JP3212469B2 - High temperature oxidation resistant surface treatment method - Google Patents
High temperature oxidation resistant surface treatment methodInfo
- Publication number
- JP3212469B2 JP3212469B2 JP01521595A JP1521595A JP3212469B2 JP 3212469 B2 JP3212469 B2 JP 3212469B2 JP 01521595 A JP01521595 A JP 01521595A JP 1521595 A JP1521595 A JP 1521595A JP 3212469 B2 JP3212469 B2 JP 3212469B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- temperature oxidation
- high temperature
- treatment method
- surface treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003647 oxidation Effects 0.000 title claims description 20
- 238000007254 oxidation reaction Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 15
- 238000004381 surface treatment Methods 0.000 title description 4
- 239000000463 material Substances 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000008595 infiltration Effects 0.000 claims description 4
- 238000001764 infiltration Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 229910017305 Mo—Si Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012720 thermal barrier coating Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はガスタービン等の動・静
翼に代表される高温使用部材の表面処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a surface of a member used at a high temperature such as a moving or stationary blade of a gas turbine or the like.
【0002】[0002]
【従来の技術】最近のコンバインドサイクルプラントに
代表される高効率化された産業用ガスタービンの入口ガ
ス温度の上昇は著しく、1300℃以上となっている。
このような高温ガスにさらされる動・静翼に使用される
耐熱合金に対しては精力的な開発が行われ、その許容温
度も年々上昇しているが、実用合金では850〜900
℃程度である。このため実機ガスタービンでは、薄肉化
した内部空気冷却翼が用いられているが、高温ガスと接
する翼表面では高温酸化や高温腐食が避けられない為、
MCrAlY(M=Ni、Co等を表す)のコーティン
グやMCrAlYコーティングの上に熱伝導率の低いZ
rO2 系セラミックをコーティングした、遮熱コーティ
ング(TBC)等が用いられている。2. Description of the Related Art The temperature of an inlet gas of a highly efficient industrial gas turbine represented by a recent combined cycle plant has risen remarkably to 1300 ° C. or more.
Vigorous developments have been made on heat-resistant alloys used for moving and stationary blades exposed to such high-temperature gas, and the allowable temperature has been increasing year by year.
It is about ° C. For this reason, in actual gas turbines, thinned internal air cooling blades are used, but high-temperature oxidation and high-temperature corrosion cannot be avoided on the blade surface in contact with high-temperature gas.
Low thermal conductivity Z on MCrAlY (representing M = Ni, Co, etc.) coating or MCrAlY coating
A thermal barrier coating (TBC) coated with rO 2 ceramic is used.
【0003】[0003]
【発明が解決しようとする課題】高温化されたガスター
ビンの動・静翼で代表される高温部品は取扱い温度の上
昇にともなって、前記のような耐食、耐酸化コーティン
グを行った場合でも顕著な高温酸化損傷を受ける場合が
出現しており、より一層高温酸化性にすぐれた表面処理
方法の出現が望まれている。本発明は上記要望とガスタ
ービン入口温度のさらなる上昇をはかるため、高温耐酸
化性にすぐれた表面処理方法を提供することを目的とす
るものである。The high-temperature parts represented by the moving and stationary blades of a gas turbine having a high temperature are remarkable even when the above-mentioned corrosion-resistant and oxidation-resistant coating is applied with an increase in the handling temperature. In some cases, high-temperature oxidative damage has occurred, and the appearance of a surface treatment method that is more excellent in high-temperature oxidizability has been desired. SUMMARY OF THE INVENTION An object of the present invention is to provide a surface treatment method excellent in high-temperature oxidation resistance in order to further increase the above-mentioned demand and the gas turbine inlet temperature.
【0004】[0004]
【課題を解決するための手段】上記の目的は、Fe、N
i及びCo基合金及び炭素基複合材料から選ばれる高温
使用材料にMoを被覆し、次いでSi拡散浸透処理を行
って該高温使用材料に耐高温酸化性を付与することを特
徴とする高温使用材料の耐高温酸化性処理方法によって
達成することができる。The object of the present invention is to provide Fe, N
a high-temperature material selected from the group consisting of i and Co-based alloys and a carbon-based composite material, coated with Mo, and then subjected to a Si diffusion and infiltration treatment to impart high-temperature oxidation resistance to the high-temperature material. Can be achieved by the high-temperature oxidation-resistant treatment method described above.
【0005】本発明で用いられる高温使用材料は、一般
的にはボイラやガスタービン等の高温取扱いプラントの
主要構成部材であり、高温下での機械的強度(クリー
プ、疲労等)と共に耐高温強化性、耐食性に優れている
ことが必要である。これらの使用温度(被曝温度)は通
常900℃前後である。この高温使用材料の代表的なも
のは、Fe基合金、Ni基合金、Co基合金等で、これ
らはNi基超合金等と呼ばれ、夫々Fe、Ni、Coの
ほかに、Cr、Mo、W、Al、Ti、Mn、Si、C
等を種々の割合で含んでいる。一方、カーボンコンポジ
ットはこれらの金属材料より高温下での機械的特性に優
れ、被曝温度を大巾に上昇させる可能性があるが、高温
酸化し易い欠点があり通常の燃焼ガス環境では耐酸化表
面処理が必要となる。すなわち、本発明はFeやNi、
Co基合金及び炭素基複合材料等で代表される高温使用
材料に耐高温酸化性を付与することを目的に、Moを溶
射法(例えば低圧プラズマ溶射)や蒸着法(真空蒸着、
イオンプレーティング、スパッタリング等)によってコ
ーティングした後、Siの拡散浸透処理を行い、コーテ
ィング層の大部分を高温耐酸化性にすぐれたMo−Si
化合物とすることを特徴とするものである。[0005] The high-temperature materials used in the present invention are generally the main components of high-temperature handling plants such as boilers and gas turbines, and have high mechanical strength (creep, fatigue, etc.) at high temperatures and high temperature resistance. It is necessary to have excellent properties and corrosion resistance. These operating temperatures (exposure temperatures) are usually around 900 ° C. Typical examples of the high-temperature materials are Fe-based alloys, Ni-based alloys, Co-based alloys and the like, which are called Ni-based superalloys and the like. In addition to Fe, Ni, and Co, respectively, Cr, Mo, W, Al, Ti, Mn, Si, C
Etc. in various proportions. On the other hand, carbon composites have better mechanical properties at high temperatures than these metallic materials, and may significantly increase the exposure temperature. Processing is required. That is, the present invention relates to Fe, Ni,
In order to impart high-temperature oxidation resistance to high-temperature materials, such as Co-based alloys and carbon-based composite materials, Mo is sprayed (for example, low-pressure plasma spraying) or vapor deposition (vacuum deposition,
After coating by ion plating, sputtering, etc., diffusion and infiltration treatment of Si is performed, and most of the coating layer is Mo-Si having excellent high-temperature oxidation resistance.
It is characterized by being a compound.
【0006】上記方法で、Moのコーティングは通常の
溶射法や蒸着法で行うが、例えば溶射法は低圧プラズマ
溶射法(圧力:20〜150Torr、その他の条件:
Arガス雰囲気中)で行い、上記高温使用材料からなる
基材にMoを20〜50μmの厚さでコーティングす
る。又、蒸着法は、例えばMoCl6 ガスを次の反応に
より50Torr、1100℃で水素ガスにより還元し
てMoを蒸着することにより行う: MoCl6 +3H2 →Mo+6HCl コーティングした基材は、パックセメンテーション法と
いわれる拡散浸透処理又は拡散被覆処理に付す。すなわ
ち、コーティング金属を含む粉末中に被処理材を埋込
み、800〜1200℃程度の高温下、還元雰囲気中で
処理し、被処理材表面へコーティング金属を析出、拡散
させる。例えば、上記コーティングした基材をケイ素粉
末に埋込み水素ガス流中で1100℃で2時間保持す
る。[0006] In the above-mentioned method, the coating of Mo is performed by a usual thermal spraying method or vapor deposition method. For example, the thermal spraying method is a low pressure plasma spraying method (pressure: 20 to 150 Torr, other conditions:
In an Ar gas atmosphere), Mo is coated on the base material made of the material used at a high temperature in a thickness of 20 to 50 μm. The vapor deposition method is performed, for example, by reducing MoCl 6 gas with hydrogen gas at 50 Torr and 1100 ° C. by the following reaction to deposit Mo: MoCl 6 + 3H 2 → Mo + 6HCl It is subjected to a diffusion infiltration treatment or a diffusion coating treatment, which is referred to as a diffusion coating treatment. That is, the material to be treated is buried in a powder containing the coating metal, treated at a high temperature of about 800 to 1200 ° C. in a reducing atmosphere, and the coating metal is deposited and diffused on the surface of the material to be treated. For example, the coated substrate is embedded in silicon powder and kept at 1100 ° C. for 2 hours in a flow of hydrogen gas.
【0007】(1)コーティング層の大部分を構成する
Mo−Si化合物は高温下で、その表面にSiO2 皮膜
を形成し、すぐれた耐高温酸化性を発揮する。 (2)Mo−Si化合物の高温酸化加速要因としてマイ
クロクラックや気孔の存在があるが、本処理はMoへS
iを拡散浸透させることにより、それらの存在をなくす
ことができる。 (3)基材とMo−Si化合物の界面に高温強度に強い
Mo(Si≠0)が存在するとともに、表面に向って徐
々にSi/Moが大きくなる傾斜構造となっているた
め、基材とMo−Si化合物の物性値差に基づく応力発
生と剥離に対してもすぐれた抵抗力を示す。(1) The Mo-Si compound constituting most of the coating layer forms an SiO 2 film on the surface thereof at a high temperature, and exhibits excellent high-temperature oxidation resistance. (2) The presence of microcracks and pores is a factor for accelerating high-temperature oxidation of Mo-Si compounds.
By diffusing and penetrating i, their existence can be eliminated. (3) Since Mo (Si ≠ 0) having high strength at high temperature exists at the interface between the base material and the Mo—Si compound and has a gradient structure in which Si / Mo gradually increases toward the surface, the base material And Mo-Si compounds exhibit excellent resistance to stress generation and peeling based on physical property differences.
【0008】[0008]
実施例1 表1に示される組成を有するFe基合金A286、Co
基合金ECY768、Ni基合金IN738Lc及び炭
素基複合材料(カーボンコンポジット)を基材として、
Mo(>99.99%)を膜厚100μm程度を目標に
低圧プラズマ溶射を行った。次に3%NH4 Clを含む
ケイ素粉末中へこれら被処理材を埋め込み、水素
(H2 )ガスを流しつつ、1100℃で2時間保持しケ
イ素拡散処理を行った。得られた各試料は、図1に示さ
れる表面構造を有していた。Example 1 Fe-based alloy A286, Co having the composition shown in Table 1
Using base alloy ECY768, Ni base alloy IN738Lc and carbon-based composite material (carbon composite) as base materials,
Low-pressure plasma spraying was performed on Mo (> 99.99%) with a target thickness of about 100 μm. Next, these materials to be treated were buried in silicon powder containing 3% NH 4 Cl, and kept at 1100 ° C. for 2 hours while flowing hydrogen (H 2 ) gas to perform silicon diffusion treatment. Each of the obtained samples had the surface structure shown in FIG.
【0009】実施例2 実施例1と同様のFe基合金A286、Co基合金EC
Y768、Ni基合金IN738LC及び炭素基複合材
料(カーボンコンポジット)を基材として、CVD(C
hemical Vapor Deposition)
法によりMoを50μmを目標にコーティングを行った
後、実施例1と同様にパックセメンテーション法により
Siの拡散処理を行った。得られた各試料は、図1に示
される表面構造を有していた。Example 2 Fe-based alloy A286 and Co-based alloy EC similar to those of Example 1
Y768, Ni-based alloy IN738LC and carbon-based composite material (carbon composite) as base materials,
chemical Vapor Deposition)
After coating with a target of 50 μm of Mo by the method, Si diffusion treatment was performed by the pack cementation method in the same manner as in Example 1. Each of the obtained samples had the surface structure shown in FIG.
【0010】[0010]
【表1】 [Table 1]
【0011】上記実施例1及び2で得られた各試料(本
発明品)と無処理品(比較品)を対象に、1000℃と
1500℃の空気雰囲気中で各々100時間の高温酸化
試験を行った。それらの結果を図3にとりまとめて示し
たが、無処理品のカーボンコンポジットは、1000
℃、1500℃とも燃焼、消失してしまったのに対し、
カーボンコンポジットの実施例1及び実施例2ともわず
かに増量している程度であり、外観上著しい寸法変化等
はみられなかった。一方、カーボンコンポジット以外の
金属材料(A286、ECY768、IN738LC)
に対しては無処理材はいずれも大きな増量を示したのに
対し、実施例1及び実施例2での増量はいずれもその1
/10以下であった。なお、図3における酸化量は、各
温度におけるA286の酸化増量を100として示し
た。無処理のカーボンコンポジットは燃焼、消失した。A 100-hour high-temperature oxidation test was performed on each of the samples (products of the present invention) obtained in Examples 1 and 2 above and the untreated product (comparative product) in air atmospheres at 1000 ° C. and 1500 ° C., respectively. went. The results are summarized in FIG. 3, and the carbon composite of the untreated product was 1000
℃, 1500 ℃ both burned and disappeared,
In each of Examples 1 and 2 of the carbon composite, the amount was slightly increased, and no remarkable dimensional change or the like was observed in appearance. On the other hand, metal materials other than carbon composite (A286, ECY768, IN738LC)
, The untreated material showed a large increase, whereas the increase in Examples 1 and 2 was
/ 10 or less. In addition, the oxidation amount in FIG. 3 shows the oxidation increase of A286 at each temperature as 100. The untreated carbon composite burned and disappeared.
【0012】[0012]
【発明の効果】本発明の方法により、Fe、Ni、Co
基合金やカーボンコンポジット等の高温材料を耐高温酸
化性表面処理をすると、優れた耐高温酸化性が得られる
と共に表面に向ってSi/Mo比が大きくなる傾斜構造
となっているので基材とコーティング層の物性値の差異
に基く応力発生と剥離に対して高い抵抗力を示す。従っ
て本発明は、ガスタービン等の動・静翼等の高温使用部
材の処理に適する。According to the method of the present invention, Fe, Ni, Co
When a high temperature material such as a base alloy or a carbon composite is subjected to a high temperature oxidation resistant surface treatment, an excellent high temperature oxidation resistance is obtained, and a Si / Mo ratio is increased toward the surface. It shows high resistance to stress generation and peeling based on the difference in physical property values of the coating layer. Therefore, the present invention is suitable for processing high-temperature components such as moving and stationary blades of a gas turbine and the like.
【図1】図1は、本発明の実施例1に係る耐高温酸化処
理して得られた試料の断面模式図である。FIG. 1 is a schematic cross-sectional view of a sample obtained by high-temperature oxidation resistance according to Example 1 of the present invention.
【図2】図2は、本発明の実施例2に係る耐高温酸化処
理して得られた試料の断面模式図である。FIG. 2 is a schematic cross-sectional view of a sample obtained by high-temperature oxidation resistance according to Example 2 of the present invention.
【図3】図3は実施例1,2で得られた試料の高温酸化
試験結果を示すグラフでAは1000℃におけるもの、
Bは1500℃におけるものである。FIG. 3 is a graph showing the results of a high-temperature oxidation test of the samples obtained in Examples 1 and 2, wherein A is at 1000 ° C.
B is at 1500 ° C.
1.基材 2.Mo 3.Si拡散浸透処理層 1. Substrate 2. Mo 3. Si diffusion / penetration treatment layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 10/46 C23C 10/02 C23C 10/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C23C 10/46 C23C 10/02 C23C 10/44
Claims (1)
材料から選ばれる高温使用材料にMoを被覆し、次いで
Si拡散浸透処理を行って該高温使用材料に耐高温酸化
性を付与することを特徴とする高温使用材料の耐高温酸
化性処理方法。1. A high-temperature material selected from the group consisting of Fe, Ni and Co-based alloys and a carbon-based composite material is coated with Mo, and then subjected to a Si diffusion and infiltration treatment to impart high-temperature oxidation resistance to the high-temperature material. A high-temperature oxidation-resistant treatment method for a high-temperature material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01521595A JP3212469B2 (en) | 1995-02-01 | 1995-02-01 | High temperature oxidation resistant surface treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01521595A JP3212469B2 (en) | 1995-02-01 | 1995-02-01 | High temperature oxidation resistant surface treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209328A JPH08209328A (en) | 1996-08-13 |
JP3212469B2 true JP3212469B2 (en) | 2001-09-25 |
Family
ID=11882661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01521595A Expired - Fee Related JP3212469B2 (en) | 1995-02-01 | 1995-02-01 | High temperature oxidation resistant surface treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3212469B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102246754B1 (en) * | 2019-09-06 | 2021-04-29 | 박연조 | Method, apparatus and computer-readable recording medium for synthesis with selectable images through identification code |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100745495B1 (en) * | 1999-03-10 | 2007-08-03 | 동경 엘렉트론 주식회사 | Semiconductor fabrication method and semiconductor fabrication equipment |
JP6624334B1 (en) * | 2018-09-27 | 2019-12-25 | 中国電力株式会社 | How to repair heat-resistant alloy parts |
-
1995
- 1995-02-01 JP JP01521595A patent/JP3212469B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102246754B1 (en) * | 2019-09-06 | 2021-04-29 | 박연조 | Method, apparatus and computer-readable recording medium for synthesis with selectable images through identification code |
Also Published As
Publication number | Publication date |
---|---|
JPH08209328A (en) | 1996-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6921251B2 (en) | Aluminide or chromide coating of turbine engine rotor component | |
JP2695835B2 (en) | Ceramic coated heat resistant material | |
EP0704549B1 (en) | Method for deposition of aluminides containing easily oxidized metals | |
US4326011A (en) | Hot corrosion resistant coatings | |
US6720088B2 (en) | Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates | |
EP1382715B1 (en) | Protection of a gas turbine component by a vapor-deposited oxide coating | |
GB2243161A (en) | Coating systems for titanium oxidation protection | |
WO2008059971A1 (en) | Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film | |
JP2005281865A (en) | Method for protecting article, and related composition | |
JP7174811B2 (en) | high temperature parts | |
US4371570A (en) | Hot corrosion resistant coatings | |
US5494704A (en) | Low temperature chemical vapor deposition of protective coating containing platinum | |
CN101310969B (en) | Aluminum/aluminum oxide/Ni-base superalloy composite coating for titanium-aluminum alloy and preparation method thereof | |
US6699604B1 (en) | Protective coating including porous silicon nitride matrix and noble metal | |
RU2131482C1 (en) | High-temperature metal article and process of its manufacture | |
JP3212469B2 (en) | High temperature oxidation resistant surface treatment method | |
US5843587A (en) | Process for treating high temperature corrosion resistant composite surface | |
US20230050169A1 (en) | Nitride protective coatings on aerospace components and methods for making the same | |
JP3281842B2 (en) | Corrosion resistant surface treatment method for gas turbine blade and its moving and stationary blade | |
JP4167465B2 (en) | High temperature oxidation resistant coated member and method for producing the same | |
JP2961033B2 (en) | Air-cooled wing and its manufacturing method | |
JP2020033589A (en) | Heat resistant alloy member and method for manufacturing the same, high temperature apparatus and method for manufacturing the same, and member for manufacturing heat resistant alloy member | |
Osyka et al. | Experience with metal/ceramic coating in stationary gas turbines | |
GB2126572A (en) | Corrosion resistant alumina layer on metallic substrates | |
KR960010165B1 (en) | Method for forming aluminide-yttrium composites coatings of nickel base superalloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010612 |
|
LAPS | Cancellation because of no payment of annual fees |