JP3213667B2 - Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen - Google Patents
Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogenInfo
- Publication number
- JP3213667B2 JP3213667B2 JP05912694A JP5912694A JP3213667B2 JP 3213667 B2 JP3213667 B2 JP 3213667B2 JP 05912694 A JP05912694 A JP 05912694A JP 5912694 A JP5912694 A JP 5912694A JP 3213667 B2 JP3213667 B2 JP 3213667B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- oxygen
- treated water
- nitrate ion
- ion concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、アンモニア態窒素を含
む排水を固体触媒の存在下に湿式酸化処理することによ
り、排水中の含有物質を窒素、炭酸ガス、水および灰分
に転換せしめて排水の無害化を行う方法に関する。さら
に詳しくは、本発明は産業排水などに代表されるアンモ
ニア態窒素を含有する種々の排水を、固体触媒の存在
下、かつ酸素含有ガスの存在下に、100〜370℃の
温度および排水が液相を保持する圧力条件下において排
水を湿式酸化処理することにより、排水中の含有物質を
窒素、炭酸ガス、水および灰分に転換せしめて排水の無
害化を行う方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a wastewater containing ammonia nitrogen, which is subjected to wet oxidation in the presence of a solid catalyst to convert substances contained in the wastewater into nitrogen, carbon dioxide, water and ash. And a method for detoxifying the waste. More specifically, the present invention relates to a method in which various wastewaters containing ammonia nitrogen represented by industrial wastewater and the like are treated in the presence of a solid catalyst and an oxygen-containing gas at a temperature of 100 to 370 ° C. The present invention relates to a method for detoxifying wastewater by subjecting wastewater to wet oxidation treatment under pressure conditions that maintain a phase, thereby converting substances contained in the wastewater to nitrogen, carbon dioxide, water, and ash.
【0002】[0002]
【従来の技術】海域、湖沼、河川などにおいて、富栄養
化によって赤潮が発生したりかび臭物質が発生すること
が問題となって久しいが、この原因は該水域に排出され
る排水中に含有されている窒素、リンなどの栄養塩類が
原因とされている。このため、窒素、リンに関する排水
規制が実施されており、従来の活性汚泥法による二次処
理を行うのみではこれら栄養塩類を十分に処理できない
ために、脱窒工程を新規に設ける必要がある。2. Description of the Related Art In marine areas, lakes, rivers, rivers, etc., it has been a long time since eutrophication caused red tides and musty odor substances to be generated, but the cause is contained in wastewater discharged into the waters. It is caused by nutrients such as nitrogen and phosphorus. For this reason, wastewater regulations on nitrogen and phosphorus are being implemented, and these secondary nutrients cannot be sufficiently treated only by secondary treatment by the conventional activated sludge method. Therefore, it is necessary to newly provide a denitrification step.
【0003】従来、窒素を除く方法としては生物による
脱窒処理、曝気によるストリッピング法、イオン交換
法、次亜塩素酸やオゾンなどの酸化剤による酸化脱窒な
どの方法が用いられている。生物による脱窒処理は、ア
ンモニア態窒素を硝酸態窒素に硝化した後、硝酸態窒素
を嫌気性処理を行って窒素ガスとする方法であるが、処
理時間を長くとる必要があるために、必然的に装置規模
が大きくなるという問題点を有している。ストリッピン
グ法は、液相中にガスを注入し、溶解しているアンモニ
ア態窒素を気相中に放出する方法であるが、汚染物質が
単に液相から気相へと移行するだけで汚染の根本的な解
決とはならないため、気相中のアンモニアを除去するた
めの何らかの工程が必要となる。イオン交換法では、窒
素含有イオン以外のイオンが多量に含有されているよう
は排水では、イオン交換基材を頻繁に再生する必要があ
るとともにイオン交換基材の耐久性を著しく損なう。ま
た、次亜塩素酸による脱窒法は、近年問題になっている
有機塩素を生成する危険性があり、オゾンによる脱窒法
も触媒として臭素イオンの存在が不可欠となり、いずれ
も酸化剤が多量に必要となってコスト高となる。Conventionally, methods for removing nitrogen include denitrification by living organisms, stripping by aeration, ion exchange, and oxidative denitrification by oxidizing agents such as hypochlorous acid and ozone. Denitrification treatment by living organisms is a method of nitrifying ammonia nitrogen to nitrate nitrogen and then performing anaerobic treatment of nitrate nitrogen to produce nitrogen gas.However, since the treatment time needs to be long, it is inevitable. There is a problem that the apparatus scale becomes large. The stripping method is a method in which gas is injected into the liquid phase and the dissolved ammonia nitrogen is released into the gas phase. Since this is not a fundamental solution, some process for removing ammonia in the gas phase is required. In the ion exchange method, it is necessary to frequently regenerate the ion-exchange base material and waste water, so that the ion-exchange base material contains a large amount of ions other than nitrogen-containing ions. In addition, the denitrification method using hypochlorous acid has a risk of generating organic chlorine, which has recently become a problem. The denitrification method using ozone also requires the presence of bromine ions as a catalyst, and both require a large amount of oxidizing agent. As a result, the cost increases.
【0004】一方、高濃度の硝酸アンモニウムを含有す
る排水の処理方法として、触媒湿式酸化により処理する
方法が提案されている(特開昭61−222585号公
報、特開昭61−222586号公報、特開昭61−2
22587号公報、特開昭61−222588号公報、
特開昭61−222589号公報、特開昭61−245
883号公報、特開昭61−245884号公報、特開
昭61−257290号公報、特開昭61−25729
1号公報、特開昭61−257292号公報、特開平4
−59094号公報、特開平4−61987号公報、特
開平4−20069号公報2、特開平4−200790
号公報)。これらは、特定の触媒の存在下、100〜3
70℃の温度かつ排水が液相を保持する圧力条件下にお
いて湿式酸化処理する方法である。On the other hand, as a method of treating wastewater containing a high concentration of ammonium nitrate, a method of treating the wastewater by catalytic wet oxidation has been proposed (JP-A-61-222585, JP-A-61-222586, 61-2
No. 22587, JP-A-61-222588,
JP-A-61-222589, JP-A-61-245
883, JP-A-61-245883, JP-A-61-257290, JP-A-61-25729
No. 1, Japanese Patent Application Laid-Open No. 61-257292,
-59094, JP-A-4-61987, JP-A-4-20069, JP-A-4-200790
No.). These are 100 to 3 in the presence of a specific catalyst.
This is a method of performing wet oxidation treatment at a temperature of 70 ° C. and a pressure condition in which waste water retains a liquid phase.
【0005】[0005]
【本発明が解決しようとする課題】しかし、本発明者ら
がアンモニア態窒素含有排水の処理を行った際には、排
水濃度の変動や装置自体のふれにより、大きく処理効率
が変動することが認められた。すなわち、触媒湿式酸化
法によりアンモニア態窒素含有排水を処理する際には、
装置条件を排水濃度等に対して常時最適に保持しなけれ
ば、安定した高い処理効率は得られないことが明らかに
なった。However, when the present inventors treat ammonia-nitrogen-containing wastewater, the treatment efficiency may fluctuate greatly due to fluctuations in the concentration of wastewater and shake of the apparatus itself. Admitted. That is, when treating ammonia-nitrogen-containing wastewater by the catalytic wet oxidation method,
It became clear that stable high treatment efficiency could not be obtained unless the equipment conditions were always kept optimally for the concentration of wastewater.
【0006】しかし、実装置においては排水の濃度は一
定ではなく、常時変動するものである。よって実際に
は、アンモニア態窒素含有排水の処理に際し、装置条件
を常に最適な状態に制御しなければ、安定した十分な窒
素の処理を行うことは不可能である。However, in an actual apparatus, the concentration of waste water is not constant, but always fluctuates. Therefore, in practice, it is impossible to perform a stable and sufficient nitrogen treatment unless the apparatus conditions are always controlled to an optimum state in the treatment of the wastewater containing ammonia nitrogen.
【0007】[0007]
【課題を解決する手段】これに対し、本発明者らは鋭意
研究を重ねた結果、触媒湿式酸化法によりアンモニア態
窒素含有排水を処理するにあたり、窒素の処理効率に対
して装置内に供給する酸素量の影響が非常に大きいこと
を見い出した。すなわち、使用する触媒の種類によって
処理水中に残留するアンモニウムイオンおよび硝酸イオ
ンの濃度は異なるが、アンモニア態窒素含有排水を触媒
湿式酸化法により処理する場合にはどのような触媒を用
いた場合においても図1に示した概念図のとおり、供給
酸素量が少ない場合には、アンモニア態窒素は酸化され
ずに処理水中に残留することになり、また供給酸素量が
過剰になった際には、アンモニア態窒素が硝酸態窒素に
変換されて高濃度で処理水中に存在し、処理水中の全窒
素濃度としては充分な処理を行うことができないことを
見い出した。On the other hand, the inventors of the present invention have conducted intensive studies, and as a result, when treating wastewater containing ammonia nitrogen by the catalytic wet oxidation method, supply the nitrogen into the apparatus with respect to the treatment efficiency of nitrogen. The effect of oxygen content was found to be very large. That is, although the concentration of ammonium ion and nitrate ion remaining in the treated water varies depending on the type of the catalyst used, when the wastewater containing ammonia nitrogen is treated by the catalytic wet oxidation method, it does not matter when any catalyst is used. As shown in the conceptual diagram of FIG. 1, when the supplied oxygen amount is small, the ammonia nitrogen remains in the treated water without being oxidized, and when the supplied oxygen amount becomes excessive, It has been found that nitrogen is converted to nitrate nitrogen and is present in the treated water at a high concentration, so that sufficient treatment cannot be performed as the total nitrogen concentration in the treated water.
【0008】さらに、アンモニア態窒素含有排水を触媒
湿式酸化処理するに際し、触媒湿式酸化装置より排出さ
れる処理水中の硝酸イオン濃度が供給酸素の量を判断す
る指標となることを見い出し、この測定値を一定の範囲
内または濃度値に制御するように装置内に流入させる酸
素含有ガス量を制御することにより、簡便かつ排水の濃
度の変動の影響を最小限に抑え、安定した処理を行うこ
とが可能であることを見い出した。また、アンモニア態
窒素含有排水を触媒湿式酸化処理するに際し、触媒湿式
酸化装置より排出される処理水中の硝酸イオン濃度とと
もにガス中の酸素濃度が供給酸素の量を判断する指標と
なることを見い出し、これらの測定値によって、装置内
に流入させる酸素含有ガス量を制御することにより、簡
便かつ排水の濃度の変動の影響を最小限に抑え、安定し
た処理を行うことが可能であることを見い出した。本発
明は、これらの知見を基に完成されたものである。Further, it has been found that, when the ammonia-nitrogen-containing wastewater is subjected to the catalytic wet oxidation treatment, the nitrate ion concentration in the treated water discharged from the catalytic wet oxidation device is an index for judging the amount of supplied oxygen. By controlling the amount of oxygen-containing gas flowing into the apparatus so as to control the concentration to within a certain range or to a concentration value, it is possible to easily and stably minimize the influence of fluctuations in the concentration of wastewater and perform stable treatment. I found that it was possible. In addition, when the ammonia-nitrogen-containing wastewater is subjected to catalytic wet oxidation treatment, it has been found that the oxygen concentration in the gas together with the nitrate ion concentration in the treated water discharged from the catalytic wet oxidation device is an index for determining the amount of supplied oxygen, By controlling the amount of oxygen-containing gas that flows into the apparatus based on these measured values, it has been found that it is possible to carry out stable treatment simply and with minimal effects of fluctuations in the concentration of wastewater. . The present invention has been completed based on these findings.
【0009】本発明は、アンモニア態窒素を含有する排
水を触媒湿式酸化処理するに当たり、排水の流量、濃度
の変動の影響を最小限に抑制し、安定した処理を行う簡
便かつ最適な制御方法を提供するものである。The present invention provides a simple and optimal control method for performing a stable treatment by minimizing the effects of fluctuations in the flow rate and concentration of the wastewater in the catalytic wet oxidation treatment of wastewater containing ammonia nitrogen. To provide.
【0010】本発明は、アンモニア態窒素含有排水を触
媒湿式酸化処理するに際し、あらかじめ処理水中の硝酸
イオン濃度値の最適範囲をCL〜CHと設定し、触媒湿式
酸化装置より排出される気液混合流体を気液分離した
後、処理水中の硝酸イオン濃度を測定し、測定された硝
酸イオン濃度値がCL〜CHの範囲内または設定された濃
度値となるように、装置内に流入させる酸素含有ガス量
を制御することを特徴とする触媒湿式酸化装置の制御方
法である。さらに、アンモニア態窒素含有排水を触媒湿
式酸化処理するに際し、あらかじめ処理水中の硝酸イオ
ン濃度値の最適範囲をCL〜CHと設定し、触媒湿式酸化
装置より排出される気液混合流体を気液分離した後、気
相中の酸素濃度および処理水中の硝酸イオン濃度を測定
し、測定された酸素濃度があらかじめ設定された範囲内
または設定された濃度値、硝酸イオン濃度値がCL〜CH
の範囲内または設定された濃度値となるように、装置内
に流入させる酸素含有ガス量を制御することを特徴とす
る触媒湿式酸化装置の制御方法である。[0010] The present invention provides a method for treating a wastewater containing ammonia nitrogen in a catalytic wet oxidation treatment , wherein nitric acid in the treated water is treated in advance.
The optimal range of the ion concentration value is set to CL to CH. After the gas-liquid mixed fluid discharged from the catalytic wet oxidizer is separated into gas and liquid, the nitrate ion concentration in the treated water is measured, and the measured nitrate ion concentration value is measured. Is a method for controlling a catalytic wet oxidation apparatus, characterized in that the amount of oxygen-containing gas flowing into the apparatus is controlled so that the gas concentration falls within a range of CL to CH or a set concentration value. In addition, when the ammonia-nitrogen-containing wastewater is subjected to catalytic wet oxidation treatment, the nitrate ion
The optimal range of the gas concentration value is set to CL to CH, the gas-liquid mixed fluid discharged from the catalytic wet oxidizer is separated into gas and liquid, and then the oxygen concentration in the gas phase and the nitrate ion concentration in the treated water are measured. The measured oxygen concentration is within a preset range
Or set concentration value , nitrate ion concentration value is CL ~ CH
And controlling the amount of oxygen-containing gas flowing into the apparatus so that the concentration value falls within the range or a set concentration value .
【0011】触媒湿式酸化装置において、排水濃度の変
動は、反応装置の各部温度、処理水の性状、排ガスの酸
素濃度などに影響を与えてこれらを変動させる。反応装
置の各部温度は、排水の濃度が変動の前後で極端に異な
る場合には顕著に変化が現れるが、通常はその変化は小
さく、制御のために温度差を検出して用いることは困難
である。これに対して処理水中の硝酸イオン濃度、排ガ
ス中の酸素濃度は、装置内の酸化状況を如実に示す指標
となる。In the catalytic wet oxidizer, fluctuations in the concentration of waste water affect the temperature of each part of the reactor, the properties of the treated water, the oxygen concentration of the exhaust gas, and the like. The temperature of each part of the reactor changes remarkably when the concentration of the wastewater is extremely different before and after the fluctuation, but the change is usually small, and it is difficult to detect and use the temperature difference for control. is there. On the other hand, the nitrate ion concentration in the treated water and the oxygen concentration in the exhaust gas serve as indicators that clearly indicate the oxidation state in the apparatus.
【0012】本発明においては、図2に示すように、あ
らかじめ処理水中の硝酸イオン濃度の最適な範囲を設定
し、設定された範囲内におさまるように供給酸素量を増
減させる。処理水中の硝酸イオン濃度が低くなるにつれ
て供給酸素量を増加させ、また処理水中の硝酸イオン濃
度が高くなるにつれて供給酸素量を減少させることによ
り制御を行う。すなわち、処理水中の硝酸イオン濃度に
ついて、その最適な範囲をCL〜CHと設定し、硝酸イオ
ン濃度がCL〜CHの範囲内におさまるように供給酸素量
を制御することにより安定した処理が行われるのであ
る。また、あらかじめ処理水中の硝酸イオン濃度の最適
な濃度値を設定し、設定された濃度値に近づくように供
給酸素量を増減させてもよい。処理水中の硝酸イオン濃
度が低くなるにつれて供給酸素量を増加させ、また処理
水中の硝酸イオン濃度が高くなるにつれて供給酸素量を
減少させることにより制御を行う。すなわち、処理水中
の硝酸イオン濃度について、その最適な濃度値Cを設定
し、処理水中の硝酸イオン濃度がCに近づくように供給
酸素量を制御することにより安定した処理が行われる。In the present invention, as shown in FIG. 2, an optimum range of the nitrate ion concentration in the treated water is set in advance, and the supplied oxygen amount is increased or decreased so as to fall within the set range. The control is performed by increasing the supplied oxygen amount as the nitrate ion concentration in the treated water decreases, and decreasing the supplied oxygen amount as the nitrate ion concentration in the treated water increases. In other words, the stable treatment is performed by setting the optimum range of the nitrate ion concentration in the treated water to CL to CH and controlling the supplied oxygen amount so that the nitrate ion concentration falls within the range of CL to CH. It is. Further, an optimum concentration value of the nitrate ion concentration in the treated water may be set in advance, and the supplied oxygen amount may be increased or decreased so as to approach the set concentration value. The control is performed by increasing the supplied oxygen amount as the nitrate ion concentration in the treated water decreases, and decreasing the supplied oxygen amount as the nitrate ion concentration in the treated water increases. That is, for the nitrate ion concentration in the treated water, the optimum concentration value C is set, and the amount of supplied oxygen is controlled so that the nitrate ion concentration in the treated water approaches C, whereby stable treatment is performed.
【0013】供給酸素量の制御方法としては、設定され
た範囲を逸脱した際に供給酸素量を変化させる、設定さ
れた範囲を逸脱した際にその逸脱量に応じて供給酸素量
を変化させる、設定された目標値との偏差に応じて供給
酸素量を変化させるなどの一般的な方法が用いられる。
また、偏差に応じて供給酸素量を変化させる場合には、
その変化量は段階的、比例的、二次曲線的など、通常に
用いられている手法で変化量を決定することができる。As a method of controlling the supplied oxygen amount, the supplied oxygen amount is changed when the amount deviates from a set range, and the supplied oxygen amount is changed according to the deviated amount when the amount deviates from the set range. A general method such as changing the supplied oxygen amount according to a deviation from the set target value is used.
Also, when changing the supplied oxygen amount according to the deviation,
The amount of change can be determined by a commonly used method such as stepwise, proportional, or quadratic curve.
【0014】処理水中の硝酸イオン濃度の最適な範囲ま
たは濃度値を定めることにより、供給酸素量の必要酸素
量に対する増加および減少を検出することが可能にな
り、供給酸素量を制御して適正な処理を行うことが可能
となる。処理水中の硝酸イオン濃度の最適な範囲の片端
を定めず、処理水中の硝酸イオン濃度の最大値を定めて
その値を超えないように供給酸素量を制御する、もしく
は処理水中の硝酸イオン濃度の最小値を定めてその値を
下回らないように供給酸素量を制御することによって適
正な処理は行えない。すなわち、処理水中の硝酸イオン
濃度の最大値を定めてその値を超えないように供給酸素
量を制御することは、供給酸素量の過剰現象は検出でき
るが過少現象を検出することは不可能であり、供給酸素
量が不足して処理水中にアンモニウムイオンが存在する
場合がある。また、処理水中の硝酸イオン濃度の最小値
を定めてその値を下回らないように供給酸素量を制御す
ることは、供給酸素量の過少現象は検出できるが過剰現
象を検出することは不可能であり、供給酸素量が大過剰
となって処理水中に硝酸イオンが存在する場合がある。By determining the optimum range or concentration value of the nitrate ion concentration in the treated water, it is possible to detect an increase or decrease in the supplied oxygen amount with respect to the required oxygen amount, and to control the supplied oxygen amount to control an appropriate amount. Processing can be performed. One end of the optimal range of the nitrate ion concentration in the treated water is not determined, and the maximum value of the nitrate ion concentration in the treated water is determined and the supplied oxygen amount is controlled so as not to exceed the value. Proper processing cannot be performed by setting the minimum value and controlling the supplied oxygen amount so as not to fall below the minimum value. In other words, determining the maximum value of the nitrate ion concentration in the treated water and controlling the supplied oxygen amount so as not to exceed the maximum value can detect an excess phenomenon of the supplied oxygen amount, but cannot detect a shortage phenomenon. In some cases, the amount of supplied oxygen is insufficient and ammonium ions may be present in the treated water. In addition, by determining the minimum value of the nitrate ion concentration in the treated water and controlling the amount of supplied oxygen so that it does not fall below that value, it is possible to detect the phenomenon of insufficient oxygen supply, but it is impossible to detect the excess phenomenon. In some cases, the supplied oxygen amount becomes excessively large and nitrate ions may be present in the treated water.
【0015】処理水中の硝酸イオン濃度の最適な範囲ま
たは濃度値は、排水中のアンモニア態窒素の濃度、要求
される処理効率、使用する触媒の種類、硝酸イオン濃度
計の感度・精度によって大きく異なるが、通常は硝酸イ
オン濃度計の検出限界以上、要求される処理水質以下の
条件下で設定する。硝酸イオン濃度計の検出限界以下の
濃度を最適な範囲または濃度値とした場合には、供給酸
素量の過少現象を検出できず、処理水中にアンモニウム
イオンが存在して処理効率が低下する場合がある。ま
た、要求される処理水質以上の濃度を最適な範囲または
濃度値とした場合には、要求される処理効率が得られて
いない場合でも処理効率を高くするような供給酸素量の
制御が行われない。The optimum range or concentration value of the nitrate ion concentration in the treated water greatly depends on the concentration of ammonia nitrogen in the wastewater, the required treatment efficiency, the type of catalyst used, and the sensitivity and accuracy of the nitrate ion concentration meter. However, it is usually set under the condition of not less than the detection limit of the nitrate ion concentration meter and not more than the required treated water quality. If the concentration below the detection limit of the nitrate ion concentration meter is set to the optimum range or concentration value, the phenomenon of insufficient oxygen supply cannot be detected and the treatment efficiency may decrease due to the presence of ammonium ions in the treated water. is there. Further, when the concentration equal to or higher than the required treatment water quality is set to the optimum range or concentration value, the supply oxygen amount is controlled so as to increase the treatment efficiency even when the required treatment efficiency is not obtained. Absent.
【0016】処理水中の硝酸イオン濃度の最適な範囲ま
たは濃度値は、低いほど全窒素処理効率が高くなるが、
前述の理由により硝酸イオン濃度計の検出限界以上にす
る。また、制御範囲の幅は小さくするほど常時制御が適
正に行われることになり好ましい。制御範囲の幅をなく
して硝酸イオン濃度の目標値を設定し、常時供給酸素量
の制御を行ってもよい。一例を挙げれば、後述する触媒
調製例において調製した鉄−ジルコニウム−パラジウム
系触媒を使用し、排水中のアンモニア態窒素濃度が1,
500mg/l、要求される処理水中の硝酸イオン濃度
が20mg/l以下の場合、処理水中の硝酸イオン濃度
の制御範囲の設定は1〜20mg/l、好ましくは3〜
15mg/l、または目標値を10mg/lとして供給
酸素量の制御を行う。The optimum range or concentration value of the nitrate ion concentration in the treated water is lower, the higher the total nitrogen treatment efficiency is.
For the above-mentioned reason, it is set to be higher than the detection limit of the nitrate ion concentration meter. In addition, it is preferable that the width of the control range is smaller, because the control is always performed appropriately. The target value of the nitrate ion concentration may be set without the width of the control range, and the supply amount of oxygen may be constantly controlled. As an example, an iron-zirconium-palladium-based catalyst prepared in a catalyst preparation example described below is used, and the concentration of ammonia nitrogen in wastewater is 1,
When the nitrate ion concentration in the treated water is 500 mg / l and the required nitrate ion concentration in the treated water is 20 mg / l or less, the control range of the nitrate ion concentration in the treated water is set to 1 to 20 mg / l, preferably 3 to 20 mg / l.
The supply oxygen amount is controlled with 15 mg / l or a target value of 10 mg / l.
【0017】さらに本発明は、処理水中の硝酸イオン濃
度とともに排ガス中の酸素濃度を検出し、検出された硝
酸イオン濃度と酸素濃度によって供給酸素量を制御する
ことが好ましい。排ガスの酸素濃度を測定し、供給酸素
量の制御に反映させることによって、被処理水の濃度変
動を、処理水中の硝酸イオン濃度単独による制御の場合
よりもタイムラグが短くすることができ、急激な濃度変
動にも対応した処理を行うことが可能となる。また、処
理水中の硝酸イオン濃度とともに排ガス中の酸素濃度を
検出し、検出された硝酸イオン濃度と酸素濃度によって
供給酸素量を制御することにより、排ガス中の酸素濃度
単独による制御よりも処理水の性状を正確に把握するこ
とが可能となり、より安定した処理が可能となる。これ
らに加えて、処理水中の硝酸イオン濃度とともに排ガス
中の酸素濃度を検出し、検出された硝酸イオン濃度と酸
素濃度によって供給酸素量を制御することは、処理水中
の硝酸イオン濃度を測定することにより供給酸素量が過
剰な場合の検出を的確に行い、かつ排ガス中の酸素濃度
を測定することにより供給酸素量が過少な場合の検出を
迅速かつ的確に行うことが可能となるために、より高効
率で安定した処理が可能となるのである。Furthermore, in the present invention, it is preferable that the oxygen concentration in the exhaust gas is detected together with the nitrate ion concentration in the treated water, and the supplied oxygen amount is controlled based on the detected nitrate ion concentration and oxygen concentration. By measuring the oxygen concentration of the exhaust gas and reflecting it in the control of the supplied oxygen amount, the concentration fluctuation of the water to be treated can have a shorter time lag than in the case of the control using only the nitrate ion concentration in the treated water, and a rapid It is possible to perform processing corresponding to the density fluctuation. In addition, by detecting the oxygen concentration in the exhaust gas together with the nitrate ion concentration in the treated water, and controlling the amount of supplied oxygen based on the detected nitrate ion concentration and oxygen concentration, the treated water is more controlled than the oxygen concentration alone in the exhaust gas. The properties can be accurately grasped, and more stable processing can be performed. In addition to these, detecting the nitrate ion concentration in the treated water as well as the oxygen concentration in the exhaust gas, and controlling the supplied oxygen amount based on the detected nitrate ion concentration and the oxygen concentration means measuring the nitrate ion concentration in the treated water. In order to accurately detect when the supplied oxygen amount is excessive, and to measure quickly and accurately when the supplied oxygen amount is insufficient by measuring the oxygen concentration in the exhaust gas, Highly efficient and stable processing becomes possible.
【0018】処理水中の硝酸イオン濃度と排ガスの酸素
濃度を併用して供給酸素量を制御する場合には、処理水
中の硝酸イオン濃度については、あらかじめ硝酸イオン
濃度の最大値を要求されている処理水質以下に設定し、
処理水中の硝酸イオン濃度が設定値を超えないように供
給酸素量の制御を行えばよい。すなわち、供給酸素量が
過少の場合には排ガス中の酸素濃度で検知が可能なた
め、硝酸イオン濃度の最適な範囲の最小値は設定する必
要がない。制御の方法としては、硝酸イオン濃度の増加
とともに供給酸素量を減少させることが好ましい。When the supply oxygen amount is controlled by using both the nitrate ion concentration in the treated water and the oxygen concentration of the exhaust gas, the nitrate ion concentration in the treated water is required to be a maximum value of the nitrate ion concentration in advance. Set below water quality,
The supply oxygen amount may be controlled so that the nitrate ion concentration in the treated water does not exceed the set value. That is, when the supplied oxygen amount is too small, the detection can be performed by the oxygen concentration in the exhaust gas, so that it is not necessary to set the minimum value of the optimum range of the nitrate ion concentration. As a control method, it is preferable to decrease the amount of supplied oxygen as the nitrate ion concentration increases.
【0019】処理水中の硝酸イオン濃度と排ガスの酸素
濃度を併用して供給酸素量を制御する場合には、排ガス
中の酸素濃度については、あらかじめ排ガス中の酸素濃
度の最小値を、酸素濃度計の検出限界以上で設定し、そ
の設定値以上になるように供給酸素ガス量を増減させれ
ばよい。排ガス中の酸素濃度の最小値を定めることによ
り、供給酸素量の過少現象を検出し、供給酸素量が不足
して処理水中のアンモニウムイオン濃度が高くなること
を防止する。なお、制御は排ガス中の酸素濃度が低くな
るにつれて供給酸素量を増加させることにより行う。設
定する酸素濃度の最小値は、要求されている処理水質、
使用する触媒、および使用する酸素含有ガス中の酸素濃
度によって大きく異なるが、一例を挙げれば、後述する
触媒調製例において調製した鉄−ジルコニウム−パラジ
ウム系触媒を使用し、酸素含有ガスとして空気を用い、
排水中のアンモニア態窒素濃度が1,500mg/l、
要求される処理水中の全窒素濃度が20mg/l以下の
場合、1vol%となる。When the amount of oxygen supplied is controlled by using both the nitrate ion concentration in the treated water and the oxygen concentration of the exhaust gas, the minimum value of the oxygen concentration in the exhaust gas is determined in advance by using the oxygen concentration meter. May be set at or above the detection limit, and the supplied oxygen gas amount may be increased or decreased so as to exceed the set value. By determining the minimum value of the oxygen concentration in the exhaust gas, the phenomenon of an insufficient amount of supplied oxygen is detected, and the shortage of supplied oxygen prevents the concentration of ammonium ions in the treated water from increasing. The control is performed by increasing the supplied oxygen amount as the oxygen concentration in the exhaust gas decreases. The minimum value of the oxygen concentration to be set is the required treated water quality,
The catalyst to be used and the oxygen concentration in the oxygen-containing gas to be used greatly vary, but, for example, an iron-zirconium-palladium-based catalyst prepared in a catalyst preparation example described below is used, and air is used as the oxygen-containing gas. ,
Ammonia nitrogen concentration in wastewater is 1,500mg / l,
When the required total nitrogen concentration in the treated water is 20 mg / l or less, it is 1 vol%.
【0020】本発明における酸素含有ガスとは酸素を含
有する気体のことであり、具体的には空気、酸素富化空
気、酸素を含有する排ガスなど、種々のものを挙げるこ
とができる。酸素含有ガス中の酸素濃度としては、3vo
l%以上、好ましくは5vol%以上である。酸素含有ガス中
の酸素濃度が3vol%以下では、処理後の排ガス中の酸素
濃度が低くなりすぎて酸素濃度計による測定値の信頼度
が低くなり、供給酸素量の過剰または過少の検出力が低
下し、供給酸素量の制御が正確に行われなくなって安定
した処理を行えない場合がある。なお、上記酸素濃度は
いずれもドライベースであり、水蒸気を分離した状態で
の濃度値であるため、水蒸気を分離せずに測定を行う場
合には水蒸気による誤差を補正して制御値を決定すれば
よい。The oxygen-containing gas in the present invention is a gas containing oxygen, and specific examples thereof include air, oxygen-enriched air, and exhaust gas containing oxygen. The oxygen concentration in the oxygen-containing gas is 3 vo
l% or more, preferably 5 vol% or more. When the oxygen concentration in the oxygen-containing gas is 3 vol% or less, the oxygen concentration in the exhaust gas after treatment becomes too low, and the reliability of the measurement value obtained by the oximeter becomes low. In some cases, the amount of oxygen supplied decreases, and the control of the supplied oxygen amount cannot be performed accurately, so that stable processing cannot be performed. In addition, since the above oxygen concentrations are all on a dry basis and are concentration values in a state where water vapor is separated, when performing measurement without separating water vapor, it is necessary to correct an error due to water vapor to determine a control value. I just need.
【0021】本発明において、酸素含有ガスは連続的に
装置内に導入され、排水の処理に使用されることにな
る。間欠的に導入された場合には排水に無酸素状態の部
分が現れて処理が行われなくなり、結果として処理効率
が低くなる可能性があるため好ましくない。In the present invention, the oxygen-containing gas is continuously introduced into the apparatus and used for treating wastewater. When introduced intermittently, anoxic portions appear in the wastewater, and the treatment is not performed. As a result, there is a possibility that the treatment efficiency is lowered, which is not preferable.
【0022】本発明におけるアンモニア態窒素とは、液
相中に溶解しているアンモニアおよびアンモニウムイオ
ンとなっているものの総称を意味し、一例を挙げれば硫
酸アンモニウム、塩化アンモニウムなどの溶解塩類、ア
ンモニア水などが挙げられるが、これらに限定されるも
のではない。In the present invention, the term "ammonia nitrogen" is a general term for ammonia and ammonium ions dissolved in a liquid phase. For example, dissolved salts such as ammonium sulfate and ammonium chloride, aqueous ammonia, etc. But are not limited to these.
【0023】本発明において、処理対象となる排水中の
アンモニア態窒素の濃度としては、水溶液中に溶解して
いるものであれば、範囲は限定されない。In the present invention, the concentration of ammonia nitrogen in the wastewater to be treated is not limited as long as it is dissolved in an aqueous solution.
【0024】本発明において用いられる触媒は、湿式酸
化反応条件において、耐久性と活性を備えた固体触媒で
あればいずれの触媒を用いてもよいが、一例を挙げれば
触媒成分としてチタン、ケイ素、ジルコニウム、マンガ
ン、鉄、コバルト、ニッケル、タングステン、セリウ
ム、銅、銀、金、白金、パラジウム、ロジウム、ルテニ
ウム、およびイリジウムよりなる群より選ばれた少なく
とも1種の元素の水に不溶性または難溶性の化合物を含
有してなる固体触媒である。さらに、触媒A成分として
マンガン、鉄、コバルトよりなる群より選ばれた少なく
とも1種の元素の水に不溶性または難溶性の化合物、触
媒B成分としてチタン、ケイ素、およびジルコニウムよ
りなる群より選ばれた少なくとも1種の元素の水に不溶
性または難溶性の化合物、および触媒C成分としてセリ
ウム、タングステン、銅、銀、金、白金、パラジウム、
ロジウム、ルテニウム、およびイリジウムよりなる群よ
り選ばれた少なくとも1種の元素の水に不溶性または難
溶性の化合物を含有してなる固体触媒を用いることが好
ましい。該触媒における各触媒成分の比率は、A成分が
酸化物の形で20〜98.9重量%、B成分は酸化物の
形で1〜80重量%、C成分は金属もしくは化合物の形
で0.1〜20重量%の範囲が適当である。好ましく
は、A成分が酸化物の形で40〜95重量%、B成分は
酸化物の形で5〜60重量%、C成分は金属もしくは化
合物の形で0.1〜15重量%の範囲である。A成分が
上記範囲外では触媒活性が不十分であり、またC成分に
ついても同様に上記範囲を下回る場合には触媒活性が不
十分となり、また白金、パラジウムおよびロジウムなど
の貴金属の場合、上記範囲を上回る場合には原料コスト
が高くなり相応した十分な効果が期待できない。As the catalyst used in the present invention, any catalyst may be used as long as it is a solid catalyst having durability and activity under wet oxidation reaction conditions. For example, titanium, silicon, At least one element selected from the group consisting of zirconium, manganese, iron, cobalt, nickel, tungsten, cerium, copper, silver, gold, platinum, palladium, rhodium, ruthenium, and iridium, is insoluble or hardly soluble in water. It is a solid catalyst containing a compound. Further, the catalyst A component is selected from the group consisting of manganese, iron, and at least one element insoluble or hardly soluble in water, and the catalyst B component is selected from the group consisting of titanium, silicon, and zirconium. Water-insoluble or hardly soluble compound of at least one element, and cerium, tungsten, copper, silver, gold, platinum, palladium,
It is preferable to use a solid catalyst containing a water-insoluble or hardly soluble compound of at least one element selected from the group consisting of rhodium, ruthenium, and iridium. The ratio of each catalyst component in the catalyst is such that component A is 20 to 98.9% by weight in the form of an oxide, component B is 1 to 80% by weight in the form of an oxide, and component C is 0 to 8% by weight in the form of a metal or a compound. A suitable range is from 0.1 to 20% by weight. Preferably, component A ranges from 40 to 95% by weight in oxide form, component B ranges from 5 to 60% by weight in oxide form, and component C ranges from 0.1 to 15% by weight in metal or compound form. is there. When the component A is out of the above range, the catalytic activity is insufficient. When the component C is also below the above range, the catalytic activity becomes insufficient. In the case of a noble metal such as platinum, palladium and rhodium, the catalytic activity becomes insufficient. If the ratio exceeds, the raw material cost increases, and a correspondingly sufficient effect cannot be expected.
【0025】本発明で使用する触媒は前記の通り特定さ
れた組成からなるものが好ましく、触媒形状としては、
粒状、ペレット状、およびハニカムなどの一体構造体な
ど種々のものを採用することができる。The catalyst used in the present invention preferably has the composition specified as described above.
Various things such as a granular form, a pellet form, and an integrated structure such as a honeycomb can be adopted.
【0026】上記の触媒を用いてアンモニア態窒素含有
排水を処理すれば、全窒素処理効率が大幅に上昇するこ
とになる。If the wastewater containing ammonia nitrogen is treated using the above catalyst, the total nitrogen treatment efficiency will be greatly increased.
【0027】本発明における排水処理時の温度は100
〜370℃、好ましくは150℃〜300℃の範囲内で
ある。排水処理時の温度が100℃以下ではアンモニア
態窒素の充分な除去を行うことができず、また370℃
以上では水の臨界温度を超えることになり、反応装置が
高価になって好ましくない。圧力は処理温度において、
排水が液相を保持する圧力を設定する。湿式酸化反応は
酸素分圧が高いほど反応が速やかに進行するため、処理
時の圧力が高いほど反応が速くなるが、装置圧力が高く
なると装置自体が高価となるために、目標とする処理時
間、処理効率に合わせて適宜設定すればよい。In the present invention, the temperature during wastewater treatment is 100.
370 ° C, preferably 150 ° C to 300 ° C. If the temperature at the time of wastewater treatment is 100 ° C. or less, it is not possible to sufficiently remove ammonia nitrogen.
In the above case, the temperature exceeds the critical temperature of water, and the reactor becomes expensive, which is not preferable. Pressure at processing temperature,
Set the pressure at which the wastewater holds the liquid phase. In the wet oxidation reaction, the higher the oxygen partial pressure, the faster the reaction proceeds.The higher the pressure during the process, the faster the reaction. However, the higher the pressure of the device, the more expensive the device itself. , May be set appropriately according to the processing efficiency.
【0028】本発明における排水の流入速度は、触媒に
対して空間速度(LHSV)で0.5〜20/hrの範
囲内であることが好ましい。LHSVが0.5/hr以
下では触媒量に対して処理効率は上昇せずコスト的に高
くなり、好ましくない。LHSVが20/hr以上では
アンモニア態窒素の処理効率が充分でなく、好ましくな
い。In the present invention, the inflow velocity of the waste water is preferably in the range of 0.5 to 20 / hr in space velocity (LHSV) with respect to the catalyst. If the LHSV is 0.5 / hr or less, the treatment efficiency does not increase with respect to the amount of the catalyst, and the cost becomes high. If the LHSV is 20 / hr or more, the processing efficiency of ammonia nitrogen is insufficient, which is not preferable.
【0029】本発明における酸素含有ガスの供給量は、
処理を行う間に自動制御されるため、特に限定はされな
い。In the present invention, the supply amount of the oxygen-containing gas is
There is no particular limitation because it is automatically controlled during the processing.
【0030】本発明において用いれられる硝酸イオン濃
度計としては、液相中の硝酸イオン濃度を連続測定し、
検出値を出力できる機能のあるものであればいずれのも
のを用いてもよい。検出器としては、イオンクロマトグ
ラフによる導電量検出、ガスクロマトグラフによるFT
D、イオン電極など既知の様々なものが適用可能であ
る。The nitrate ion concentration meter used in the present invention continuously measures the nitrate ion concentration in the liquid phase,
Any device having a function of outputting a detection value may be used. Detectors include conductivity detection by ion chromatography and FT by gas chromatography.
Various known elements such as D and ion electrodes can be applied.
【0031】本発明において用いられる酸素濃度計とし
ては、気相中の酸素を連続測定し、検出値を出力できる
機能のあるものであればいずれのものを用いてもよい。
例示すれば、ジルコニア式酸素濃度計、ガルバニ電池式
酸素濃度計、磁気式酸素濃度計などの市販のものが用い
られる。As the oxygen concentration meter used in the present invention, any device can be used as long as it has a function of continuously measuring oxygen in the gas phase and outputting a detected value.
For example, commercially available ones such as a zirconia oxygen analyzer, a galvanic cell oxygen analyzer, and a magnetic oxygen analyzer are used.
【0032】[0032]
【実施例】以下、本発明を実施例にしたがって詳細に説
明するが、本発明はこれらに限定されるものではない。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
【0033】(触媒調製例)硝酸第二鉄を水に溶解させ
て硝酸ジルコニル、硝酸パラジウムを添加し、水酸化ナ
トリウム水溶液を加えてpHを9とし、これをろ過洗浄
して得られたケーキを乾燥させて700℃で焼成後、粉
砕して鉄−ジルコニウム−パラジウムの酸化物粉体(重
量比Fe2O3:ZrO2:Pd=60:39.5:0.
5)を得た。(Catalyst Preparation Example) Ferric nitrate is dissolved in water, zirconyl nitrate and palladium nitrate are added, an aqueous solution of sodium hydroxide is added to adjust the pH to 9, and the cake obtained by filtering and washing the resultant is filtered. It is dried, calcined at 700 ° C., and pulverized to obtain an iron-zirconium-palladium oxide powder (weight ratio Fe 2 O 3: ZrO 2: Pd = 60: 39.5: 0.
5) was obtained.
【0034】かくして得られた酸化物粉体にでんぷん、
水を加えてよく混合した後、ペレット状(円筒形、平均
径5mm、長さ6mm)に成型し、乾燥後、400℃で
4時間焼成して完成触媒を得た。The thus obtained oxide powder is added with starch,
After adding water and mixing well, the mixture was shaped into a pellet (cylindrical, average diameter 5 mm, length 6 mm), dried, and calcined at 400 ° C. for 4 hours to obtain a completed catalyst.
【0035】(実施例1)図3に示すようなフローにし
たがって、表1に示すような組成よりなる排水を処理し
た。まずタンク5より送られてくる排水をポンプ3で1
リットル/hrの流量で70kg/cm2Gまで昇圧し
て装置内へ供給した。また、10重量%の炭酸ソーダ水
溶液をライン12を通じて100ml/hrの流量でポ
ンプ4により昇圧、供給し、前記排水に混入させた。一
方、ライン13より供給される空気をコンプレッサー7
で昇圧した後、前記混合液に混入した。この気液混合物
をライン14を経て、熱交換器2およびヒーター16に
おいて250℃に加熱した後、湿式酸化塔1へ導入し
た。湿式酸化塔1には触媒調製例で得られた触媒0.5
リットルが充填されており、湿式酸化塔1において排水
を処理し、処理水をライン15を経て熱交換器2におい
て冷却し、気液分離器6へ流した。気液分離器6におい
ては、液面コントローラ(LC)により液面を検出し、
液面制御弁8を作動させて一定の液面を保持するととも
に、圧力コントローラ(PC)により圧力を検出して圧
力制御弁9を作動させて一定の圧力を保持するように操
作されている。圧力制御弁9より排出されたガス中の酸
素濃度は、酸素濃度計10により、また処理水中の硝酸
イオン濃度は硝酸イオン検出器11により常時監視され
ている。(Example 1) Wastewater having the composition shown in Table 1 was treated according to the flow shown in FIG. First, the drain water sent from the tank 5 is
The pressure was increased to 70 kg / cm 2 G at a flow rate of liter / hr and supplied into the apparatus. A 10% by weight aqueous sodium carbonate solution was pressurized and supplied by the pump 4 at a flow rate of 100 ml / hr through the line 12, and was mixed with the wastewater. On the other hand, the air supplied from the line 13 is supplied to the compressor 7
And then mixed into the mixture. This gas-liquid mixture was heated to 250 ° C. in the heat exchanger 2 and the heater 16 via the line 14 and then introduced into the wet oxidation tower 1. In the wet oxidation tower 1, the catalyst 0.5 obtained in the catalyst preparation example was added.
The wastewater was treated in the wet oxidation tower 1, and the treated water was cooled in the heat exchanger 2 via the line 15 and flowed to the gas-liquid separator 6. In the gas-liquid separator 6, the liquid level is detected by a liquid level controller (LC).
The liquid level control valve 8 is operated to maintain a constant liquid level, and the pressure is detected by a pressure controller (PC) to operate the pressure control valve 9 to maintain a constant pressure. The oxygen concentration in the gas discharged from the pressure control valve 9 is constantly monitored by an oxygen concentration meter 10, and the nitrate ion concentration in the treated water is constantly monitored by a nitrate ion detector 11.
【0036】硝酸イオン濃度計11の値が、5mg/l
になるように供給ガス量を自動制御し、24時間ごとに
排水濃度を表1の範囲内で変動させて100時間の連続
処理テストを行った。When the value of the nitrate ion concentration meter 11 is 5 mg / l
The supply gas amount was automatically controlled so that the concentration of wastewater was changed within the range shown in Table 1 every 24 hours, and a continuous treatment test was performed for 100 hours.
【0037】排水中のアンモニア濃度、処理水中のアン
モニアおよび硝酸の各濃度の経時変化を図4に示す。な
お、亜硝酸イオンは処理水中には検出されなかった。FIG. 4 shows the time-dependent changes in the concentration of ammonia in the wastewater and the concentrations of ammonia and nitric acid in the treated water. Incidentally, nitrite ions were not detected in the treated water.
【0038】(比較例1)供給空気量を処理水中の硝酸
イオン濃度、排ガス中の酸素濃度に追従させずに一定と
した以外は実施例1と同様の条件下において処理テスト
を行った。結果を図5に示す。なお、亜硝酸イオンは処
理水中には検出されなかった。(Comparative Example 1) A processing test was performed under the same conditions as in Example 1 except that the supplied air amount was fixed without following the nitrate ion concentration in the treated water and the oxygen concentration in the exhaust gas. The results are shown in FIG. Incidentally, nitrite ions were not detected in the treated water.
【0039】(実施例2)供給空気量を排ガスの酸素濃
度が0.5vol%以上、処理水の硝酸イオン濃度5mg/
l以下となるように制御した以外は実施例1と同様の条
件下において処理テストを行った。結果を図6に示す。
なお、亜硝酸イオンは処理水中には検出されなかった。(Example 2) The supply air amount was such that the oxygen concentration of the exhaust gas was 0.5 vol% or more and the nitrate ion concentration of the treated water was 5 mg /
A processing test was performed under the same conditions as in Example 1 except that the control was performed so as to be 1 or less. FIG. 6 shows the results.
Incidentally, nitrite ions were not detected in the treated water.
【0040】(比較例2)供給空気量を排ガスの酸素濃
度に追従させず、処理水中の硝酸イオン濃度を5mg/
l以下となるように制御した以外は実施例1と同様の条
件下において処理テストを行った。結果を図7に示す。
なお、亜硝酸イオンは処理水中には検出されなかった。Comparative Example 2 The supply air amount was not made to follow the oxygen concentration of the exhaust gas, and the nitrate ion concentration in the treated water was 5 mg /
A processing test was performed under the same conditions as in Example 1 except that the control was performed so as to be 1 or less. FIG. 7 shows the results.
Incidentally, nitrite ions were not detected in the treated water.
【0041】[0041]
【表1】 [Table 1]
【図1】図1は、触媒湿式酸化法によってアンモニア態
窒素含有排水を処理した場合の供給酸素量と処理水のア
ンモニウムイオン及び硝酸イオンの濃度の関係の概念図
である。FIG. 1 is a conceptual diagram showing the relationship between the amount of supplied oxygen and the concentrations of ammonium ions and nitrate ions in treated water when treating wastewater containing ammonia nitrogen by a catalytic wet oxidation method.
【図2】図2は、処理水中の硝酸イオン濃度によって供
給酸素量を制御する際の概念図である。 CH:処理水中の硝酸イオン濃度の最適な範囲の最大値 CL:処理水中の硝酸イオン濃度の最適な範囲の最小値 C:処理水中の硝酸イオン濃度の目標値 QH:処理水中の硝酸イオンがCHの際の供給酸素量 QL:処理水中の硝酸イオンがCLの際の供給酸素量 Q:処理水中の硝酸イオンがCの際の供給酸素量FIG. 2 is a conceptual diagram when the amount of supplied oxygen is controlled by a nitrate ion concentration in treated water. CH: the maximum value of the optimal range of the nitrate ion concentration in the treated water CL: the minimum value of the optimal range of the nitrate ion concentration in the treated water C: the target value of the nitrate ion concentration in the treated water QH: the nitrate ion in the treated water is CH QL: Supply oxygen amount when nitrate ion in treated water is CL Q: Supply oxygen amount when nitrate ion in treated water is C
【図3】図3は、本発明に係る好ましい処理装置のフロ
ーを示すものである。 1.触媒湿式酸化反応器 2.熱交換器 3.排水フィールドポンプ 4.炭酸ソーダ水溶液フィールドポンプ 5.排水タンク 6.気液分離器 7.エアーコンプレッサー 8.液面調節弁 9.圧力調節弁 10.酸素濃度計 11.硝酸イオン濃度計 12.炭酸ソーダ水溶液フィールドライン 13.エアーライン 16.電気ヒーターFIG. 3 shows a flow of a preferred processing apparatus according to the present invention. 1. 1. Catalytic wet oxidation reactor Heat exchanger 3. Drainage field pump 4. 4. Aqueous sodium carbonate solution field pump Drain tank 6. 6. Gas-liquid separator 7. Air compressor Liquid level control valve 9. Pressure control valve 10. Oxygen meter 11. Nitrate ion concentration meter 12. 12. Sodium carbonate aqueous solution field line Air line 16. Electric heater
【図4】実施例1の結果であり、排水中のアンモニウム
イオン濃度を24時間ごと段階的に変化させた場合の処
理水のアンモニウムイオン濃度、硝酸イオン濃度の状況
を示す。FIG. 4 shows the results of Example 1, showing the states of the ammonium ion concentration and the nitrate ion concentration of the treated water when the ammonium ion concentration in the wastewater is changed stepwise every 24 hours.
【図5】比較例1の結果であり、排水中のアンモニウム
イオン濃度を24時間ごと段階的に変化させた場合の処
理水のアンモニウムイオン濃度、硝酸イオン濃度の状況
を示す。FIG. 5 shows the results of Comparative Example 1, showing the ammonium ion concentration and nitrate ion concentration of treated water when the ammonium ion concentration in the wastewater is changed stepwise every 24 hours.
【図6】実施例2の結果であり、排水中のアンモニウム
イオン濃度を24時間ごと段階的に変化させた場合の処
理水のアンモニウムイオン濃度、硝酸イオン濃度の状況
を示す。FIG. 6 shows the results of Example 2, showing the ammonium ion concentration and nitrate ion concentration of treated water when the ammonium ion concentration in the wastewater is changed stepwise every 24 hours.
【図7】比較例2の結果であり、排水中のアンモニウム
イオン濃度を24時間ごと段階的に変化させた場合の処
理水のアンモニウムイオン濃度、硝酸イオン濃度の状況
を示す。FIG. 7 shows the results of Comparative Example 2, showing the states of the ammonium ion concentration and the nitrate ion concentration of the treated water when the ammonium ion concentration in the wastewater is changed stepwise every 24 hours.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三井 紀一郎 兵庫県姫路市網干区興浜字西沖992番地 の1 株式会社日本触媒 触媒研究所内 審査官 杉江 渉 (56)参考文献 特開 昭55−86584(JP,A) 特開 平2−265696(JP,A) 特開 平3−181390(JP,A) 特開 昭59−55390(JP,A) 特開 平4−250888(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/72,1/58 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kiichiro Mitsui 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji-shi, Hyogo Prefecture Examiner, Nippon Shokubai Catalysis Research Institute Co., Ltd. Wataru Sugie (56) References JP-A 55-86584 (JP, A) JP-A-2-265696 (JP, A) JP-A-3-181390 (JP, A) JP-A-59-55390 (JP, A) JP-A-4-250888 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) C02F 1 / 72,1 / 58
Claims (2)
化処理するに際し、あらかじめ処理水中の硝酸イオン濃
度値の最適範囲をCL〜CHと設定し、触媒湿式酸化装置
より排出される気液混合流体を気液分離した後、処理水
中の硝酸イオン濃度を測定し、測定された硝酸イオン濃
度値がCL〜CHの範囲内または設定された濃度値となる
ように、装置内に流入させる酸素含有ガス量を制御する
ことを特徴とする触媒湿式酸化装置の制御方法。1. A method for treating a wastewater containing ammonia nitrogen, which comprises subjecting the wastewater containing ammonia nitrogen to catalytic oxidation treatment to a nitrate ion concentration in the treated water in advance.
The optimal range of the degree value is set to CL to CH, the gas-liquid mixed fluid discharged from the catalytic wet oxidizer is separated into gas and liquid, and then the nitrate ion concentration in the treated water is measured. A method for controlling a catalytic wet oxidation apparatus, comprising controlling an amount of an oxygen-containing gas flowing into the apparatus so as to be within a range of CL to CH or a set concentration value.
化処理するに際し、あらかじめ処理水中の硝酸イオン濃
度値の最適範囲をCL〜CHと設定し、触媒湿式酸化装置
より排出される気液混合流体を気液分離した後、気相中
の酸素濃度および処理水中の硝酸イオン濃度を測定し、
測定された酸素濃度があらかじめ設定された範囲内また
は設定された濃度値、硝酸イオン濃度値がCL〜CHの範
囲内または設定された濃度値となるように、装置内に流
入させる酸素含有ガス量を制御することを特徴とする触
媒湿式酸化装置の制御方法。2. The process of subjecting the wastewater containing ammonia nitrogen to catalytic wet oxidation treatment in advance to enrich nitrate ions in the treated water.
The optimal range of the degree value is set to CL to CH, and after the gas-liquid mixed fluid discharged from the catalytic wet oxidation device is separated into gas and liquid, the oxygen concentration in the gas phase and the nitrate ion concentration in the treated water are measured.
If the measured oxygen concentration is within the preset range or
Is the set concentration value and the nitrate ion concentration value is in the range of CL to CH.
A method for controlling a catalytic wet oxidation apparatus, comprising: controlling an amount of an oxygen-containing gas flowing into an apparatus so as to have a concentration value within or set in an enclosure .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05912694A JP3213667B2 (en) | 1994-03-29 | 1994-03-29 | Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05912694A JP3213667B2 (en) | 1994-03-29 | 1994-03-29 | Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07265880A JPH07265880A (en) | 1995-10-17 |
JP3213667B2 true JP3213667B2 (en) | 2001-10-02 |
Family
ID=13104311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05912694A Expired - Fee Related JP3213667B2 (en) | 1994-03-29 | 1994-03-29 | Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3213667B2 (en) |
-
1994
- 1994-03-29 JP JP05912694A patent/JP3213667B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07265880A (en) | 1995-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1335668C (en) | Process for removing the nitrite and/or nitrate content in water | |
WO2008042095A2 (en) | Catalytic wet oxidation systems and methods | |
US6882419B2 (en) | System for improved biological nutrient removal | |
Cheng-Nan et al. | On-line monitoring and control of the textile wastewater color removal process | |
Wang et al. | Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control | |
JP3213667B2 (en) | Control method of catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen | |
Chang et al. | Modified Nernst model for on-line control of the chemical oxidation decoloring process | |
JP3263520B2 (en) | Control method for catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen | |
JP3272859B2 (en) | Control method for catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen | |
JP3263519B2 (en) | Control method for catalytic wet oxidizer in treatment of wastewater containing ammonia nitrogen | |
JP4334404B2 (en) | Water treatment method and water treatment system | |
JP6239442B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP3203774B2 (en) | Organic wastewater treatment method and methane fermentation treatment device | |
JPS6359396A (en) | Biological treatment of waste water | |
JPH1177069A (en) | Treatment of waste water containing nitrogen compound | |
JP3241228B2 (en) | Apparatus and method for treating wastewater containing ammonia nitrogen | |
Venosa et al. | Control of ozone disinfection by exhaust gas monitoring | |
JPH07328654A (en) | Treatment of ammoniacal nitrogen-containing waste water | |
Tan et al. | Removing organic color and by-products from groundwater with ozone and pressurized biologically-active filtration | |
JP3178770B2 (en) | Ammonia nitrogen-containing wastewater treatment equipment | |
JPH10290996A (en) | Denitrification apparatus for water | |
Butler et al. | Dinitrogen oxide detection for nitrification failure early warning systems | |
JP3823357B2 (en) | Nitrification activity measuring device and nitrification method | |
JPH0735741A (en) | Bod measuring equipment | |
JP3067232B2 (en) | Monitoring method of biological activated carbon treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |