JP3208468B2 - Electromagnetic force balancing coil for generating strong magnetic fields - Google Patents

Electromagnetic force balancing coil for generating strong magnetic fields

Info

Publication number
JP3208468B2
JP3208468B2 JP33991793A JP33991793A JP3208468B2 JP 3208468 B2 JP3208468 B2 JP 3208468B2 JP 33991793 A JP33991793 A JP 33991793A JP 33991793 A JP33991793 A JP 33991793A JP 3208468 B2 JP3208468 B2 JP 3208468B2
Authority
JP
Japan
Prior art keywords
coil
electromagnetic force
magnetic field
torus
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33991793A
Other languages
Japanese (ja)
Other versions
JPH07146386A (en
Inventor
隆一 嶋田
友史 三浦
充代 迫田
Original Assignee
隆一 嶋田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆一 嶋田 filed Critical 隆一 嶋田
Priority to JP33991793A priority Critical patent/JP3208468B2/en
Publication of JPH07146386A publication Critical patent/JPH07146386A/en
Application granted granted Critical
Publication of JP3208468B2 publication Critical patent/JP3208468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の目的】[Object of the invention]

【0001】[0001]

【発明の解決しようとする課題】この発明は、強磁界発
生に伴うコイルの電磁応力を分散又は減力することが出
来るようにしたコイル巻き線の設計法に関する。
The present invention relates to a method for designing a coil winding capable of dispersing or reducing the electromagnetic stress of a coil caused by the generation of a strong magnetic field.

【0002】[0002]

【産業上の利用分野】磁気閉じ込め型核融合装置や超電
導磁石エネルギー貯蔵システム(SMES)などの強磁
界を利用する装置においては、現在の3倍程度(〜15
T)の超強磁界が実現できれば、小型の装置で実現でき
経済的に非常に有利なものとなる。
BACKGROUND OF THE INVENTION In a device using a strong magnetic field such as a magnetic confinement fusion device or a superconducting magnet energy storage system (SMES), it is about three times as large as the current one (up to 15 times).
If the super-strong magnetic field of T) can be realized, it can be realized with a small device, which is very economically advantageous.

【0003】このような超強磁界発生用の超電導線材が
急速に開発されつつある一方、装置が超強磁界を発生す
る際に付随して発生する巨大な電磁力は依然として大き
な問題となっている。数百気圧にも達するその巨大な電
磁力は、コイルの支持構造や構造材料に大きな負担を与
えることとなり、大型装置においてはシステムのサイズ
を決定する大きな因子とまでなっている。
[0003] While such superconducting wires for generating a super-strong magnetic field are being rapidly developed, the huge electromagnetic force accompanying the generation of a super-strong magnetic field by a device is still a major problem. . The huge electromagnetic force, reaching several hundred atmospheres, imposes a heavy burden on the support structure and the structural materials of the coil, and in large devices, it is a major factor in determining the size of the system.

【0004】[0004]

【本発明の目指すもの】この巨大な電磁力を無力化・減
力化する目的で工夫されたコイルが電磁力平衡コイル
(Force Balanced Coil、以下、F
BCと略す)である。
[Object of the present invention] A coil devised for the purpose of neutralizing and reducing this huge electromagnetic force is a force balanced coil (hereinafter referred to as F).
BC).

【0005】[0005]

【従来の技術】従来より電磁力を軽減、無力化する提案
されていたものとして、磁気閉じ込めプラズマの無力磁
界配位の方程式を解くことによって求まる無力磁界コイ
ルの考えがある。これは磁界方向に電流を流す、導線の
多層分布巻による無力磁界コイルが提案されている。こ
のコイルにおいてはトーラス小半径方向の電磁力の無力
化が検討されているが、むしろ導体と磁界を平行に巻く
ことによって超電導材の臨界電流上昇効果を狙い、超強
磁界を発生することを目的としている。しかし、アスペ
クト比が小さなトーラス型装置においては小半径方向よ
りも力の逃げ場所がない大半径方向の巨大な電磁力が問
題であり、これについては検討されていない。
2. Description of the Related Art As a proposal for reducing and neutralizing an electromagnetic force, there is an idea of a forceless magnetic field coil which can be obtained by solving an equation of a forceless magnetic field configuration of a magnetically confined plasma. For this purpose, a forceless magnetic field coil has been proposed in which a current flows in the direction of a magnetic field and is formed by a multilayer distributed winding of a conductive wire. In this coil, the neutralization of electromagnetic force in the direction of the small radius of the torus has been studied.However, the purpose is to generate an ultra-strong magnetic field by winding the conductor and the magnetic field in parallel to increase the critical current of the superconducting material. And However, in a torus-type device having a small aspect ratio, a huge electromagnetic force in a large radial direction where there is no place for a force to escape than in a small radial direction is a problem, and this has not been studied.

【0006】大半径方向の電磁力の減力化の検討例とし
ては超電導磁気エネルギー蓄積装置用にソレノイド方式
とトロイダル方式を組み合わせた提案がある。この場合
においては大半径方向の力は無力化されていても転倒力
が生じるなどの問題を残している。
As an example of studying the reduction of electromagnetic force in the large radial direction, there is a proposal for a superconducting magnetic energy storage device in which a solenoid system and a toroidal system are combined. In this case, even if the force in the large radius direction is nullified, there remains a problem that a falling force is generated.

【0007】単層集中巻のヘリカルコイルがある一定の
巻線ピッチをもつことにより大半径方向の電磁力平衡を
得るというFBCの基本的提案はされており、核融合装
置トルサトロンの円形断面をもつ2極のトロイダルヘリ
カルコイルの場合についてそのピッチの計算例が示され
ている。またエネルギー蓄積装置として、システムに蓄
えられるエネルギーと構造材の応力、質量との関係につ
いても検討した例がある。
A basic proposal of the FBC has been proposed in which a single-layer concentrated winding helical coil has a certain winding pitch to obtain a large radial electromagnetic force balance, and has a circular cross section of a fusion device torsatron. An example of calculating the pitch of a two-pole toroidal helical coil is shown. As an energy storage device, there is an example in which the relationship between the energy stored in the system and the stress and mass of the structural material is also examined.

【0008】[0008]

【発明が解決しようとする手段】この発明は導体のピッ
チを一定ではなく減力のためにポロイダル角に対し変化
させることによって、大半径方向の全体的な電磁力だけ
でなく、アスペクト比の小さな装置において問題となる
トーラス内側部の電磁力の集中の緩和など局所的な減力
も目的とする、ポロイダル角によってピッチを変化させ
たトロイダルヘリカル巻電磁力平衡コイルを提案する。
SUMMARY OF THE INVENTION The present invention varies the conductor pitch with respect to the poloidal angle for attenuating rather than constant, thereby reducing not only the overall electromagnetic force in the large radial direction but also the small aspect ratio. We propose a toroidal helical winding electromagnetic force balancing coil whose pitch is changed by poloidal angle, aiming at local demagnetization such as relaxation of electromagnetic force concentration inside the torus which is a problem in the device.

【0009】設計法としてシステムが多極のヘリカルコ
イルによって構成されていることに着目し、コイル電流
をトロイダル・ポロイダルの両方向成分に分離し、それ
ぞれによる電磁力を求めそれらが目的にあった減力を実
現する巻線のピッチを種々の断面形状をもつコイルに対
し求める計算コードを開発した。
Focusing on the fact that the system is composed of a multi-pole helical coil as a design method, the coil current is separated into bidirectional components of toroidal and poloidal, and the electromagnetic force by each is obtained, and these are reduced for the purpose. A calculation code has been developed to determine the winding pitch for realizing coils with various cross-sectional shapes.

【0010】そしてコードを用いて大半径方向に発生す
るフープ力と向心力の二つの電磁力の関係を変化させた
3種類のコイルを設計・製作し、実際に各試験コイルの
電磁力を測定することによって、計算コードの妥当性と
多極ヘリカル巻電磁力平衡コイルの概念を検証した。
Then, three kinds of coils are designed and manufactured by changing the relationship between two electromagnetic forces of a hoop force and a centripetal force generated in a large radial direction using a cord, and the electromagnetic force of each test coil is actually measured. By doing so, the validity of the calculation code and the concept of the multi-pole helically wound electromagnetic force balancing coil were verified.

【0011】[0011]

【作用】多極ヘリカル巻電磁力平衡コイルの概念を簡単
に説明する。トーラス形状の大半径R、小半径α、総巻
数Nの多極ヘリカルコイルに電流Iが流れているとす
る。ポロイダル電流成分の電流はトロイダル磁界を発生
し、これはコイルのトーラスの内向きに、電磁力を発生
する。一方、トロイダル電流成分の電流はフープ力を発
生し、トーラスの外側に力を発生する。
The concept of the multipole helically wound electromagnetic force balancing coil will be briefly described. It is assumed that a current I is flowing through a multipolar helical coil having a large radius R, a small radius α, and a total number N of torus shapes. The current in the poloidal current component generates a toroidal magnetic field, which generates an electromagnetic force inward of the coil torus. On the other hand, the current of the toroidal current component generates a hoop force and generates a force outside the torus.

【0012】二つの大半径方向の電磁力が釣り合う電流
成分分布をもち、単層集中巻であるコイルはトロイダル
・ポロイダル・ハイブリッドコイルすなわちトロイダル
ヘリカル形状をもつことになる。従来、単純な形状で電
磁力に耐える材質の適用によって強磁界コイルを設計し
てきたが、計算機制御された工作機械の適用によって形
状は複雑になるが、コイルの支持構造は大幅に簡略化さ
れるという特長をもつ。
A coil having a current component distribution in which two electromagnetic forces in the major radial direction are balanced, and a single-layer concentrated winding coil has a toroidal poloidal hybrid coil, that is, a toroidal helical shape. Conventionally, a strong magnetic field coil was designed by using a material that can withstand electromagnetic force with a simple shape.However, the shape becomes complicated by the use of a machine tool controlled by a computer, but the supporting structure of the coil is greatly simplified. It has the feature of.

【0013】またヘリカルコイルのピッチを変化させる
ことによって、トーラス内側部の局所的な電磁力の集中
を分散させることや、電磁力の分布を変化させコイルを
支持しやすい方向から支持するような構造にすることも
可能である。
Further, by changing the pitch of the helical coil, it is possible to disperse the local concentration of the electromagnetic force inside the torus, and to change the distribution of the electromagnetic force to support the coil from a direction in which the coil can be easily supported. It is also possible to

【0014】この他、力の集中を免れるという利点は超
電導コイルの場合、熱絶縁の面からみても非常に有利で
あると考えられる。
In addition, the advantage of avoiding the concentration of force is considered to be very advantageous in the case of a superconducting coil in terms of thermal insulation.

【0015】例えば、SMESにおいてはソレノイド方
式とトロイダル方式が検討されているが、いずれもコイ
ルの電磁力が著しく大きくなるため岩盤による支持など
が提案されている。発生する電磁力を大幅に減力したF
BCコイルの採用は岩盤による支持構造不要とし経済的
なSMESの可能性を与え、支持構造への熱絶縁問題も
かなり簡略化されると考えられる。
For example, in SMES, a solenoid system and a toroidal system have been studied, but since the electromagnetic force of the coil becomes extremely large, support by rocks has been proposed. F which greatly reduced generated electromagnetic force
The adoption of the BC coil eliminates the need for a rock support structure, provides the possibility of economical SMES, and is expected to greatly simplify the problem of thermal insulation to the support structure.

【0016】またFBCはトーラスの内部と外部に磁界
をつくるので空間的にエネルギー密度が高くなるなど、
立地条件、応力設計、熱設計などの各面においてSME
Sへの応用に有効であると考えられる。
The FBC creates a magnetic field inside and outside the torus, so that the energy density becomes spatially high.
SMEs in various aspects such as location conditions, stress design, and thermal design
It is considered to be effective for application to S.

【0017】[0017]

【実施例】実施例として、トカマク型核融合装置の超強
磁界発生用コイルについて多極ヘリカル巻電磁力平衡コ
イルの適用を検討した。諸元を表1に示す。
EXAMPLE As an example, the application of a multipole helically wound electromagnetic force balancing coil to a coil for generating an ultra-high magnetic field of a tokamak-type fusion device was examined. Table 1 shows the specifications.

【0018】大半径1.5m、小半径0.5m、楕円度
と三角度をもつD型断面の装置であり、その中心トロイ
ダル磁界は14Tを想定している。このようなアスペク
ト比が小さな装置では、トーラス内側部における電磁力
の集中など大半径方向の電磁力が大きな問題となってい
る。そこでコイル全体に生じる大半径方向の電磁力が減
力されるように電流分布、巻線のピッチを検討した。
This device has a large radius of 1.5 m, a small radius of 0.5 m, an ellipticity and a D-shaped cross section having three angles, and its central toroidal magnetic field is assumed to be 14T. In an apparatus having such a small aspect ratio, electromagnetic force in a large radial direction such as concentration of electromagnetic force inside the torus is a serious problem. Therefore, the current distribution and the pitch of the windings were examined so that the large radial electromagnetic force generated in the entire coil was reduced.

【0019】計算例を図1に示す。各参照点に働く電磁
力をベクトルによって表わしている。図1(a)はポロ
イダル電流成分による電磁力を示しており、通常のトカ
マク装置におけるトロイダル磁界コイルに働く電磁力を
示している。トーラス内側部に電磁力が集中し、全体と
しては向心力が生じていることがわかる。図1(b)は
トロイダル電流成分による電磁力を示している。トーラ
ス内側部に大きなフープ力を生じさせるため、トーラス
内側部にトロイダル電流が多く流れるようにその電流分
布に変調をかけている。二つの電流成分による電磁力を
重ね合わせた結果が図1(c)である。図1(a)に比
べトーラス全体に生じる大半径方向の力はほぼ平衡がと
れており、トーラス内側部に集中していた電磁力も分散
され全体に均一な分布が得られていることがわかる。こ
の計算例ではトロイダル磁界コイルだけで14Tを発生
する場合に比べ、内側の負荷の厳しい部分に対しては6
7.6%まで、コイル全体では3.7%までそれぞれ大
半径方向の電磁力を減力することができた。
FIG. 1 shows a calculation example. The electromagnetic force acting on each reference point is represented by a vector. FIG. 1A shows an electromagnetic force due to a poloidal current component, and shows an electromagnetic force acting on a toroidal magnetic field coil in a normal tokamak device. It can be seen that the electromagnetic force is concentrated on the inner part of the torus, and a centripetal force is generated as a whole. FIG. 1B shows an electromagnetic force due to a toroidal current component. In order to generate a large hoop force inside the torus, the current distribution is modulated so that a large amount of toroidal current flows inside the torus. FIG. 1C shows the result of superimposing the electromagnetic force due to the two current components. Compared to FIG. 1A, it can be seen that the forces in the large radius direction generated on the entire torus are almost balanced, and the electromagnetic force concentrated on the inner part of the torus is also dispersed, so that a uniform distribution is obtained over the entire torus. In this calculation example, compared to the case where 14T is generated only by the toroidal magnetic field coil, 6T
The electromagnetic force in the large radial direction could be reduced to 7.6% and to 3.7% for the entire coil.

【0020】計算によって求めた電流分布より巻線のピ
ッチを求め、実際のコイルの10分の1のスケールで製
作した概念モデルを図2に示す。巻線のピッチがトーラ
スの内側で水平に近くなり、外側で垂直に近くなるよう
に変化し、減力を実現していることがわかる。
FIG. 2 shows a conceptual model manufactured on the scale of 1/10 of the actual coil by determining the winding pitch from the current distribution obtained by calculation. It can be seen that the pitch of the windings changes so as to be closer to the horizontal inside the torus and closer to the vertical outside the torus, thereby achieving a reduction.

【0021】[0021]

【発明の効果】FBCの概念と計算コードの妥当性を検
証するために、以上の解析にもとづいて試験コイルを製
作し、大半径方向の電磁力の測定実験を行った。試験コ
イルはそれぞれ大半径0.15m、小半径0.05mの
円形断面をもつトーラスに常電導の銅線を巻いて製作し
た。
In order to verify the concept of the FBC and the validity of the calculation code, a test coil was manufactured based on the above analysis, and a measurement experiment of the electromagnetic force in a large radial direction was performed. The test coil was manufactured by winding a normal conducting copper wire around a torus having a circular cross section having a large radius of 0.15 m and a small radius of 0.05 m.

【0022】試験コイルはそれぞれ10極で巻き、発生
するフープ力が全てのコイルにおいて等しくなるように
した。一方、向心力については各コイルで巻線のピッチ
を変化させることによって、表2に示すような3種類の
異なるフープ力との関係を得るようにしている。ただ
し、今回は簡単のためにポロイダル角に対し巻線の位置
によるピッチを変化させず一定に巻いたため、各コイル
のピッチの相異は巻数の相異となって向心力を変化させ
ている。
Each of the test coils was wound with 10 poles so that the generated hoop force was equal in all the coils. On the other hand, regarding the centripetal force, the relationship between three different hoop forces as shown in Table 2 is obtained by changing the pitch of the winding in each coil. However, this time, for the sake of simplicity, since the winding is fixed without changing the pitch depending on the position of the winding with respect to the poloidal angle, the difference in the pitch of each coil is different in the number of windings, and the centripetal force is changed.

【0023】実験装置の構成を図3に示す。大半径方向
の電磁力は以下のように測定された。まず導線の巻かれ
たコイルを経度方向に2分割し、その二つを弾性のある
導体で十分小さい空隙をもたせて接続する。次に分割さ
れたトーラスの一方を固定し、他方をコイル電流の電磁
力で可動の状態とした。コイル電流を電源によって一定
時間通電し、電磁力によって生じる可動コイルの変位を
レーザ変位計によって非接触で測定した。
FIG. 3 shows the configuration of the experimental apparatus. The electromagnetic force in the large radius direction was measured as follows. First, a coil wound with a conductive wire is divided into two in the longitudinal direction, and the two are connected with an elastic conductor having a sufficiently small gap. Next, one of the divided toruses was fixed, and the other was made movable by the electromagnetic force of the coil current. The coil current was supplied by a power source for a certain period of time, and the displacement of the movable coil caused by the electromagnetic force was measured by a laser displacement meter in a non-contact manner.

【0024】最終的に大半径方向に発生した電磁力は、
あらかじめ求めておいた実験系の弾性定数と可動コイル
の変位より求めた二つのコイル間に働いた電磁力より計
算して求めた。各結果ともコイルの振動が収まり、正味
の変位を測定するのに十分な長さだけ電流が流れている
と考えることができる。表2に示された特性どおり、向
心力がフープ力に比べ大きくなるように設計されたコイ
ルAは大半径が縮む方向に、またフープ力の方が大きい
コイルBは大半径が広がる方向にそれぞれ変位してい
る。
The electromagnetic force finally generated in the large radius direction is
It was calculated from the electromagnetic constant acting between the two coils obtained from the elastic constant of the experimental system and the displacement of the movable coil, which were obtained in advance. In each case, it can be considered that the vibration of the coil is settled, and the current is flowing for a sufficient length to measure the net displacement. According to the characteristics shown in Table 2, the coil A designed so that the centripetal force is larger than the hoop force is displaced in the direction in which the large radius is reduced, and the coil B in which the hoop force is larger is displaced in the direction in which the large radius is expanded. are doing.

【0025】またFBCであるコイルCはほとんど変位
していないことがわかる。コイルの変位より大半径方向
に発生した電磁力を求めまとめたグラフを図4に示す。
実験結果より求めた実測値と共に計算機コードを用いて
計算した理論値を示した。理論値と実測値との差異はコ
イル接合部に用いた導線の非線形性などによるものと考
えられるがよい一致を示している。FBCとして設計さ
れたコイルCはほとんど大半径方向の力が無力化されて
いることが確認された。
It can also be seen that the coil C, which is an FBC, is hardly displaced. FIG. 4 is a graph summarizing the electromagnetic force generated in the large radial direction from the displacement of the coil.
The theoretical values calculated using computer codes are shown together with the measured values obtained from the experimental results. The difference between the theoretical value and the measured value is thought to be due to the non-linearity of the conductor used for the coil joint, but shows good agreement. It was confirmed that the coil C designed as the FBC had almost no force in the large radial direction.

【0026】[0026]

【発明の効果】以上の説明のように、この発明は、トー
ラス型磁気装置でアスペクト比の小さな核融合装置など
において問題となる大半径方向に生じる巨大な電磁力
を、単層集中巻の導線のピッチをポロイダル角に対し変
化させることによって、コイル全体だけでなくトーラス
内側部の集中部においても減力または分散させる多極ヘ
リカル巻電磁力平衡コイルを実現した。また目的に応じ
た減力を実現するピッチを種々の断面形状をもつコイル
に対して設計するための計算コードを開発した。また計
算コードを用いて大半径方向の電磁力を変化させた3種
類の試験コイルを製作、電磁力を測定し、電磁力平衡コ
イルの概念を検証した。
As described above, according to the present invention, a giant electromagnetic force generated in a large radial direction, which is a problem in a fusion device having a small aspect ratio in a torus-type magnetic device, is used for a single-layer concentrated winding wire. By changing the pitch with respect to the poloidal angle, a multipole helical wound electromagnetic force balanced coil that reduces or disperses not only the entire coil but also the concentrated portion inside the torus was realized. In addition, a calculation code was developed to design a pitch that achieves a desired reduction in the coil with various cross-sectional shapes. In addition, three kinds of test coils were manufactured by changing the electromagnetic force in the large radial direction using the calculation code, and the electromagnetic force was measured to verify the concept of the electromagnetic force balanced coil.

【0027】この様にして、この発明は、進歩の著しい
超電導コイルの最大の問題になっている電磁力対策に全
く新しい原理に基づく解決方法であって、核融合を初
め、超電導磁気エネルギー蓄積装置など強磁界を利用す
る分野において広く利用できるものと期待できる。
As described above, the present invention is a solution based on a completely new principle for countermeasures against electromagnetic force, which is the biggest problem of a superconducting coil with remarkable progress, and includes a superconducting magnetic energy storage device including nuclear fusion. It can be expected to be widely used in fields that use strong magnetic fields.

【0028】[0028]

【表1】 [Table 1]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この図は電磁力の大きさと方向をベクトルによ
って示しており、(a)はポロイダル電流成分の発生す
る電磁力を示す。トーラスの内側に応力が集中している
のがわかる。(b)はトロイダル電流成分による電磁力
を示している。トーラス内側部に大きなフープ力を生じ
させるために、トーラス内側部にトロイダル電流が多く
流れるようにその電流を分布させている。2つの電流成
分の電磁力を重ね合わせた結果が(c)に表示されてい
る。
FIG. 1 shows the magnitude and direction of an electromagnetic force by a vector, and (a) shows an electromagnetic force generated by a poloidal current component. It can be seen that stress is concentrated inside the torus. (B) shows the electromagnetic force due to the toroidal current component. In order to generate a large hoop force inside the torus, the current is distributed so that a large amount of toroidal current flows inside the torus. The result of superimposing the electromagnetic forces of the two current components is shown in (c).

【図2】巻き線構造を示すモデル写真FIG. 2 is a model photograph showing a winding structure.

【図3】実験装置の構成図FIG. 3 is a configuration diagram of an experimental apparatus.

【図4】この図はコイルの変位から電磁力を求め、電流
との関係を示した。
FIG. 4 shows the relationship between the electromagnetic force obtained from the displacement of the coil and the current.

【符号の説明】[Explanation of symbols]

1:電池 2:電流計測 3:接続部導体 4:試験コイル 5:レーザ変位計 6:可動 7:固定 1: battery 2: current measurement 3: connection conductor 4: test coil 5: laser displacement meter 6: movable 7: fixed

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−33082(JP,A) 特開 昭60−82992(JP,A) 特開 昭59−145992(JP,A) 特開 昭56−30679(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21B 1/00 H01F 5/00 ────────────────────────────────────────────────── (5) References JP-A-60-33082 (JP, A) JP-A-60-82992 (JP, A) JP-A-59-145992 (JP, A) 30679 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21B 1/00 H01F 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強磁界発生に供するトロイダル形状のヘ
リカル巻き線において、巻き線ピッチをポロイダル角に
よって変化させ、トロイダル磁界とポロイダル磁界の強
さを制御することにより、発生する電磁応力を分散又は
減力することを目的とした磁界発生コイル。
In a toroidal helical winding for generating a strong magnetic field, the pitch of the winding is changed by a poloidal angle to control the toroidal magnetic field and the poloidal magnetic field, thereby dispersing or reducing the generated electromagnetic stress. A magnetic field generating coil intended to apply force.
JP33991793A 1993-11-22 1993-11-22 Electromagnetic force balancing coil for generating strong magnetic fields Expired - Fee Related JP3208468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33991793A JP3208468B2 (en) 1993-11-22 1993-11-22 Electromagnetic force balancing coil for generating strong magnetic fields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33991793A JP3208468B2 (en) 1993-11-22 1993-11-22 Electromagnetic force balancing coil for generating strong magnetic fields

Publications (2)

Publication Number Publication Date
JPH07146386A JPH07146386A (en) 1995-06-06
JP3208468B2 true JP3208468B2 (en) 2001-09-10

Family

ID=18331992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33991793A Expired - Fee Related JP3208468B2 (en) 1993-11-22 1993-11-22 Electromagnetic force balancing coil for generating strong magnetic fields

Country Status (1)

Country Link
JP (1) JP3208468B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028558A (en) * 1992-12-15 2000-02-22 Van Voorhies; Kurt L. Toroidal antenna
US6300920B1 (en) 2000-08-10 2001-10-09 West Virginia University Electromagnetic antenna
US6437751B1 (en) 2000-08-15 2002-08-20 West Virginia University Contrawound antenna
US6593900B1 (en) 2002-03-04 2003-07-15 West Virginia University Flexible printed circuit board antenna
CN110991005B (en) * 2019-11-06 2023-09-12 许继电气股份有限公司 Stress analysis method and device for flexible straight sub-module and storage medium

Also Published As

Publication number Publication date
JPH07146386A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
Scott et al. Demonstration of a high-field short-period superconducting helical undulator suitable for future TeV-scale linear collider positron sources
L’vov et al. Generalized dipole polarizabilities and the spatial structure of hadrons
Kasa et al. Development and operating experience of a 1.2-m long helical superconducting undulator at the Argonne Advanced Photon Source
JP3208468B2 (en) Electromagnetic force balancing coil for generating strong magnetic fields
Fischer et al. Superconducting SIS100 prototype magnets test results and final design issues
CN111462975A (en) Magnetic field generation method, synchrotron, storage medium and equipment
Kovalenko et al. Optimization of a superferric nuclotron type dipole for the GSI fast pulsed synchrotron
US4095202A (en) Coil for producing a homogeneous magnetic field in a cylindrical space
Gambini Expansion of the magnetic flux density field in toroidal harmonics
Shanab et al. Superconducting solenoid package design, fabrication, and testing for FRIB
Syphers et al. Helical dipole magnets for polarized protons in RHIC
Kanonik et al. Superconducting undulator with variable configuration of magnetic field
Yanagi et al. Design and fabrication of pool cooled helical coil as an R&D program for large helical device
Schumacher et al. Collective acceleration of protons and helium ions in the Garching ERA
Swanson et al. Buckling and vibrations in a five‐coil superconducting partial torus
Kanonik et al. Superconducting elliptical undulator
Mulder et al. A new test setup to measure the AC losses of the conductors for NET
Schreiner Current distribution inside Rutherford-type superconducting cables and impact on performance of LHC dipoles
Takeda et al. Development of testing apparatus for 10 kA class AC superconductors
Green The SCMAG Series of Programs for Calculating Superconducting Dipole and Quadrupole Magnets
Kim et al. Development of a model superconducting helical undulator for the ILC positron source
Willen et al. Performance summary of the helical magnets for RHIC
Wang et al. Modeling And Modification Of Converter Transformer Similarity Model Based On Finite Element And Similarity Theory
Agren et al. 3D COILS FOR A COMPACT MIN B MIRROR FIELD WITH MINIMAL FLUX TUBE ELLIPTICITY
Bottura et al. Cable magnetization effects in the LHC main dipole magnets

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees