JP3212469B2 - High temperature oxidation resistant surface treatment method - Google Patents

High temperature oxidation resistant surface treatment method

Info

Publication number
JP3212469B2
JP3212469B2 JP01521595A JP1521595A JP3212469B2 JP 3212469 B2 JP3212469 B2 JP 3212469B2 JP 01521595 A JP01521595 A JP 01521595A JP 1521595 A JP1521595 A JP 1521595A JP 3212469 B2 JP3212469 B2 JP 3212469B2
Authority
JP
Japan
Prior art keywords
temperature
temperature oxidation
high temperature
treatment method
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01521595A
Other languages
Japanese (ja)
Other versions
JPH08209328A (en
Inventor
正治 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01521595A priority Critical patent/JP3212469B2/en
Publication of JPH08209328A publication Critical patent/JPH08209328A/en
Application granted granted Critical
Publication of JP3212469B2 publication Critical patent/JP3212469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガスタービン等の動・静
翼に代表される高温使用部材の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a surface of a member used at a high temperature such as a moving or stationary blade of a gas turbine or the like.

【0002】[0002]

【従来の技術】最近のコンバインドサイクルプラントに
代表される高効率化された産業用ガスタービンの入口ガ
ス温度の上昇は著しく、1300℃以上となっている。
このような高温ガスにさらされる動・静翼に使用される
耐熱合金に対しては精力的な開発が行われ、その許容温
度も年々上昇しているが、実用合金では850〜900
℃程度である。このため実機ガスタービンでは、薄肉化
した内部空気冷却翼が用いられているが、高温ガスと接
する翼表面では高温酸化や高温腐食が避けられない為、
MCrAlY(M=Ni、Co等を表す)のコーティン
グやMCrAlYコーティングの上に熱伝導率の低いZ
rO2 系セラミックをコーティングした、遮熱コーティ
ング(TBC)等が用いられている。
2. Description of the Related Art The temperature of an inlet gas of a highly efficient industrial gas turbine represented by a recent combined cycle plant has risen remarkably to 1300 ° C. or more.
Vigorous developments have been made on heat-resistant alloys used for moving and stationary blades exposed to such high-temperature gas, and the allowable temperature has been increasing year by year.
It is about ° C. For this reason, in actual gas turbines, thinned internal air cooling blades are used, but high-temperature oxidation and high-temperature corrosion cannot be avoided on the blade surface in contact with high-temperature gas.
Low thermal conductivity Z on MCrAlY (representing M = Ni, Co, etc.) coating or MCrAlY coating
A thermal barrier coating (TBC) coated with rO 2 ceramic is used.

【0003】[0003]

【発明が解決しようとする課題】高温化されたガスター
ビンの動・静翼で代表される高温部品は取扱い温度の上
昇にともなって、前記のような耐食、耐酸化コーティン
グを行った場合でも顕著な高温酸化損傷を受ける場合が
出現しており、より一層高温酸化性にすぐれた表面処理
方法の出現が望まれている。本発明は上記要望とガスタ
ービン入口温度のさらなる上昇をはかるため、高温耐酸
化性にすぐれた表面処理方法を提供することを目的とす
るものである。
The high-temperature parts represented by the moving and stationary blades of a gas turbine having a high temperature are remarkable even when the above-mentioned corrosion-resistant and oxidation-resistant coating is applied with an increase in the handling temperature. In some cases, high-temperature oxidative damage has occurred, and the appearance of a surface treatment method that is more excellent in high-temperature oxidizability has been desired. SUMMARY OF THE INVENTION An object of the present invention is to provide a surface treatment method excellent in high-temperature oxidation resistance in order to further increase the above-mentioned demand and the gas turbine inlet temperature.

【0004】[0004]

【課題を解決するための手段】上記の目的は、Fe、N
i及びCo基合金及び炭素基複合材料から選ばれる高温
使用材料にMoを被覆し、次いでSi拡散浸透処理を行
って該高温使用材料に耐高温酸化性を付与することを特
徴とする高温使用材料の耐高温酸化性処理方法によって
達成することができる。
The object of the present invention is to provide Fe, N
a high-temperature material selected from the group consisting of i and Co-based alloys and a carbon-based composite material, coated with Mo, and then subjected to a Si diffusion and infiltration treatment to impart high-temperature oxidation resistance to the high-temperature material. Can be achieved by the high-temperature oxidation-resistant treatment method described above.

【0005】本発明で用いられる高温使用材料は、一般
的にはボイラやガスタービン等の高温取扱いプラントの
主要構成部材であり、高温下での機械的強度(クリー
プ、疲労等)と共に耐高温強化性、耐食性に優れている
ことが必要である。これらの使用温度(被曝温度)は通
常900℃前後である。この高温使用材料の代表的なも
のは、Fe基合金、Ni基合金、Co基合金等で、これ
らはNi基超合金等と呼ばれ、夫々Fe、Ni、Coの
ほかに、Cr、Mo、W、Al、Ti、Mn、Si、C
等を種々の割合で含んでいる。一方、カーボンコンポジ
ットはこれらの金属材料より高温下での機械的特性に優
れ、被曝温度を大巾に上昇させる可能性があるが、高温
酸化し易い欠点があり通常の燃焼ガス環境では耐酸化表
面処理が必要となる。すなわち、本発明はFeやNi、
Co基合金及び炭素基複合材料等で代表される高温使用
材料に耐高温酸化性を付与することを目的に、Moを溶
射法(例えば低圧プラズマ溶射)や蒸着法(真空蒸着、
イオンプレーティング、スパッタリング等)によってコ
ーティングした後、Siの拡散浸透処理を行い、コーテ
ィング層の大部分を高温耐酸化性にすぐれたMo−Si
化合物とすることを特徴とするものである。
[0005] The high-temperature materials used in the present invention are generally the main components of high-temperature handling plants such as boilers and gas turbines, and have high mechanical strength (creep, fatigue, etc.) at high temperatures and high temperature resistance. It is necessary to have excellent properties and corrosion resistance. These operating temperatures (exposure temperatures) are usually around 900 ° C. Typical examples of the high-temperature materials are Fe-based alloys, Ni-based alloys, Co-based alloys and the like, which are called Ni-based superalloys and the like. In addition to Fe, Ni, and Co, respectively, Cr, Mo, W, Al, Ti, Mn, Si, C
Etc. in various proportions. On the other hand, carbon composites have better mechanical properties at high temperatures than these metallic materials, and may significantly increase the exposure temperature. Processing is required. That is, the present invention relates to Fe, Ni,
In order to impart high-temperature oxidation resistance to high-temperature materials, such as Co-based alloys and carbon-based composite materials, Mo is sprayed (for example, low-pressure plasma spraying) or vapor deposition (vacuum deposition,
After coating by ion plating, sputtering, etc., diffusion and infiltration treatment of Si is performed, and most of the coating layer is Mo-Si having excellent high-temperature oxidation resistance.
It is characterized by being a compound.

【0006】上記方法で、Moのコーティングは通常の
溶射法や蒸着法で行うが、例えば溶射法は低圧プラズマ
溶射法(圧力:20〜150Torr、その他の条件:
Arガス雰囲気中)で行い、上記高温使用材料からなる
基材にMoを20〜50μmの厚さでコーティングす
る。又、蒸着法は、例えばMoCl6 ガスを次の反応に
より50Torr、1100℃で水素ガスにより還元し
てMoを蒸着することにより行う: MoCl6 +3H2 →Mo+6HCl コーティングした基材は、パックセメンテーション法と
いわれる拡散浸透処理又は拡散被覆処理に付す。すなわ
ち、コーティング金属を含む粉末中に被処理材を埋込
み、800〜1200℃程度の高温下、還元雰囲気中で
処理し、被処理材表面へコーティング金属を析出、拡散
させる。例えば、上記コーティングした基材をケイ素粉
末に埋込み水素ガス流中で1100℃で2時間保持す
る。
[0006] In the above-mentioned method, the coating of Mo is performed by a usual thermal spraying method or vapor deposition method. For example, the thermal spraying method is a low pressure plasma spraying method (pressure: 20 to 150 Torr, other conditions:
In an Ar gas atmosphere), Mo is coated on the base material made of the material used at a high temperature in a thickness of 20 to 50 μm. The vapor deposition method is performed, for example, by reducing MoCl 6 gas with hydrogen gas at 50 Torr and 1100 ° C. by the following reaction to deposit Mo: MoCl 6 + 3H 2 → Mo + 6HCl It is subjected to a diffusion infiltration treatment or a diffusion coating treatment, which is referred to as a diffusion coating treatment. That is, the material to be treated is buried in a powder containing the coating metal, treated at a high temperature of about 800 to 1200 ° C. in a reducing atmosphere, and the coating metal is deposited and diffused on the surface of the material to be treated. For example, the coated substrate is embedded in silicon powder and kept at 1100 ° C. for 2 hours in a flow of hydrogen gas.

【0007】(1)コーティング層の大部分を構成する
Mo−Si化合物は高温下で、その表面にSiO2 皮膜
を形成し、すぐれた耐高温酸化性を発揮する。 (2)Mo−Si化合物の高温酸化加速要因としてマイ
クロクラックや気孔の存在があるが、本処理はMoへS
iを拡散浸透させることにより、それらの存在をなくす
ことができる。 (3)基材とMo−Si化合物の界面に高温強度に強い
Mo(Si≠0)が存在するとともに、表面に向って徐
々にSi/Moが大きくなる傾斜構造となっているた
め、基材とMo−Si化合物の物性値差に基づく応力発
生と剥離に対してもすぐれた抵抗力を示す。
(1) The Mo-Si compound constituting most of the coating layer forms an SiO 2 film on the surface thereof at a high temperature, and exhibits excellent high-temperature oxidation resistance. (2) The presence of microcracks and pores is a factor for accelerating high-temperature oxidation of Mo-Si compounds.
By diffusing and penetrating i, their existence can be eliminated. (3) Since Mo (Si ≠ 0) having high strength at high temperature exists at the interface between the base material and the Mo—Si compound and has a gradient structure in which Si / Mo gradually increases toward the surface, the base material And Mo-Si compounds exhibit excellent resistance to stress generation and peeling based on physical property differences.

【0008】[0008]

【実施例】【Example】

実施例1 表1に示される組成を有するFe基合金A286、Co
基合金ECY768、Ni基合金IN738Lc及び炭
素基複合材料(カーボンコンポジット)を基材として、
Mo(>99.99%)を膜厚100μm程度を目標に
低圧プラズマ溶射を行った。次に3%NH4 Clを含む
ケイ素粉末中へこれら被処理材を埋め込み、水素
(H2 )ガスを流しつつ、1100℃で2時間保持しケ
イ素拡散処理を行った。得られた各試料は、図1に示さ
れる表面構造を有していた。
Example 1 Fe-based alloy A286, Co having the composition shown in Table 1
Using base alloy ECY768, Ni base alloy IN738Lc and carbon-based composite material (carbon composite) as base materials,
Low-pressure plasma spraying was performed on Mo (> 99.99%) with a target thickness of about 100 μm. Next, these materials to be treated were buried in silicon powder containing 3% NH 4 Cl, and kept at 1100 ° C. for 2 hours while flowing hydrogen (H 2 ) gas to perform silicon diffusion treatment. Each of the obtained samples had the surface structure shown in FIG.

【0009】実施例2 実施例1と同様のFe基合金A286、Co基合金EC
Y768、Ni基合金IN738LC及び炭素基複合材
料(カーボンコンポジット)を基材として、CVD(C
hemical Vapor Deposition)
法によりMoを50μmを目標にコーティングを行った
後、実施例1と同様にパックセメンテーション法により
Siの拡散処理を行った。得られた各試料は、図1に示
される表面構造を有していた。
Example 2 Fe-based alloy A286 and Co-based alloy EC similar to those of Example 1
Y768, Ni-based alloy IN738LC and carbon-based composite material (carbon composite) as base materials,
chemical Vapor Deposition)
After coating with a target of 50 μm of Mo by the method, Si diffusion treatment was performed by the pack cementation method in the same manner as in Example 1. Each of the obtained samples had the surface structure shown in FIG.

【0010】[0010]

【表1】 [Table 1]

【0011】上記実施例1及び2で得られた各試料(本
発明品)と無処理品(比較品)を対象に、1000℃と
1500℃の空気雰囲気中で各々100時間の高温酸化
試験を行った。それらの結果を図3にとりまとめて示し
たが、無処理品のカーボンコンポジットは、1000
℃、1500℃とも燃焼、消失してしまったのに対し、
カーボンコンポジットの実施例1及び実施例2ともわず
かに増量している程度であり、外観上著しい寸法変化等
はみられなかった。一方、カーボンコンポジット以外の
金属材料(A286、ECY768、IN738LC)
に対しては無処理材はいずれも大きな増量を示したのに
対し、実施例1及び実施例2での増量はいずれもその1
/10以下であった。なお、図3における酸化量は、各
温度におけるA286の酸化増量を100として示し
た。無処理のカーボンコンポジットは燃焼、消失した。
A 100-hour high-temperature oxidation test was performed on each of the samples (products of the present invention) obtained in Examples 1 and 2 above and the untreated product (comparative product) in air atmospheres at 1000 ° C. and 1500 ° C., respectively. went. The results are summarized in FIG. 3, and the carbon composite of the untreated product was 1000
℃, 1500 ℃ both burned and disappeared,
In each of Examples 1 and 2 of the carbon composite, the amount was slightly increased, and no remarkable dimensional change or the like was observed in appearance. On the other hand, metal materials other than carbon composite (A286, ECY768, IN738LC)
, The untreated material showed a large increase, whereas the increase in Examples 1 and 2 was
/ 10 or less. In addition, the oxidation amount in FIG. 3 shows the oxidation increase of A286 at each temperature as 100. The untreated carbon composite burned and disappeared.

【0012】[0012]

【発明の効果】本発明の方法により、Fe、Ni、Co
基合金やカーボンコンポジット等の高温材料を耐高温酸
化性表面処理をすると、優れた耐高温酸化性が得られる
と共に表面に向ってSi/Mo比が大きくなる傾斜構造
となっているので基材とコーティング層の物性値の差異
に基く応力発生と剥離に対して高い抵抗力を示す。従っ
て本発明は、ガスタービン等の動・静翼等の高温使用部
材の処理に適する。
According to the method of the present invention, Fe, Ni, Co
When a high temperature material such as a base alloy or a carbon composite is subjected to a high temperature oxidation resistant surface treatment, an excellent high temperature oxidation resistance is obtained, and a Si / Mo ratio is increased toward the surface. It shows high resistance to stress generation and peeling based on the difference in physical property values of the coating layer. Therefore, the present invention is suitable for processing high-temperature components such as moving and stationary blades of a gas turbine and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例1に係る耐高温酸化処
理して得られた試料の断面模式図である。
FIG. 1 is a schematic cross-sectional view of a sample obtained by high-temperature oxidation resistance according to Example 1 of the present invention.

【図2】図2は、本発明の実施例2に係る耐高温酸化処
理して得られた試料の断面模式図である。
FIG. 2 is a schematic cross-sectional view of a sample obtained by high-temperature oxidation resistance according to Example 2 of the present invention.

【図3】図3は実施例1,2で得られた試料の高温酸化
試験結果を示すグラフでAは1000℃におけるもの、
Bは1500℃におけるものである。
FIG. 3 is a graph showing the results of a high-temperature oxidation test of the samples obtained in Examples 1 and 2, wherein A is at 1000 ° C.
B is at 1500 ° C.

【符号の説明】[Explanation of symbols]

1.基材 2.Mo 3.Si拡散浸透処理層 1. Substrate 2. Mo 3. Si diffusion / penetration treatment layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 10/46 C23C 10/02 C23C 10/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C23C 10/46 C23C 10/02 C23C 10/44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe、Ni及びCo基合金及び炭素基複合
材料から選ばれる高温使用材料にMoを被覆し、次いで
Si拡散浸透処理を行って該高温使用材料に耐高温酸化
性を付与することを特徴とする高温使用材料の耐高温酸
化性処理方法。
1. A high-temperature material selected from the group consisting of Fe, Ni and Co-based alloys and a carbon-based composite material is coated with Mo, and then subjected to a Si diffusion and infiltration treatment to impart high-temperature oxidation resistance to the high-temperature material. A high-temperature oxidation-resistant treatment method for a high-temperature material.
JP01521595A 1995-02-01 1995-02-01 High temperature oxidation resistant surface treatment method Expired - Fee Related JP3212469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01521595A JP3212469B2 (en) 1995-02-01 1995-02-01 High temperature oxidation resistant surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01521595A JP3212469B2 (en) 1995-02-01 1995-02-01 High temperature oxidation resistant surface treatment method

Publications (2)

Publication Number Publication Date
JPH08209328A JPH08209328A (en) 1996-08-13
JP3212469B2 true JP3212469B2 (en) 2001-09-25

Family

ID=11882661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01521595A Expired - Fee Related JP3212469B2 (en) 1995-02-01 1995-02-01 High temperature oxidation resistant surface treatment method

Country Status (1)

Country Link
JP (1) JP3212469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246754B1 (en) * 2019-09-06 2021-04-29 박연조 Method, apparatus and computer-readable recording medium for synthesis with selectable images through identification code

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745495B1 (en) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 Semiconductor fabrication method and semiconductor fabrication equipment
JP6624334B1 (en) * 2018-09-27 2019-12-25 中国電力株式会社 How to repair heat-resistant alloy parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246754B1 (en) * 2019-09-06 2021-04-29 박연조 Method, apparatus and computer-readable recording medium for synthesis with selectable images through identification code

Also Published As

Publication number Publication date
JPH08209328A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US6921251B2 (en) Aluminide or chromide coating of turbine engine rotor component
JP2695835B2 (en) Ceramic coated heat resistant material
EP0704549B1 (en) Method for deposition of aluminides containing easily oxidized metals
US4326011A (en) Hot corrosion resistant coatings
US6720088B2 (en) Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates
EP1382715B1 (en) Protection of a gas turbine component by a vapor-deposited oxide coating
GB2243161A (en) Coating systems for titanium oxidation protection
WO2008059971A1 (en) Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
JP2005281865A (en) Method for protecting article, and related composition
JP7174811B2 (en) high temperature parts
US4371570A (en) Hot corrosion resistant coatings
US5494704A (en) Low temperature chemical vapor deposition of protective coating containing platinum
CN101310969B (en) Aluminum/aluminum oxide/Ni-base superalloy composite coating for titanium-aluminum alloy and preparation method thereof
US6699604B1 (en) Protective coating including porous silicon nitride matrix and noble metal
RU2131482C1 (en) High-temperature metal article and process of its manufacture
JP3212469B2 (en) High temperature oxidation resistant surface treatment method
US5843587A (en) Process for treating high temperature corrosion resistant composite surface
US20230050169A1 (en) Nitride protective coatings on aerospace components and methods for making the same
JP3281842B2 (en) Corrosion resistant surface treatment method for gas turbine blade and its moving and stationary blade
JP4167465B2 (en) High temperature oxidation resistant coated member and method for producing the same
JP2961033B2 (en) Air-cooled wing and its manufacturing method
JP2020033589A (en) Heat resistant alloy member and method for manufacturing the same, high temperature apparatus and method for manufacturing the same, and member for manufacturing heat resistant alloy member
Osyka et al. Experience with metal/ceramic coating in stationary gas turbines
GB2126572A (en) Corrosion resistant alumina layer on metallic substrates
KR960010165B1 (en) Method for forming aluminide-yttrium composites coatings of nickel base superalloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612

LAPS Cancellation because of no payment of annual fees