JP5-139397 1993-05-21
JP5-92606 1993-05-21
JP5-110071 1993-05-21
JP5-177195 1993-05-21
JP5-55237 1993-05-21
JP14288493 1993-05-21
JP5-142884 1993-05-21
JP04778699A JP3215677B2 (en) 1993-02-19 1999-02-25 Method for manufacturing liquid crystal electro-optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04525594A Division JP3215255B2 (en) 1993-02-19 1994-02-18 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH11287983A JPH11287983A (en) 1999-10-19
JP3215677B2 true JP3215677B2 (en) 2001-10-09

Family

ID=27564681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04778699A Expired - Fee Related JP3215677B2 (en) 1993-02-19 1999-02-25 Method for manufacturing liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP3215677B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177197B2 (en) 2001-09-17 2007-02-13 Sandisk Corporation Latched programming of memory and method
JP4424304B2 (en) 2005-12-07 2010-03-03 セイコーエプソン株式会社 Display manufacturing method, display and electronic apparatus
BR112012001907A2 (en) 2009-07-31 2016-03-15 Sharp Kk liquid crystal panel and liquid crystal display device
CN113376925A (en) * 2021-06-17 2021-09-10 纵深视觉科技(南京)有限责任公司 Switchable optical function assembly and manufacturing method and manufacturing device thereof

Also Published As

Publication number Publication date
JPH11287983A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP2930496B2 (en) Liquid crystal display device and method of manufacturing the same
KR0173803B1 (en) Lcd element and its manufacture
JP2933816B2 (en) Liquid crystal display device and method of manufacturing the same
JP2933805B2 (en) Polymer-dispersed liquid crystal composite film, liquid crystal display device, and method of manufacturing the same
KR100816142B1 (en) Liquid crystal display device and fabrication method thereof
JP3178773B2 (en) Liquid crystal display device and method of manufacturing the same
JPH08171086A (en) Liquid crystal display element and its production
JP5113869B2 (en) Liquid crystal display device and manufacturing method thereof
US5546208A (en) Electrooptical device involving a mixture of liquid crystal, photo curable resins and reaction initiating material for forming resinous columns
KR100262448B1 (en) Electro-optical device and method for forming the same
JP3050769B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1082981A (en) Liquid crystal display element
JP3215677B2 (en) Method for manufacturing liquid crystal electro-optical device
JPH06214218A (en) Liquid crystal display element and its production
JP3715771B2 (en) Liquid crystal display device and manufacturing method thereof
JP3215255B2 (en) Liquid crystal electro-optical device
JPH06160814A (en) Twisted nematic liquid crystal display element
JP3092896B2 (en) Liquid crystal display device and method of manufacturing the same
JP3105379B2 (en) Method for manufacturing liquid crystal electro-optical device
JP2004177775A (en) Liquid crystal display panel and its manufacturing method
JPH07234400A (en) Liquid crystal display device
JPH06160801A (en) Supertwisted nematic liquid crystal display element
JPH06242409A (en) Liquid crystal display unit and manufacture of same
JP3205503B2 (en) Liquid crystal display device and manufacturing method thereof
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees