JP3207956B2 - High strength cement composition - Google Patents

High strength cement composition

Info

Publication number
JP3207956B2
JP3207956B2 JP35883792A JP35883792A JP3207956B2 JP 3207956 B2 JP3207956 B2 JP 3207956B2 JP 35883792 A JP35883792 A JP 35883792A JP 35883792 A JP35883792 A JP 35883792A JP 3207956 B2 JP3207956 B2 JP 3207956B2
Authority
JP
Japan
Prior art keywords
cement
fine powder
strength
particle size
cement composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35883792A
Other languages
Japanese (ja)
Other versions
JPH06199547A (en
Inventor
弘幸 榊原
清彦 内田
和夫 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP35883792A priority Critical patent/JP3207956B2/en
Publication of JPH06199547A publication Critical patent/JPH06199547A/en
Application granted granted Critical
Publication of JP3207956B2 publication Critical patent/JP3207956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度セメント組成物
に関し、特に水/セメント比を低減させても流動性がよ
く、且つ初期及び長期高強度を発現するセメント組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cement composition, and more particularly to a cement composition which exhibits good fluidity even when the water / cement ratio is reduced, and exhibits high initial and long-term strength.

【0002】[0002]

【従来の技術】従来、セメント全体に、水蒸気を接触さ
せたり、スプレーにより散水を行って、0.1〜5重量
%の水を均質に吸収させて部分的に水和させた部分水和
セメントに、高性能減水剤を添加してなるモルタル又は
コンクリートは、部分水和させていない元のセメントに
高性能減水剤を添加してなるモルタル又はコンクリート
より、流動性が向上することが知られている(特開昭6
2−162506号公報)。
2. Description of the Related Art Conventionally, partially hydrated cement in which 0.1% to 5% by weight of water is homogeneously absorbed and partially hydrated by bringing steam into contact with the whole cement or spraying water by spraying. It is known that mortar or concrete obtained by adding a high-performance water reducing agent has a higher fluidity than mortar or concrete obtained by adding a high-performance water reducing agent to the original cement which has not been partially hydrated. (Japanese
No. 2-162506).

【0003】また、微粉砕した不活性もしくは低活性の
石灰石やスラグを添加したセメントに、高性能減水剤を
添加してなるモルタル又はコンクリートは、前記石灰石
やスラグを未添加の元のセメントに高性能減水剤を添加
してなるモルタルやコンクリートより、流動性が向上す
ることも知られている。
Further, mortar or concrete obtained by adding a high-performance water reducing agent to finely ground inert or low-activity cement to which limestone or slag has been added is more highly efficient than limestone or slag-free original cement. It is also known that fluidity is improved as compared with mortar or concrete to which a performance water reducing agent is added.

【0004】これらの従来法による、部分水和セメント
を用いるモルタルやコンクリート、又は微粉砕した不活
性もしくは低活性の石灰石やスラグを添加したセメント
を用いるモルタルやコンクリートでは、前記のように流
動性が改善され、しかも流動性を一定にした場合、水/
セメント比を数%低減させることができる。
[0004] The mortar or concrete using partially hydrated cement or the mortar or concrete using finely ground inert or low-active limestone or slag-added cement according to these conventional methods has a fluidity as described above. If improved and fluidity is constant, water /
The cement ratio can be reduced by several percent.

【0005】一方、高強度セメント硬化体を製造するに
は、配合の水/セメント比を低減させることが一般に行
われている。
On the other hand, in order to produce a high-strength hardened cement, it is generally practiced to reduce the water / cement ratio of the compound.

【0006】しかしながら、前記従来法によるモルタル
やコンクリートを使用する場合には、水/セメント比が
数%低下するにもかかわらず、硬化体の強度発現性、特
に初期における強度発現性が極めて低く、このため、高
強度の硬化体を得るためには配合中の単位セメント量を
増加させることになり、これが硬化体の乾燥収縮や温度
応力の発生原因となり、クラックの発生につながり、コ
ンクリートの耐久性上問題となっている。
However, when the mortar or concrete according to the conventional method is used, although the water / cement ratio is reduced by several percent, the strength development of the cured product, particularly the strength development at the initial stage, is extremely low. For this reason, in order to obtain a high-strength hardened body, the amount of unit cement in the compounding must be increased, which causes drying shrinkage and temperature stress of the hardened body, leading to cracks and the durability of concrete. Is a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記従来技
術の有する問題を解決して、水/セメント比を低減させ
ても流動性がよく、且つ初期高強度を発現するのみなら
ず、長期高強度をも発現することのできる高強度セメン
ト組成物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has a good fluidity even when the water / cement ratio is reduced, and exhibits not only an initial high strength but also a long term. An object of the present invention is to provide a high-strength cement composition that can also exhibit high strength.

【0008】[0008]

【課題を解決するための手段】本発明の高強度セメント
組成物は、ポルトランドセメントを、最大粒径5〜15
μmの微粉と、15μmを越える粒径の粗粉とに分級
し、該微粉を炭酸ガス及び水蒸気に接触させて強熱減量
を0.1〜5.0重量%増加させた後、前記粗粉と混合
してなる。
The high-strength cement composition of the present invention comprises a Portland cement having a maximum particle size of 5 to 15%.
μm and a coarse powder having a particle size exceeding 15 μm, and the fine powder is contacted with carbon dioxide gas and water vapor to increase the ignition loss by 0.1 to 5.0% by weight. Mixed with.

【0009】本発明に用いられるポルトランドセメント
としては、JIS規格に適合する普通ポルトランドセメ
ント、早強ポルトランドセメント、中庸熱ポルトランド
セメント、耐硫酸塩ポルトランドセメント等、更にこれ
らのポルトランドセメントに高炉スラグ粉末、フライア
ッシュ、珪石粉、シリカフューム等のセメント混和材
を、1種又は2種以上混合して得られる混合セメント等
が挙げられる。
The portland cement used in the present invention includes ordinary portland cement, early-strength portland cement, moderately heated portland cement, sulfate-resistant portland cement, etc. conforming to JIS standards, and blast furnace slag powder, fly A mixed cement obtained by mixing one or two or more types of cement admixtures such as ash, silica powder, and silica fume is exemplified.

【0010】本発明の高強度セメント組成物を製造する
に際しては、先ず、前記ポルトランドセメントを慣用の
分級機を用いて微粉と粗粉とに分級する。
In producing the high-strength cement composition of the present invention, first, the above Portland cement is classified into fine powder and coarse powder using a conventional classifier.

【0011】この際、微粉の最大粒径は5〜15μm、
好ましくは8〜12μmであり、この微粉の最大粒径が
5μm未満又は15μmを越える場合には、いずれも強
度増進が少ない。
At this time, the maximum particle size of the fine powder is 5 to 15 μm,
It is preferably 8 to 12 μm, and when the maximum particle size of the fine powder is less than 5 μm or more than 15 μm, the strength increase is small in any case.

【0012】また、15μmを越える粒径のものは粗粉
として分級する。
Further, those having a particle size exceeding 15 μm are classified as coarse powder.

【0013】分級に際し用いられる分級機としては、例
えばスターテバンド型セパレーター、サイクロン型セパ
レーター、ターボクラシファイヤー等の、粉体の分級に
慣用されているものが挙げられる。
Examples of the classifier used for classification include those commonly used for classifying powders, such as starter band separators, cyclone separators, and turbo classifiers.

【0014】これらの慣用分級機を用いてポルトランド
セメントを分級する場合、目標とする最大粒径で完全に
分級されるわけではなく、通常、前記微粉部分には目標
とする分級粒径を越える粗粉が含まれており、一方、前
記粗粉部分にも目標とする分級粒径未満の微粉が含まれ
ている。
When Portland cement is classified using these conventional classifiers, it is not always classified completely at the target maximum particle size, and usually, the fine powder portion contains coarse particles exceeding the target classified particle size. Powder, while the coarse powder portion also contains fine powder having a particle size smaller than the target classified particle size.

【0015】本発明においては、最大粒径5〜15μm
の微粉の5〜50重量%が、前記微粉中に分級されてい
ることが好ましい。
In the present invention, the maximum particle size is 5 to 15 μm.
It is preferable that 5 to 50% by weight of the fine powder is classified in the fine powder.

【0016】次いで、このように分級して得られる微粉
を、炭酸ガス及び水蒸気に接触させて強熱減量増加を
0.1〜5.0重量%とした炭酸化微粉とする。
Next, the fine powder obtained by the classification is contacted with carbon dioxide gas and water vapor to obtain a carbonized fine powder having an increase in ignition loss of 0.1 to 5.0% by weight.

【0017】即ち、前記微粉を慣用の装置を利用して炭
酸化し、該微粉表面を部分的に炭酸化させる。
That is, the fine powder is carbonated using a conventional apparatus, and the surface of the fine powder is partially carbonated.

【0018】セメント鉱物の炭酸化は相対湿度で約50
%以上の水蒸気が存在しないと迅速に進行せず、炭酸化
に時間がかかり、効率的でなく、また、炭酸化温度は高
温であることが好ましい。
The carbonation of cement minerals is about 50 relative humidity.
%, Water vapor does not proceed quickly, carbonation takes a long time and is not efficient, and the carbonation temperature is preferably high.

【0019】本発明において炭酸化は、微粉を高速で攪
拌しながら、又は浮遊状態において、水蒸気を含んだ炭
酸ガスを吹き付け、均一に微粉が炭酸化されるように行
なわれる。
In the present invention, carbonation is carried out while spraying carbon dioxide gas containing water vapor while stirring the fine powder at a high speed or in a floating state so that the fine powder is uniformly carbonated.

【0020】炭酸化は、炭酸化前後の微粉の強熱減量の
増加が、0.1〜5.0重量%、好ましくは1.0〜
3.0重量%となるまで行なわれる。
In the carbonation, the increase in the ignition loss of the fine powder before and after the carbonation is 0.1 to 5.0% by weight, preferably 1.0 to 5.0% by weight.
The process is performed until the content becomes 3.0% by weight.

【0021】更に、このように炭酸化して得られる炭酸
化微粉と、当初に分級された前記粗粉とを、慣用の混合
機で十分に均質になるように混合することにより、本発
明の高強度セメント組成物が得られる。
Further, the carbonized fine powder obtained by carbonation in this way and the coarse powder initially classified are mixed by a conventional mixer so as to be sufficiently homogeneous, whereby the high quality of the present invention is obtained. A strength cement composition is obtained.

【0022】[0022]

【作用】本発明の高強度セメント組成物を用いて得られ
るモルタルやコンクリート硬化体は、長期材令において
のみならず、初期材令においても格段に優れた高強度を
発現する。
The mortar and hardened concrete obtained by using the high-strength cement composition of the present invention exhibit remarkably high strength not only in long-term aging but also in initial aging.

【0023】本発明において分級した微粉は元々セメン
トの一部であり、粉末度が高く、且つ高活性の珪酸3カ
ルシウム、アルミン酸3カルシウム、アルミン酸鉄4カ
ルシウムが多く含まれており、主に、この微粉の水和に
より、モルタルやコンクリートの流動性が時間の経過と
共に低下していく。
The fine powder classified in the present invention is originally a part of cement, and contains a large amount of tricalcium silicate, tricalcium aluminate and tetracalcium aluminate having high fineness and high activity. Due to the hydration of the fine powder, the fluidity of the mortar or concrete decreases over time.

【0024】そこで、本発明においては、該微粉を炭酸
化して炭酸化微粉としている。この炭酸化微粉は、前記
炭酸化によりその表面を部分的に炭酸化したものであ
り、その核はセメントのクリンカーであるが、その表面
のみが不活性な炭酸カルシウムに覆われている。
Therefore, in the present invention, the fine powder is carbonated to form a carbonated fine powder. The surface of the carbonized fine powder is partially carbonated by the carbonation, and its core is clinker of cement, but only its surface is covered with inert calcium carbonate.

【0025】即ち、本発明のセメント組成物において
は、この炭酸カルシウム被覆により、モルタルやコンク
リートの初期の流動性を向上させ、同一流動性を得るた
めの混練水量を低減させ、また、長期材令においては、
炭酸カルシウムに覆われた核のクリンカーが水和するこ
とにより、長期の強度発現性も良好となる。
That is, in the cement composition of the present invention, the calcium carbonate coating improves the initial fluidity of the mortar or concrete, reduces the amount of kneading water for obtaining the same fluidity, and reduces the long-term age. In
Hydration of the clinker of the core covered with calcium carbonate also improves the long-term strength development.

【0026】以下、本発明を実施例により詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to examples.

【0027】[0027]

【実施例】【Example】

実施例1〜5及び比較例1〜4 Examples 1 to 5 and Comparative Examples 1 to 4

【0028】セメント組成物の調製 普通ポルトランドセメント(住友セメント(株)製、強
熱減量1.0%)を、ターボクラシファイアー(日清エ
ンジニアリング社製 TC−15N)を用いて、4種類
(最大粒径5、10、15及び20μm)の微粉と粗粉
とに分級した。各微粉の最大粒径を表1に示す。
Preparation of Cement Composition Four kinds (maximum) of ordinary Portland cement (manufactured by Sumitomo Cement Co., Ltd., loss on ignition 1.0%) using a turbo classifier (TC-15N manufactured by Nisshin Engineering Co., Ltd.) The particles were classified into fine powder and coarse powder having a particle size of 5, 10, 15, and 20 μm). Table 1 shows the maximum particle size of each fine powder.

【0029】分級した各微粉を流動層混合機中に入れ、
流動媒体として純炭酸ガス及び水蒸気を用いて炭酸化さ
せた。この際、水蒸気及び炭酸ガスによる流動層中での
炭酸化時間を適宜増減させ、表1に示すような強熱減量
の増加した各炭酸化微粉を得た。
Each classified fine powder is put into a fluidized bed mixer,
Carbonation was performed using pure carbon dioxide gas and steam as a fluid medium. At this time, the carbonation time in the fluidized bed with steam and carbon dioxide was appropriately increased or decreased to obtain each carbonized fine powder having an increased ignition loss as shown in Table 1.

【0030】このようにして得られる各炭酸化微粉と、
当初に分級された、対応する前記粗粉とを、それぞれV
型混合機で十分に混合し、本発明の各高強度セメント組
成物を得た。
Each of the carbonized fine powders thus obtained,
Each of the initially classified corresponding coarse powders was
The mixture was sufficiently mixed with a mold mixer to obtain each high-strength cement composition of the present invention.

【0031】比較のため、原料である普通ポルトランド
セメントのみを使用する元セメント(比較例1)、粗粉
に、最大粒径10μmで分級した微粉と同量の微粉末石
灰石粉(粉末度15000cm2 /g)を混合したセメ
ント組成物(比較例2)、強熱減量増加が本発明の範囲
を越える炭酸化微粉を混合したセメント組成物(比較例
3)及び最大粒径が本発明の範囲を越える微粉を使用し
たセメント組成物(比較例4)を得た。
For comparison, an original cement using only ordinary Portland cement as a raw material (Comparative Example 1), a coarse powder, a fine powdered limestone powder having the same amount as a fine powder classified at a maximum particle size of 10 μm (fineness: 15,000 cm 2) / G), a cement composition (Comparative Example 3) containing a carbonized fine powder having an increase in ignition loss exceeding the range of the present invention, and a maximum particle size within the range of the present invention. Thus, a cement composition (Comparative Example 4) using a fine powder exceeding the above was obtained.

【0032】モルタルの製造及び強度測定 で得られる各セメント組成物を用いて、セメント:砂
=1:3、βナフタレンスルホン酸ホルマリン縮合物系
高性能減水剤(花王社製マイティ150、固形分40重
量%)を該セメント組成物に対して1.2重量%添加し
た配合で、モルタルフロー値が200±2mmになるよ
うに混練水量を変化させて、モルタル混練物を得た。
Using each cement composition obtained by mortar production and strength measurement, cement: sand = 1: 3, β-naphthalenesulfonic acid formalin condensate-based high-performance water reducing agent (Mighty 150 manufactured by Kao Corporation, solid content 40 (% By weight) was added to the cement composition, and the amount of kneading water was changed so that the mortar flow value became 200 ± 2 mm to obtain a mortar kneaded product.

【0033】この際使用した砂は、豊浦標準砂(粒径
0.10〜0.30mm)、4号砂(粒径0.42〜
1.68mm)、3号砂(粒径0.84〜2.38m
m)を等重量で混合したものである。
The sand used at this time was Toyoura standard sand (particle size: 0.10 to 0.30 mm) and No. 4 sand (particle size: 0.42 to 0.42 mm).
1.68mm) No. 3 sand (particle size 0.84 to 2.38m)
m) in equal amounts.

【0034】このようにして得られるモルタル混練物を
4×4×16cmに成形し、24時間、20℃、90%
RHの湿空養生し、脱型した後、所定材令まで20℃の
水中養生を行って、強度測定用供試体を得た。
The mortar kneaded material thus obtained is molded into a size of 4 × 4 × 16 cm.
After the RH was cured in a wet air and demolded, it was cured in water at 20 ° C. until a predetermined material age to obtain a test specimen for strength measurement.

【0035】各供試体は所定材令においてJIS R
5201のモルタル強さ試験に準じて、圧縮強度を測定
した。得られた結果を表1に示す。
Each specimen is JIS R
The compressive strength was measured according to the mortar strength test of No.5201. Table 1 shows the obtained results.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果から、本発明の高強度セメント
組成物の場合には、初期強度だけでなく長期強度におい
ても、原料である普通ポルトランドセメントの場合より
著しく強度発現性がよく、一方、比較例1の場合には、
目標とするフロー値を得るための水量が多く、強度発現
性が実施例の場合に比して低く、比較例2の場合には、
水量は少なくできるが、特に初期強度発現性が低く、ま
た、比較例3又は4の場合には、原料である普通ポルト
ランドセメントの場合より強度発現性はよいが、実施例
の場合ほどではなく、また水量も多いことが分かる。
From the results shown in Table 1, it can be seen that the high strength cement composition of the present invention has not only the initial strength but also the long-term strength, which is significantly better than the ordinary Portland cement as a raw material, while In the case of Comparative Example 1,
In the case of Comparative Example 2, the amount of water for obtaining the target flow value was large, and the strength development was lower than that of the example.
Although the amount of water can be reduced, especially the initial strength development is low, and in the case of Comparative Example 3 or 4, the strength development is better than the case of ordinary Portland cement as a raw material, but not as much as in the examples. Also, it can be seen that the amount of water is large.

【0038】[0038]

【発明の効果】本発明の高強度セメント組成物によれ
ば、水/セメント比を低減させても流動性がよく、且つ
初期高強度を発現するのみならず、長期高強度をも発現
することができる。
According to the high-strength cement composition of the present invention, even if the water / cement ratio is reduced, the fluidity is good and not only the initial high strength is exhibited but also the long-term high strength is exhibited. Can be.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 7/02 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 7/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポルトランドセメントを、最大粒径5〜
15μmの微粉と、15μmを越える粒径の粗粉とに分
級し、該微粉を炭酸ガス及び水蒸気に接触させて強熱減
量を0.1〜5.0重量%増加させた後、前記粗粉と混
合してなる高強度セメント組成物。
1. Portland cement having a maximum particle size of 5 to 5.
15 μm fine powder and coarse powder having a particle size exceeding 15 μm are classified, and the fine powder is brought into contact with carbon dioxide gas and water vapor to increase the ignition loss by 0.1 to 5.0% by weight. And a high-strength cement composition.
JP35883792A 1992-12-28 1992-12-28 High strength cement composition Expired - Lifetime JP3207956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35883792A JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35883792A JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Publications (2)

Publication Number Publication Date
JPH06199547A JPH06199547A (en) 1994-07-19
JP3207956B2 true JP3207956B2 (en) 2001-09-10

Family

ID=18461364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35883792A Expired - Lifetime JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Country Status (1)

Country Link
JP (1) JP3207956B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157148B2 (en) * 2013-02-28 2017-07-05 デンカ株式会社 Concrete composition and method for producing the same
JP6338819B2 (en) * 2013-02-28 2018-06-06 デンカ株式会社 Concrete composition and method for producing the same
JP6347575B2 (en) * 2013-02-28 2018-06-27 デンカ株式会社 Aggregate and method for producing the same
JP2015224168A (en) * 2014-05-29 2015-12-14 デンカ株式会社 Cement composition and production method thereof

Also Published As

Publication number Publication date
JPH06199547A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
EP1558543B1 (en) Process for producing blended cements with reduced carbon dioxide emissions
JP3272360B2 (en) Manufacturing method of cement
US4336069A (en) High strength aggregate for concrete
JPH0135789B2 (en)
US4451295A (en) Cements, mortars and concretes
HU217409B (en) Highly durable cement products containing siliceous ashes
JP3230390B2 (en) Method for producing cement composition
JPH0826793A (en) Cement composition
JP7093189B2 (en) Manufacturing method of cement composition
JP3207956B2 (en) High strength cement composition
JP6597274B2 (en) Slag powder and method for producing slag powder
JPH05147984A (en) Production of high strength cement
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP2618366B2 (en) Method for producing hydraulically cured product
JP2916482B2 (en) High strength cement composition
JPH0832575B2 (en) Portland cement with controlled particle size
JP3814860B2 (en) Method for producing non-fired aggregate
JPH05238787A (en) High-strength cement composition
JPH07157347A (en) Cement composition, production and hardened body thereof
JPH0624812A (en) Cement composition for high strength mortar concrete
JPH0688854B2 (en) Manufacturing method of lightweight cellular concrete
JP4695980B2 (en) Cement composition for steam curing product, mortar for steam curing product and concrete for steam curing product using the same
KR100808113B1 (en) The Manufacturing Method Of The Powdered Superplasticizer Developed To Improve Slump Loss Rate
JP2001019529A (en) Cement hardened product
JP6721093B2 (en) Blast furnace cement and method for manufacturing blast furnace cement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9