JP3214048B2 - Zirconia sintered body and its manufacturing method - Google Patents

Zirconia sintered body and its manufacturing method

Info

Publication number
JP3214048B2
JP3214048B2 JP08496592A JP8496592A JP3214048B2 JP 3214048 B2 JP3214048 B2 JP 3214048B2 JP 08496592 A JP08496592 A JP 08496592A JP 8496592 A JP8496592 A JP 8496592A JP 3214048 B2 JP3214048 B2 JP 3214048B2
Authority
JP
Japan
Prior art keywords
sintered body
mol
oxide
zirconia sintered
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08496592A
Other languages
Japanese (ja)
Other versions
JPH05254933A (en
Inventor
浩邦 星野
哲雄 藤井
卓司 村上
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP08496592A priority Critical patent/JP3214048B2/en
Publication of JPH05254933A publication Critical patent/JPH05254933A/en
Application granted granted Critical
Publication of JP3214048B2 publication Critical patent/JP3214048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱耐久性に優れた高い機
械的強度を有するジルコニア焼結体に関するものであ
る。本発明のセラミックスは、切削または切断用工具
類、各種ダイス、ノルズ、などの構成材料としての用途
に好適である。しかし、このセラミックスはこの用途に
制限されるものではない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia sintered body having excellent heat durability and high mechanical strength. The ceramic of the present invention is suitable for use as a constituent material for cutting or cutting tools, various dies, knurls, and the like. However, this ceramic is not limited to this application.

【0002】[0002]

【従来の技術】高強度・高靭性ジルコニア焼結体とし
て、ジルコニアに酸化マグネシウム、酸化カルシウム、
酸化イットリウム又は酸化セリウムを添加した部分安定
化ジルコニア焼結体がすでに知られている。このうち、
主流である酸化イットリウムを3モル%含む部分安定化
ジルコニア焼結体は、強度が強いが熱安定性に劣るとい
う欠点を有する。一方、酸化セリウムを12モル%含む
ジルコニア焼結体は熱安定性に優れているが、三点曲げ
強度が約50kg/mmであり、強度的に劣ってい
る。この原因は、焼結体の粒径が1μm以上と大きいこ
とであると考えられる。 特開平3−159960公報
に酸化セリウムと少量のアルカリ土類金属酸化物を添加
したジルコニア焼結体の機械的特性が報告されている。
このジルコニア焼結体の機械的特性は酸化イットリウム
を3モル%含むジルコニア焼結体に比較し靱性が高いの
が特徴であるが、一方、強度に関しては約80kg/m
と、従来の酸化セリウム系ジルコニア焼結体より
は、改善されているが、依然として、酸化イットリウム
を3モル%含む部分安定化ジルコニア焼結体の強度より
は劣る。
2. Description of the Related Art Magnesium oxide, calcium oxide, and zirconia are used as zirconia sintered bodies with high strength and toughness.
A partially stabilized zirconia sintered body to which yttrium oxide or cerium oxide is added is already known. this house,
A partially stabilized zirconia sintered body containing 3 mol% of yttrium oxide, which is a mainstream, has a disadvantage that it has high strength but is inferior in thermal stability. On the other hand, a zirconia sintered body containing 12 mol% of cerium oxide has excellent thermal stability, but has a three-point bending strength of about 50 kg / mm 2 and is inferior in strength. It is considered that the cause is that the particle size of the sintered body is as large as 1 μm or more. JP-A-3-159960 reports the mechanical properties of a zirconia sintered body to which cerium oxide and a small amount of alkaline earth metal oxide are added.
The mechanical properties of this zirconia sintered body are characterized by a higher toughness than that of a zirconia sintered body containing 3 mol% of yttrium oxide, while the strength is about 80 kg / m2.
m 2, which is an improvement over a conventional cerium oxide-based zirconia sintered body, but still inferior to the strength of a partially stabilized zirconia sintered body containing 3 mol% of yttrium oxide.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、現在、部分安定化ジルコニア焼結体として
主流である酸化イットリウムを3モル%含むジルコニア
焼結体と同等の強度を有し、熱安定性に優れた酸化セリ
ウムを添加したジルコニア焼結体を提供することにあ
る。
An object of the present invention is to provide a partially stabilized zirconia sintered body which has the same strength as a zirconia sintered body containing 3 mol% of yttrium oxide which is the mainstream. Another object of the present invention is to provide a zirconia sintered body to which cerium oxide having excellent thermal stability is added.

【0004】[0004]

【課題を解決するための手段】ジルコニア焼結体の強度
に対する焼結体の粒子径の影響については、以前から検
討されており、例えば特公昭61−21184におい
て、酸化イットリウムを添加したジルコニア焼結体の粒
子径が2μm以下がよいと規定している。
The effect of the particle size of the sintered body on the strength of the zirconia sintered body has been studied for a long time. For example, Japanese Patent Publication No. 61-21184 discloses a zirconia sintered body containing yttrium oxide. It is specified that the particle diameter of the body is preferably 2 μm or less.

【0005】特開平3−159960公報における酸化
セリウム系ジルコニウム焼結体においては、焼結体の粒
子径は1.3〜1.5μmであり、この粒子径をもっと
小さく出来れば、酸化イットリウムを3モル%含むジル
コニア焼結体と同等以上の強度を有し、熱安定性に優れ
た酸化セリウムを添加したジルコニア焼結体が製造でき
ると考えた。従って、鋭意検討した結果、高強度を有
し、熱安定性に優れた酸化セリウム系ジルコニア焼結体
及びその製造方法を検討した結果、焼結体の粒子径を
0.5μm以下に制御した酸化セリウム系ジルコニア焼
結体を初めて得た。
In the cerium oxide-based zirconium sintered body disclosed in JP-A-3-159960, the particle size of the sintered body is 1.3 to 1.5 μm. It was considered that a zirconia sintered body to which cerium oxide was added, which had a strength equal to or higher than that of a zirconia sintered body containing mol% and had excellent thermal stability, could be produced. Thus, a result of intensive studies, have high strength, thermal stability superior ceria zirconia sintered body and the results of studying the production method, the particle size of the sintered body
A cerium oxide-based zirconia sintered body controlled to 0.5 μm or less was obtained for the first time.

【0006】さらに、酸化セリウム添加量を9〜11モ
ル%とし、酸化カルシウムの添加量を0.7〜1.2モ
ル%にして、添加量を最適化することにより、結晶相が
完全に正方晶となり、三点曲げ強度が、従来の酸化セリ
ウム系ジルコニア焼結体では得られなかった100kg
/mm以上のジルコニア焼結体が得られることも明ら
かにし、本発明を完成するに至った。
Further, the amount of cerium oxide is set to 9 to 11 mol%, and the amount of calcium oxide is set to 0.7 to 1.2 mol%, and the crystal phase is completely squared by optimizing the addition amount. 100 kg, which cannot be obtained with a conventional cerium oxide-based zirconia sintered body
/ Mm 2 or more, a zirconia sintered body was obtained, and the present invention was completed.

【0007】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0008】本発明に用いた安定化剤添加量は、通常
は、酸化セリウムが7〜14%、酸化カルシウムが0.
2〜2モル%であり、好ましくは、酸化セリウムが8〜
14モル%、酸化カルシウムが0.2〜1.5モル%で
ある。さらに、酸化セリウムが9〜11モル%、酸化カ
ルシウムが0.7〜1.2モル%であると、さらに好ま
しい。
The amount of the stabilizer used in the present invention is usually 7-14% for cerium oxide and 0.1% for calcium oxide.
2 to 2 mol%, preferably, cerium oxide is 8 to 2 mol%.
14 mol%, and 0.2 to 1.5 mol% of calcium oxide. Further, it is more preferable that cerium oxide is 9 to 11 mol% and calcium oxide is 0.7 to 1.2 mol%.

【0009】酸化カルシウムは安定化剤としての寄与と
焼結体の粒成長を抑制する効果があることが知られてい
る(例えば、J.Am.Ceramics Soc., Vol. 73, P.3269-32
77(1990))。しかしながら、この文献中の酸化セリウム
−酸化カルシウム系ジルコニア焼結体でも平均粒子径は
1.04μmであり、平均粒子径が1μm以下の酸化セ
リウム−酸化カルシウム系ジルコニア焼結体は得られて
いない。
It is known that calcium oxide has a contribution as a stabilizer and an effect of suppressing grain growth of a sintered body (for example, J. Am. Ceramics Soc., Vol. 73, P. 3269-). 32
77 (1990)). However, even the cerium oxide-calcium oxide zirconia sintered body in this document has an average particle diameter of 1.04 μm, and a cerium oxide-calcium oxide zirconia sintered body having an average particle diameter of 1 μm or less has not been obtained.

【0010】酸化カルシウムの添加量が1.5モル%を
越えると、酸化カルシウムは正方晶よりも立方晶を作り
やすい為に、正方晶の割合が減少し、期待されるほどの
高い靭性と強度は得られない。
If the amount of calcium oxide exceeds 1.5 mol%, calcium oxide tends to form a cubic crystal rather than a tetragonal crystal, so that the proportion of the tetragonal crystal decreases, and the toughness and strength as expected are high. Cannot be obtained.

【0011】又、酸化カルシウムが0.2モル%未満の
場合には、粒成長抑制効果が小さい為に、期待されるほ
どの高い靭性と強度は得られない。
When the content of calcium oxide is less than 0.2 mol%, the toughness and strength as expected cannot be obtained because the effect of suppressing the grain growth is small.

【0012】従って、酸化カルシウムの添加量として
は、ジルコニア結晶相が主として正方晶となる、0.2
〜1.5モル%であることが好ましい。
Therefore, the amount of calcium oxide to be added should be such that the zirconia crystal phase is mainly tetragonal.
It is preferably about 1.5 mol%.

【0013】又、酸化カルシウムを添加すると靱性を下
げる方向にあるので、この効果を考慮に入れて酸化セリ
ウム含有量を低める必要がある。靱性値があまりに低す
ぎると強度がばらつき、かえって平均強度を下げ、信頼
性に欠ける焼結体になってしまう。この様なことから酸
化セリウム含有量としては、14モル%以下でなければ
ならない。また酸化セリウムが7モル%未満では結晶相
が単斜晶であり、高強度が得られない。
Since the addition of calcium oxide tends to lower the toughness, it is necessary to reduce the cerium oxide content in consideration of this effect. If the toughness value is too low, the strength varies, and on the contrary, the average strength decreases, resulting in a sintered body lacking reliability. Therefore, the content of cerium oxide must be 14 mol% or less. If the content of cerium oxide is less than 7 mol%, the crystal phase is monoclinic and high strength cannot be obtained.

【0014】さらに酸化セリウムの添加量を9〜11モ
ル%、酸化カルシウム0.7〜1.2モル%に範囲を絞
ることにより、焼結体の強度がさらに強くなり、三点曲
げ強度が100kg/mm以上となる。
Further, by narrowing the addition amount of cerium oxide to 9 to 11 mol% and calcium oxide to 0.7 to 1.2 mol%, the strength of the sintered body is further increased, and the three-point bending strength is 100 kg. / Mm 2 or more.

【0015】これらの焼結体は酸化セリウム系ジルコニ
ア焼結体の特徴である熱安定性に優れている。酸化イッ
トリウムを3モル%含むジルコニア焼結体は、100〜
300℃程度の比較的低温度のアニ−ルで正方晶が単斜
晶に転移し、強度低下してしまい、さらに劣化が進むと
焼結体が崩壊さえしてしまう。
These sintered bodies are excellent in thermal stability which is a characteristic of the cerium oxide based zirconia sintered body. A zirconia sintered body containing 3 mol% of yttrium oxide is 100 to 100%.
At a relatively low temperature of about 300 ° C., the tetragonal crystal is transformed into a monoclinic crystal and the strength is reduced, and if the deterioration proceeds further, the sintered body may even collapse.

【0016】例えば、鏡面研磨した焼結体試料を170
℃、水熱下に24時間保持した後、生成単斜晶量をX線
回折試験で測定し熱安定性を評価した場合、従来の酸化
イットリウムを3モル%含むジルコニア焼結体は、50
%以上単斜晶に転移してしまうのに対して、本発明のセ
リウム系ジルコニア焼結体は、正方晶から単斜晶に全く
転移しないか、或いはわずか5%以下しか単斜晶に転移
せず、熱安定性に優れているジルコニア焼結体である。
For example, a mirror-polished sintered body sample is
C. for 24 hours under hydrothermal conditions, and the amount of monoclinic crystals formed was measured by an X-ray diffraction test to evaluate the thermal stability. The conventional zirconia sintered body containing 3 mol% of yttrium oxide was 50%.
% Or more, while the cerium-based zirconia sintered body of the present invention does not transform from tetragonal to monoclinic at all, or only 5% or less transforms to monoclinic. And a zirconia sintered body having excellent thermal stability.

【0017】このようなジルコニア焼結体を作製するた
め原料粉末は、ジルコニウム塩、セリウム塩及びカルシ
ウム塩を用い、加水分解によって沈殿を得たのち、60
0℃以上で焼成して得られる平均粒子径が0.5μm以
下の微粉末であることが必須である。これを越えると緻
密な機械的強度の高い焼結体を得られない。
The raw material powder for producing such a zirconia sintered body is obtained by using a zirconium salt, a cerium salt and a calcium salt, and obtaining a precipitate by hydrolysis.
Average particle size obtained by firing at 0 ° C or more is 0.5 μm or less
It is essential that it be the fine powder below . If it exceeds this, a dense sintered body having high mechanical strength cannot be obtained.

【0018】このことは、原料粉末を微粉化することに
より、酸化カルシウムが焼結体の粒成長を抑制する効果
がより発揮されることによると考えられる。このことに
より、本発明により初めて、焼結体の粒子径を0.5μ
m以下に制御した酸化セリウム系ジルコニア焼結体得る
ことが出来、従来の酸化セリウム系ジルコニア焼結体で
は得られなかった100kg/mm2以上のジルコニア
焼結体が得られた。
This is considered to be due to the fact that, by pulverizing the raw material powder, calcium oxide exerts an effect of suppressing grain growth of the sintered body. As a result, for the first time according to the present invention , the particle size of the sintered body is reduced to 0.5 μm.
m was obtained, and a zirconia sintered body of 100 kg / mm 2 or more, which could not be obtained with a conventional cerium oxide-based zirconia sintered body, was obtained.

【0019】尚、原料粉末の製造方法として、一度にセ
リウム塩及びカルシウム塩を添加する方法でも良いし、
或いは、最初にセリウムを添加して、セリウム系ジルコ
ニア粉末を製造した後、カルシウム塩を添加しても良
い。
The raw material powder may be produced by adding cerium salt and calcium salt at once,
Alternatively, the calcium salt may be added after cerium is added first to produce the cerium-based zirconia powder.

【0020】本発明によるジルコニア焼結体は、上記の
様にして製造された粉末を、例えばプレス成形で成形
し、大気又は酸素中1350〜1550℃で焼結して得
られる。焼結温度が1350℃未満では焼結体密度が低
く、また1550℃を越えると粒成長するため不適であ
る。
The zirconia sintered body according to the present invention is obtained by molding the powder produced as described above, for example, by press molding, and sintering it at 1350 to 1550 ° C. in air or oxygen. If the sintering temperature is lower than 1350 ° C., the density of the sintered body is low, and if it exceeds 1550 ° C., the grains grow unfavorably.

【0021】なお本発明のジルコニア焼結体は、焼結体
の特性を阻害しない範囲で、酸化アルミニウム等の不可
避的不純物を含んでいても良い。
The zirconia sintered body of the present invention may contain unavoidable impurities such as aluminum oxide as long as the characteristics of the sintered body are not impaired.

【0022】以下の実施例により、本発明を具体的に説
明するが、この実施例により、本発明は何等限定される
ものでない。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited by these examples.

【0023】[0023]

【実施例】実施例中における三点曲げ強度と破壊靱性の
測定は以下の方法による。
EXAMPLES In the examples, the three-point bending strength and the fracture toughness were measured by the following methods.

【0024】三点曲げ強度測定は、板状焼結体を切断、
研削して3mm×4mm×40mmの角棒状試験片と
し、JIS R 1601に定められたスパン長さ30
mm、荷重印加速度0.5mm/分の条件によって行
う。
The three-point bending strength is measured by cutting a plate-like sintered body,
Grinding into a 3 mm x 4 mm x 40 mm square bar-shaped test piece, with a span length of 30 specified in JIS R 1601
mm and a load application speed of 0.5 mm / min.

【0025】破壊靱性の測定は、鏡面研磨した焼結体試
料面にビッカ−ス圧子を打ち込み、圧痕長さと圧痕から
発生した亀裂長さとの比から値を算出するインデンテ−
ション法によって行う。圧子の打ち込み荷重は50kg
とする。算出に用いる計算式はJIS R 1607に
従う。
The fracture toughness is measured by injecting a Vickers indenter into a mirror-polished sintered sample surface and calculating the value from the ratio of the length of the indentation to the length of the crack generated from the indentation.
It is performed by the method. The driving load of the indenter is 50kg
And The calculation formula used for the calculation conforms to JIS R1607.

【0026】焼結体の粒子径の測定は、鏡面研磨した焼
結体を1350℃、1時間サ−マルエッチングを行った
後、走査型電子顕微鏡で観察し測定した。
The particle size of the sintered body was measured by subjecting a mirror-polished sintered body to thermal etching at 1350 ° C. for 1 hour and then observing the same with a scanning electron microscope.

【0027】焼結体の熱安定性は、170℃、水熱下、
24時間の条件で劣化試験を行い、鏡面研磨した焼結体
試料面をX線回折試験し、その単斜晶量を測定した。単
斜晶率Xmは以下の式により求めた。単斜晶の〈11
1〉面、〈11−1〉面、正方晶の〈200〉面、立方
晶の〈200〉面のX線回折強度をそれぞれM〈11
1〉、M〈11−1〉、T〈200〉、C〈200〉と
したとき、 Xm=(M〈111〉+M〈11−1〉)/(M〈11
1〉+M〈11−1〉+T〈200〉+C〈200〉) 又、平均粒子径は、遠心沈降光透過方式により測定し、
装置としては、堀場製作所製CAPA−700型を使用
した。
The thermal stability of the sintered body is as follows: 170 ° C., under hydrothermal conditions.
The deterioration test was performed under the condition of 24 hours, and the mirror-polished sintered body sample surface was subjected to an X-ray diffraction test to measure the amount of monoclinic crystal. The monoclinic fraction Xm was determined by the following equation. Monoclinic <11
The X-ray diffraction intensities of the <1> plane, the <11-1> plane, the tetragonal <200> plane, and the cubic <200> plane were respectively determined by M <11
1m, M <11-1>, T <200>, and C <200>, Xm = (M <111> + M <11-1>) / (M <11
1> + M <11-1> + T <200> + C <200>) The average particle diameter is measured by a centrifugal sedimentation light transmission method.
As a device, model CAPA-700 manufactured by Horiba, Ltd. was used.

【0028】実施例1 原料粉末は、以下の方法により調製した。Example 1 A raw material powder was prepared by the following method.

【0029】オキシ塩化ジルコニウムの水溶液と塩化セ
リウム水溶液及び塩化カルシウムを所望の組成(酸化セ
リウム=12.4モル%、酸化カルシウム=1.0モル
%)となるように混合し100℃で100時間、加熱を
続けて加水分解生成ゾルを得た。
An aqueous solution of zirconium oxychloride, an aqueous cerium chloride solution and calcium chloride are mixed so as to have a desired composition (cerium oxide = 12.4 mol%, calcium oxide = 1.0 mol%), and the mixture is heated at 100 ° C. for 100 hours. Heating was continued to obtain a hydrolysis sol.

【0030】これを蒸発乾固して得た粉末を900℃で
仮焼し、次に分散媒にエタノ−ルを用いたボ−ルミルで
20時間粉砕し、酸化セリウム−酸化カルシウム系ジル
コニア粉末を得た。
The powder obtained by evaporating this to dryness was calcined at 900 ° C., and then ground with a ball mill using ethanol as a dispersion medium for 20 hours to obtain a cerium oxide-calcium oxide zirconia powder. Obtained.

【0031】この酸化セリウム−酸化カルシウム系ジル
コニア粉末の平均粒子径は、0.4μmであった。
The average particle diameter of the cerium oxide-calcium oxide zirconia powder was 0.4 μm.

【0032】次いで、前記原料粉末をラバ−プレス法に
よって、厚さ、幅、長さがそれぞれ4mm、37mm、
54mmである板状成形体とした。この成形体を150
0℃の温度で1時間焼成し、本発明の酸化セリウム−酸
化カルシウム系ジルコニア焼結体を得た。
Next, the raw material powder was subjected to a rubber press method to have a thickness, a width and a length of 4 mm, 37 mm, respectively.
A plate-shaped molded body having a size of 54 mm was obtained. This molded body is
It was calcined at a temperature of 0 ° C. for 1 hour to obtain a cerium oxide-calcium oxide-based zirconia sintered body of the present invention.

【0033】三点曲げ強度は93kg/mm、破壊靱
性は3.5MPam1/2 、結晶相は100%正方晶であ
り、焼結体の粒子径は0.5μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶の
増加は観測されなかった。
The three-point bending strength is 93 kg / mm 2 , the fracture toughness is 3.5 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.5 μm, and 170
No increase in monoclinic crystal was observed after the degradation test under the conditions of ° C and hydrothermal conditions for 24 hours.

【0034】実施例2 原料粉末は、以下の方法により調製した。Example 2 A raw material powder was prepared by the following method.

【0035】オキシ塩化ジルコニウムの水溶液と塩化セ
リウム水溶液を所望の組成(12.4モル%)となるよ
うに混合し100℃で100時間、加熱を続けて加水分
解生成ゾルを得た。
An aqueous solution of zirconium oxychloride and an aqueous cerium chloride solution were mixed so as to have a desired composition (12.4 mol%), and heating was continued at 100 ° C. for 100 hours to obtain a hydrolysis-formed sol.

【0036】これを蒸発乾固して得た粉末を900℃で
仮焼し、次に分散媒にエタノ−ルを用いたボ−ルミルで
20時間粉砕し、酸化セリウム系ジルコニア粉末を得
た。
The powder was evaporated to dryness, and the obtained powder was calcined at 900 ° C., and then pulverized with a ball mill using ethanol as a dispersion medium for 20 hours to obtain a cerium oxide-based zirconia powder.

【0037】次にこの粉末と炭酸カルシウムを所望の組
成(1.0モル%)なるように分散媒にエタノ−ルを用
いたボ−ルミルで20時間混合した後、930℃で仮焼
し、同様の方法で粉砕して酸化セリウム−酸化カルシウ
ム系ジルコニア粉末を調製した。
Next, this powder and calcium carbonate were mixed in a ball mill using ethanol as a dispersion medium for a desired composition (1.0 mol%) for 20 hours, and calcined at 930 ° C. Pulverization was performed in the same manner to prepare cerium oxide-calcium oxide-based zirconia powder.

【0038】この酸化セリウム−酸化カルシウム系ジル
コニア粉末の平均粒子径は、0.4μmであった。
The average particle diameter of the cerium oxide-calcium oxide zirconia powder was 0.4 μm.

【0039】次いで、前記原料粉末をラバ−プレス法に
よって、厚さ、幅、長さがそれぞれ4mm、37mm、
54mmである板状成形体とした。この成形体を150
0℃の温度で1時間焼成し、本発明の酸化セリウム−酸
化カルシウム系ジルコニア焼結体を得た。
Next, the raw material powder was subjected to a rubber press method to have a thickness, width and length of 4 mm, 37 mm, respectively.
A plate-shaped molded body having a size of 54 mm was obtained. This molded body is
It was calcined at a temperature of 0 ° C. for 1 hour to obtain a cerium oxide-calcium oxide-based zirconia sintered body of the present invention.

【0040】三点曲げ強度は94kg/mm、破壊靱
性は3.8MPam1/2 、結晶相は100%正方晶であ
り、焼結体の粒子径は0.5μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶の
増加は観測されなかった。
The three-point bending strength is 94 kg / mm 2 , the fracture toughness is 3.8 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.5 μm, and 170
No increase in monoclinic crystal was observed after the degradation test under the conditions of ° C and hydrothermal conditions for 24 hours.

【0041】実施例3 酸化セリウムの添加量を10.0モル%とする以外は、
実施例2と同様の条件で、酸化セリウム−酸化カルシウ
ム系ジルコニア焼結体を得た。
Example 3 Except that the amount of cerium oxide added was 10.0 mol%,
Under the same conditions as in Example 2, a cerium oxide-calcium oxide-based zirconia sintered body was obtained.

【0042】三点曲げ強度は126kg/mm、破壊
靱性は8.0MPam1/2 、結晶相は100%正方晶で
あり、焼結体の粒子径は0.5μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶の
増加は観測されなかった。
The three-point bending strength is 126 kg / mm 2 , the fracture toughness is 8.0 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.5 μm, and
No increase in monoclinic crystal was observed after the degradation test under the conditions of ° C and hydrothermal conditions for 24 hours.

【0043】実施例4 酸化セリウムの添加量を10.0モル%、焼結温度が1
450℃である以外は、実施例2と同様の条件で、酸化
セリウム−酸化カルシウム系ジルコニア焼結体を得た。
Example 4 The amount of cerium oxide added was 10.0 mol% and the sintering temperature was 1
A cerium oxide-calcium oxide-based zirconia sintered body was obtained under the same conditions as in Example 2 except that the temperature was 450 ° C.

【0044】三点曲げ強度は133kg/mm、破壊
靱性は7.0MPam1/2 、結晶相は100%正方晶で
あり、焼結体の粒子径は0.4μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶の
増加は観測されなかった。
The three-point bending strength is 133 kg / mm 2 , the fracture toughness is 7.0 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.4 μm, and
No increase in monoclinic crystal was observed after the degradation test under the conditions of ° C and hydrothermal conditions for 24 hours.

【0045】実施例5 酸化セリウムの添加量を10.0モル%、酸化カルシウ
ムの添加量を0.5モル%とし、焼結温度が1450℃
である以外は、実施例2と同様の条件で、酸化セリウム
−酸化カルシウム系ジルコニア焼結体を得た。
Example 5 The addition amount of cerium oxide was 10.0 mol%, the addition amount of calcium oxide was 0.5 mol%, and the sintering temperature was 1450 ° C.
A cerium oxide-calcium oxide-based zirconia sintered body was obtained under the same conditions as in Example 2 except that

【0046】三点曲げ強度は97kg/mm、破壊靱
性は17.5MPam1/2 、結晶相は100%正方晶で
あり、焼結体の粒子径は0.4μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶の
増加は観測されなかった。
The three-point bending strength is 97 kg / mm 2 , the fracture toughness is 17.5 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.4 μm, and
No increase in monoclinic crystal was observed after the degradation test under the conditions of ° C and hydrothermal conditions for 24 hours.

【0047】実施例6 酸化セリウムの添加量を8.0モル%、焼結温度が14
50℃である以外は、実施例2と同様の条件で、酸化セ
リウム−酸化カルシウム系ジルコニア焼結体を得た。
Example 6 The amount of cerium oxide added was 8.0 mol% and the sintering temperature was 14
A cerium oxide-calcium oxide-based zirconia sintered body was obtained under the same conditions as in Example 2 except that the temperature was 50 ° C.

【0048】三点曲げ強度は95kg/mm、破壊靱
性は18.0MPam1/2 、結晶相は100%正方晶で
あり、焼結体の粒子径は0.4μmであり、又、170
℃、水熱下、24時間の条件での劣化試験後の単斜晶は
1%しか増加しなかった。
The three-point bending strength is 95 kg / mm 2 , the fracture toughness is 18.0 MPam 1/2 , the crystal phase is 100% tetragonal, the particle size of the sintered body is 0.4 μm, and
The monoclinic crystal increased by only 1% after the deterioration test under the conditions of 24 ° C. and hydrothermal condition for 24 hours.

【0049】実施例7 酸化セリウムの添加量を7.0モル%、酸化カルシウム
の添加量を2.0モル%、焼結温度が1450℃である
以外は、実施例2と同様の条件で、酸化セリウム−酸化
カルシウム系ジルコニア焼結体を得た。
Example 7 The same conditions as in Example 2 were used except that the addition amount of cerium oxide was 7.0 mol%, the addition amount of calcium oxide was 2.0 mol%, and the sintering temperature was 1450 ° C. A cerium oxide-calcium oxide-based zirconia sintered body was obtained.

【0050】三点曲げ強度は80kg/mm、破壊靱
性は16.0MPam1/2 、結晶相は90%正方晶、残
り10%が立方晶であり、焼結体の粒子径は0.5μm
であった。又、170℃、水熱下、24時間の条件での
劣化試験後の単斜晶は2%しか増加しなかった。
The three-point bending strength is 80 kg / mm 2 , the fracture toughness is 16.0 MPam 1/2 , the crystal phase is 90% tetragonal, the remaining 10% is cubic, and the particle size of the sintered body is 0.5 μm
Met. Further, the monoclinic crystal after the deterioration test under the condition of 170 ° C. and hydrothermal condition for 24 hours increased only 2%.

【0051】実施例1〜7の測定結果を表1に示した。Table 1 shows the measurement results of Examples 1 to 7.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】以上の結果から明らかなとおり、本発明
のジルコニア焼結体は、焼結体の粒子径を制御すること
で高強度、高靱性を有し、熱安定性に優れた焼結体を得
ることができる。特に、さらに酸化セリウムの添加量を
9〜11モル%、酸化カルシウム0.7〜1.2モル%
に範囲を絞ることにより、焼結体の強度がさらに強くな
り、三点曲げ強度が100kg/mm以上となる。
As is clear from the above results, the zirconia sintered body of the present invention has high strength and high toughness by controlling the particle size of the sintered body, and has excellent heat stability. You can get the body. Particularly, the addition amount of cerium oxide is 9 to 11 mol%, and calcium oxide is 0.7 to 1.2 mol%.
By narrowing the range, the strength of the sintered body is further increased, and the three-point bending strength is 100 kg / mm 2 or more.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−30663(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-30663 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/42-35/49 CA (STN ) REGISTRY (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化セリウム及び酸化カルシウムを安定化
剤として使用するジルコニア焼結体において、焼結体の
粒子径が0.5μm以下であることを特徴とするジルコ
ニア焼結体。
1. A zirconia sintered body using cerium oxide and calcium oxide as a stabilizer, wherein the sintered body has a particle diameter of 0.5 μm or less .
【請求項2】酸化セリウムを8〜14モル%及び酸化カ
ルシウムを0.2〜1.5モル%を含み、結晶相が主と
して正方晶であることを特徴とする請求項1に記載のジ
ルコニア焼結体。
2. The zirconia sintering composition according to claim 1, comprising 8 to 14 mol% of cerium oxide and 0.2 to 1.5 mol% of calcium oxide, and wherein the crystal phase is mainly tetragonal. Union.
【請求項3】酸化セリウムを9〜11モル%及び酸化カ
ルシウムを0.7〜1.2モル%含み、結晶相が主とし
て正方晶であり、さらに三点曲げ強度が100kg/m
2以上であることを特徴とする請求項1に記載のジル
コニア焼結体。
3. The composition contains 9 to 11 mol% of cerium oxide and 0.7 to 1.2 mol% of calcium oxide, has a mainly tetragonal crystal phase, and has a three-point bending strength of 100 kg / m.
zirconia sintered body according to claim 1, characterized in that m 2 or more.
【請求項4】ジルコニウム塩、セリウム塩及びカルシウ
ム塩を用い、加水分解によって沈殿を得たのち、600
℃以上で焼成して得られる粉末を粉砕して、平均粒子径
0.5μm以下とした微粉末を成形し、その成形体を
大気又は酸素中において、1350〜1550℃の温度
で焼結することを特徴とする請求項1に記載のジルコニ
ア焼結体の製造方法。
4. A precipitate is obtained by hydrolysis using a zirconium salt, a cerium salt and a calcium salt.
The powder obtained by sintering at a temperature of at least 0 ° C. is pulverized to form a fine powder having an average particle diameter of 0.5 μm or less, and the formed body is sintered at a temperature of 1350 to 1550 ° C. in air or oxygen. The method for producing a zirconia sintered body according to claim 1, wherein:
【請求項5】ジルコニウム塩及びセリウム塩を用い、
水分解によって沈殿を得たのち、600℃以上で焼成し
て得られる粉末にカルシウム塩を混合したのち、600
℃以上で焼成して得られる粉末を粉砕して、平均粒子径
0.5μm以下とした微粉末を成形し、その成形体を
大気又は酸素中において、1350〜1550℃の温度
で焼結することを特徴とする請求項1に記載のジルコニ
ア焼結体の製造方法。
5. Using a zirconium salt and a cerium salt, pressurized
After a precipitate is obtained by hydrolysis , the powder obtained by calcining at 600 ° C. or higher is mixed with a calcium salt,
The powder obtained by sintering at a temperature of at least 100 ° C. is pulverized to form a fine powder having an average particle size of 0.5 μm or less, and the compact is sintered at 1350 to 1550 ° C. in air or oxygen. The method for producing a zirconia sintered body according to claim 1, wherein:
JP08496592A 1992-03-09 1992-03-09 Zirconia sintered body and its manufacturing method Expired - Fee Related JP3214048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08496592A JP3214048B2 (en) 1992-03-09 1992-03-09 Zirconia sintered body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08496592A JP3214048B2 (en) 1992-03-09 1992-03-09 Zirconia sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH05254933A JPH05254933A (en) 1993-10-05
JP3214048B2 true JP3214048B2 (en) 2001-10-02

Family

ID=13845339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08496592A Expired - Fee Related JP3214048B2 (en) 1992-03-09 1992-03-09 Zirconia sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3214048B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089261B2 (en) * 2002-03-27 2008-05-28 住友金属工業株式会社 Free-cutting ceramics, manufacturing method thereof, and probe guide parts
JPWO2023190119A1 (en) * 2022-03-31 2023-10-05
JP2023181999A (en) * 2022-06-13 2023-12-25 東ソー株式会社 Sintered compact

Also Published As

Publication number Publication date
JPH05254933A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US20070179041A1 (en) Zirconia Ceramic
US4820666A (en) Zirconia base ceramics
US7148167B2 (en) Alumina/zirconia ceramics and method of producing the same
US4977114A (en) Zirconia ceramics and method for producing same
EP0908425B1 (en) Zirconia sintered body, process for production thereof, and application thereof
DE69703960T2 (en) Ceramic material based on zirconium oxide and process for its production
JPWO2006080473A1 (en) Composite ceramics and manufacturing method thereof
JPH0352425B2 (en)
JP2005082459A (en) Composite ceramic and method of manufacturing the same
JP3214048B2 (en) Zirconia sintered body and its manufacturing method
JPH0553751B2 (en)
JPH027910B2 (en)
EP2949633B1 (en) Transparent spinel ceramics and method for their preparation
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JPH042613A (en) Production of alumina-zirconia compound powder and sintered material
JPH08325057A (en) Zirconia sintered compact
JP4514563B2 (en) Alumina / zirconia ceramics and process for producing the same
JPS6090870A (en) Manufacture of high strength zirconia ceramic
JPH01208366A (en) Production of zirconia-reinforced mullite ceramics
JPH08169753A (en) Production of hexaaluminate sintered compact
JP2006056746A (en) Alumina-zirconia ceramic and its production method
JPS61219757A (en) High toughness zirconia sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees