JP3203405B2 - Purification method of sodium formaldehyde sulfoxylate - Google Patents

Purification method of sodium formaldehyde sulfoxylate

Info

Publication number
JP3203405B2
JP3203405B2 JP08490594A JP8490594A JP3203405B2 JP 3203405 B2 JP3203405 B2 JP 3203405B2 JP 08490594 A JP08490594 A JP 08490594A JP 8490594 A JP8490594 A JP 8490594A JP 3203405 B2 JP3203405 B2 JP 3203405B2
Authority
JP
Japan
Prior art keywords
sodium sulfide
ppm
sulfide
chloride
formaldehyde sulfoxylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08490594A
Other languages
Japanese (ja)
Other versions
JPH07291919A (en
Inventor
佐藤  誠
隆雄 家根
春香 小治
正伸 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP08490594A priority Critical patent/JP3203405B2/en
Priority to DE19944439128 priority patent/DE4439128B4/en
Priority to TW083110092A priority patent/TW360635B/en
Publication of JPH07291919A publication Critical patent/JPH07291919A/en
Application granted granted Critical
Publication of JP3203405B2 publication Critical patent/JP3203405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レドックス重合反応に
おける還元剤、セルロース繊維の捺染剤等として用いら
れる有用な化合物である、ナトリウムホルムアルデヒド
スルホキシレート(NaSOCHOH・2HO、
以下SFSと省略する)の精製法に関する。
The present invention relates to sodium formaldehyde sulfoxylate (NaSO 2 CH 2 OH.2H 2 O, a useful compound used as a reducing agent in a redox polymerization reaction, a printing agent for cellulose fibers, etc.)
(Hereinafter abbreviated as SFS).

【0002】[0002]

【従来の技術】SFSは、亜鉛ダスト懸濁水中に亜硫酸
ガスを導入し、次いでホルマリンを添加し、さらに苛性
ソーダで処理することにより、水酸化亜鉛が懸濁した状
態の水溶液として得ることができる。ここで得られるS
FSの水溶液は、不純物として鉄、亜鉛、銅、マンガン
等の重金属のイオンを50〜100ppm程度含むた
め、上記の用途に使用するに当たってはこれらの不純物
が悪影響をおよぼす。従って、SFSの製造に当たって
は、これらの重金属を除去し、その含有量を5ppm以
下にする必要がある。従来、SFS水溶液中に含まれる
これらの重金属を除去するには、硫化ソーダを添加して
金属硫化物として除去する方法が、一般的に行なわれて
いる。
2. Description of the Related Art SFS can be obtained as an aqueous solution in which zinc hydroxide is suspended by introducing sulfurous acid gas into suspension water of zinc dust, then adding formalin and treating with caustic soda. S obtained here
Since the aqueous solution of FS contains about 50 to 100 ppm of ions of heavy metals such as iron, zinc, copper, and manganese as impurities, these impurities have an adverse effect when used in the above-mentioned applications. Therefore, in the production of SFS, it is necessary to remove these heavy metals and reduce their content to 5 ppm or less. Conventionally, in order to remove these heavy metals contained in the SFS aqueous solution, a method of adding sodium sulfide to remove as heavy metal sulfide is generally performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では残存する重金属の量に応じて硫化ソーダを添加
する必要がある。通常、微量に存在する重金属を定量分
析する方法としては、原子吸光法、ICP−AES法
(Inductively Coupled Plasma Atomic Emission Spect
roscopy 、誘導結合プラズマ発光分光分析法)などがあ
るが、前処理が複雑なため分析に時間を要したり、オン
ライン計測が困難でプロセスに組み込むことができない
などの欠点を有している。そのため、残存する微量の重
金属を定量し、これに見合う量の硫化ソーダを加えてS
FS水溶液の精製を行なう方法は工業的に有利な方法と
は言えなかった。またこの方法によれば、添加する硫化
ソーダの量を微妙にコントロールする必要が有り、添加
する硫化ソーダの量が少なければ製品中の重金属が多く
なり、逆に多すぎると製品中の硫化ソーダが多くなるた
め、重金属および硫化物の双方を常にある一定量以下に
保った製品を得ることは容易ではなかった。
However, in the conventional method, it is necessary to add sodium sulfide according to the amount of the remaining heavy metal. Usually, as a method for quantitatively analyzing a trace amount of heavy metals, an atomic absorption method and an ICP-AES method (Inductively Coupled Plasma Atomic Emission Spect method) are used.
roscopy, inductively coupled plasma emission spectroscopy, etc.), but have drawbacks in that pre-processing is complicated, which requires time for analysis, and that on-line measurement is difficult and cannot be incorporated into the process. Therefore, the remaining trace amount of heavy metal is quantified, and an appropriate amount of sodium sulfide is added thereto to add S
The method of purifying the FS aqueous solution was not an industrially advantageous method. In addition, according to this method, it is necessary to delicately control the amount of sodium sulfide to be added. Because of the increase, it has not been easy to obtain a product in which both heavy metals and sulfides are always kept at a certain level or less.

【0004】本発明の課題は、上記のような欠点を有し
ないSFSの精製法を提供する処にある。
An object of the present invention is to provide a method for purifying SFS which does not have the above-mentioned disadvantages.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記した状
況に鑑み、鋭意検討の結果、重金属の分析に比べ硫化ソ
ーダの分析が極めて容易であることに着目し、微量に含
まれる重金属を予め過剰の硫化ソーダで金属硫化物とし
て除去した後、残存する硫化ソーダを定量し、これを当
量の金属ハロゲン化物で金属硫化物として除去すれば、
簡単に重金属および硫化ソーダの残存量をコントロール
できることを見出し、本発明に到達した。
Means for Solving the Problems In view of the above-mentioned situation, the present inventors have made intensive studies and have noticed that sodium sulfide is much easier to analyze than heavy metal. After removing as excess metal sulfide with excess sodium sulfide in advance, the remaining sodium sulfide is quantified, and if this is removed as metal sulfide with an equivalent amount of metal halide,
The present inventors have found that the residual amounts of heavy metals and sodium sulfide can be easily controlled, and have reached the present invention.

【0006】すなわち、本発明の要旨は、常法により得
られたSFS水溶液に過剰の硫化ソーダを添加して重金
属を金属硫化物として除去し、その後、残存する硫化ソ
ーダ量を定量し、それに相当する量の金属のハロゲン化
物を添加して残存する硫化ソーダを除去することを特徴
とするSFSの精製方法である。
That is, the gist of the present invention is to add an excessive amount of sodium sulfide to an aqueous SFS solution obtained by a conventional method to remove heavy metals as metal sulfides, and then to quantify the amount of remaining sodium sulfide. A method for purifying SFS, characterized in that a residual amount of sodium sulfide is removed by adding a small amount of a metal halide.

【0007】本発明で用いる硫化ソーダと金属のハロゲ
ン化物から金属硫化物を生成する反応は、室温(10℃
〜40℃)で容易に進行し、特別の反応装置や反応条件
を必要としないため、硫化ソーダの除去を容易かつ確実
に行なうことができる。
The reaction for forming metal sulfide from sodium sulfide and metal halide used in the present invention is carried out at room temperature (10 ° C.).
(-40 ° C.), and no special reaction apparatus or reaction conditions are required, so that sodium sulfide can be easily and reliably removed.

【0008】本発明で用いることのできる金属のハロゲ
ン化物としては、それ自体が水溶性を有しており、かつ
生成する硫化物が水不溶性であればどのようなものでも
よく、例えば塩化亜鉛、塩化第一鉄、塩化第二鉄、塩化
第一錫、塩化第二錫、塩化ニッケル、塩化第一クロム、
塩化第二銅、塩化マンガン、臭化亜鉛、臭化第一鉄、臭
化第二鉄、臭化第一錫、臭化第二錫、臭化ニッケル、臭
化第二銅、臭化マンガンおよびこれらの混合物が挙げら
れる。なかでも、経済性および取り扱い易さの点から金
属塩化物が好ましく、また、生成した金属硫化物を濾過
して除去することから、硫化物の溶解度が小さい点か
ら、塩化亜鉛、塩化銅、塩化ニッケル等が特に好ましく
用いられる。
The metal halide which can be used in the present invention may be any metal halide as long as it is water-soluble itself and the sulfide formed is water-insoluble. Ferrous chloride, ferric chloride, stannous chloride, stannic chloride, nickel chloride, ferrous chromium chloride,
Cupric chloride, manganese chloride, zinc bromide, ferrous bromide, ferric bromide, stannous bromide, stannic bromide, nickel bromide, cupric bromide, manganese bromide and These mixtures are mentioned. Among them, metal chlorides are preferred from the viewpoint of economy and ease of handling, and zinc chloride, copper chloride, chloride, etc. Nickel or the like is particularly preferably used.

【0009】また、本発明で使用する硫化ソーダの定量
法としては、硫化ソーダとアルカリ性酢酸鉛との反応に
よる発色を利用した比色分析法、硫化ソーダと酸を反応
させることにより発生する硫化水素ガスを分析する方
法、およびイオン電極を用いる方法等が挙げられる。な
かでも、比色分析法およびイオン電極法が、分析の簡便
性、オンライン計測への適用性などの点から好ましく用
いられる。
The method for determining sodium sulfide used in the present invention includes a colorimetric method utilizing color development by the reaction between sodium sulfide and alkaline lead acetate, and hydrogen sulfide generated by reacting sodium sulfide with an acid. Examples of the method include a method of analyzing a gas and a method of using an ion electrode. Above all, the colorimetric analysis method and the ion electrode method are preferably used from the viewpoint of simplicity of analysis and applicability to online measurement.

【0010】[0010]

【実施例】以下に実施例を挙げて本発明をさらに詳細に
説明するが、本発明はこれらの実施例になんら限定され
るものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0011】なお、硫化ソーダの定量は以下の方法によ
り実施した。
The determination of sodium sulfide was carried out by the following method.

【0012】1.比色分析法 予め被検水溶液中の硫化ソーダの含有量が20ppm以
下になるように希釈した被検水溶液100mlに対し、
アルカリ性酢酸鉛水溶液2mlを添加する。この液の、
波長400nmにおける透過度を分光光度計を用いて測
定する。予め既知の濃度の硫化ソーダ水溶液を用いて作
成した検量線から被検溶液の硫化ソーダ濃度を算出す
る。
1. Colorimetric analysis method For 100 ml of the test aqueous solution, which was previously diluted so that the content of sodium sulfide in the test aqueous solution was 20 ppm or less,
2 ml of an aqueous alkaline lead acetate solution are added. Of this liquid,
The transmittance at a wavelength of 400 nm is measured using a spectrophotometer. The sodium sulfide concentration of the test solution is calculated from a calibration curve prepared using a sodium sulfide aqueous solution having a known concentration in advance.

【0013】2.イオン電極法 予め被検水溶液中の硫化ソーダの含有量が5000pp
m以下になるように希釈した被検水溶液について、堀場
製作所製硫黄イオン電極8003−06Tおよび比較電
極2535A−06Tを用いて電圧を測定する。予め既
知の濃度の硫化ソーダ水溶液を用いて作成した検量線か
ら被検溶液の硫化ソーダ濃度を算出する。
2. Ion electrode method The content of sodium sulfide in the test aqueous solution must be 5000 pp
With respect to the test aqueous solution diluted to be equal to or less than m, the voltage is measured using a sulfur ion electrode 8003-06T and a comparative electrode 2535A-06T manufactured by Horiba, Ltd. The sodium sulfide concentration of the test solution is calculated from a calibration curve prepared using a sodium sulfide aqueous solution having a known concentration in advance.

【0014】実施例1 亜鉛500g、亜硫酸440g、37.5%ホルムアル
デヒド水溶液531gおよび48%苛性ソーダ水溶液5
80gより、常法によって、水酸化亜鉛が懸濁したSF
Sの水溶液を得た。この懸濁液を加圧濾過機で濾過する
ことにより得られたSFSの水溶液に、珪藻土2gおよ
び硫化ソーダ0.200gを加えて常温で循環濾過を行
ない、生成した金属硫化物を除去した。その後、残存す
る硫化ソーダを上記の比色分析法により定量した。分析
は30分以内に終了した。分析により求められた硫化ソ
ーダ量(0.100g)に相当する塩化亜鉛0.175
gを添加し、再度常温で循環濾過を行ない、過剰の硫化
ソーダを硫化亜鉛として除去した。このようにして得ら
れた精SFS水溶液を濃縮、固化させることによりSF
S965gを得た。
Example 1 500 g of zinc, 440 g of sulfurous acid, 531 g of a 37.5% aqueous formaldehyde solution and 5% of a 48% aqueous sodium hydroxide solution 5
From 80 g, SF in which zinc hydroxide is suspended by a conventional method
An aqueous solution of S was obtained. 2 g of diatomaceous earth and 0.200 g of sodium sulfide were added to an aqueous solution of SFS obtained by filtering this suspension with a pressure filter, and circulating filtration was performed at room temperature to remove the generated metal sulfide. Thereafter, the remaining sodium sulfide was quantified by the above colorimetric analysis method. The analysis was completed within 30 minutes. 0.175 zinc chloride corresponding to the amount of sodium sulfide (0.100 g) determined by analysis
g was added, and circulation filtration was performed again at room temperature to remove excess sodium sulfide as zinc sulfide. The concentrated SFS aqueous solution thus obtained is concentrated and solidified to obtain SF.
S965 g was obtained.

【0015】分析の結果、SFSの純度は99.8%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ0.3ppm、0.4ppm、0.2ppm、
0.2ppmおよび5ppmであった。なお、亜鉛、
鉄、銅およびマンガンの含有量は原子吸光法により分析
し、硫化ソーダの含有量は比色分析法により分析した。
As a result of the analysis, the purity of SFS was 99.8%,
The contents of zinc, iron, copper, manganese and sodium sulfide are 0.3 ppm, 0.4 ppm, 0.2 ppm, respectively.
0.2 ppm and 5 ppm. In addition, zinc,
The contents of iron, copper and manganese were analyzed by atomic absorption spectrometry, and the content of sodium sulfide was analyzed by colorimetry.

【0016】実施例2 残存する硫化ソーダを除去するために塩化銅を用いた以
外は実施例1と同様な方法で精SFS960gを得た。
なお、残存する硫化ソーダの分析は30分以内に終了し
た。
Example 2 960 g of purified SFS was obtained in the same manner as in Example 1 except that copper chloride was used to remove the remaining sodium sulfide.
The analysis of the remaining sodium sulfide was completed within 30 minutes.

【0017】分析の結果、SFSの純度は99.9%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ0.2ppm、0.5ppm、0.3ppm、
0.2ppmおよび4ppmであった。
As a result of the analysis, the purity of SFS was 99.9%,
The contents of zinc, iron, copper, manganese and sodium sulfide are 0.2 ppm, 0.5 ppm, 0.3 ppm, respectively.
0.2 ppm and 4 ppm.

【0018】実施例3 残存する硫化ソーダの分析をイオン電極法で行ない、硫
化ソーダの除去に塩化ニッケルを用いた以外は実施例1
と同様な方法で精SFS965gを得た。なお、残存す
る硫化ソーダの分析は20分以内に終了した。
Example 3 Example 1 was repeated except that the remaining sodium sulfide was analyzed by an ion electrode method, and nickel chloride was used to remove the sodium sulfide.
965 g of purified SFS was obtained in the same manner as described above. The analysis of the remaining sodium sulfide was completed within 20 minutes.

【0019】分析の結果、SFSの純度は99.7%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ0.4ppm、0.4ppm、0.1ppm、
0.2ppmおよび7ppmであった。
As a result of the analysis, the purity of SFS was 99.7%,
The contents of zinc, iron, copper, manganese and sodium sulfide are 0.4 ppm, 0.4 ppm, 0.1 ppm, respectively.
0.2 ppm and 7 ppm.

【0020】実施例4 残存する硫化ソーダを上記の比色分析法でオンライン分
析し、その測定値から自動的に必要量の塩化亜鉛量を計
算して添加できる装置を用いた以外は実施例1と同様な
方法で精SFS975gを得た。
Example 4 Example 1 was repeated except that the remaining sodium sulfide was analyzed online by the above colorimetric analysis method, and a device capable of automatically calculating and adding the required amount of zinc chloride from the measured value was used. 975 g of purified SFS was obtained in the same manner as described above.

【0021】分析の結果、SFSの純度は99.9%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ0.5ppm、0.2ppm、0.3ppm、
0.1ppmおよび6ppmであった。
As a result of the analysis, the purity of SFS was 99.9%,
The contents of zinc, iron, copper, manganese and sodium sulfide are 0.5 ppm, 0.2 ppm, 0.3 ppm, respectively.
0.1 ppm and 6 ppm.

【0022】比較例1 亜鉛500g、亜硫酸440g、37.5%ホルムアル
デヒド水溶液531gおよび48%苛性ソーダ水溶液5
80gより、常法によって、水酸化亜鉛が懸濁したSF
Sの水溶液を得た。この懸濁液を加圧濾過機で濾過する
ことにより得られた粗SFSの水溶液の亜鉛、鉄、銅、
ニッケル、クロム等の金属含有量を、日立原子吸光分光
光度計6000型を用いて分析した。この金属分析には
5時間を要した。その後、珪藻土2gと含有金属に相当
する硫化ソーダ0.115gを添加して循環濾過を行な
い、生成した金属硫化物を除去した。このようにして得
られた精SFS水溶液を濃縮、固化させることによりS
FS962gを得た。
Comparative Example 1 500 g of zinc, 440 g of sulfurous acid, 531 g of a 37.5% aqueous formaldehyde solution and 5% of a 48% aqueous sodium hydroxide solution 5
From 80 g, SF in which zinc hydroxide is suspended by a conventional method
An aqueous solution of S was obtained. Zinc, iron, copper, and the like of the aqueous solution of crude SFS obtained by filtering this suspension with a pressure filter.
The content of metals such as nickel and chromium was analyzed using Hitachi Atomic Absorption Spectrophotometer Model 6000. This metal analysis took 5 hours. Thereafter, 2 g of diatomaceous earth and 0.115 g of sodium sulfide corresponding to the contained metal were added, and circulating filtration was performed to remove generated metal sulfide. The purified SFS aqueous solution thus obtained is concentrated and solidified to obtain S
962 g of FS were obtained.

【0023】分析の結果、SFSの純度は99.8%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ15ppm、0.4ppm、0.2ppm、0.
2ppmおよび2ppmであった。
As a result of the analysis, the purity of SFS was 99.8%,
The contents of zinc, iron, copper, manganese and sodium sulfide were 15 ppm, 0.4 ppm, 0.2 ppm, and 0.1 ppm, respectively.
2 ppm and 2 ppm.

【0024】比較例2 比較例1と同様にして得られたSFSの水溶液に、珪藻
土2gを加えて循環濾過しながら10wt%硫化ソーダ
水溶液を0.1mlずつ、硫化ソーダが過剰にならない
ように比色分析法で確認しながら添加した。この操作に
は8時間を要した。このようにして得られた精SFS水
溶液を濃縮、固化させることによりSFS962gを得
た。
Comparative Example 2 2 g of diatomaceous earth was added to the aqueous solution of SFS obtained in the same manner as in Comparative Example 1, and 0.1 ml of a 10 wt% aqueous sodium sulfide solution was added while circulating and filtering so that the sodium sulfide was not excessive. It was added while checking by color analysis. This operation took 8 hours. The purified SFS aqueous solution thus obtained was concentrated and solidified to obtain 962 g of SFS.

【0025】分析の結果、SFSの純度は99.8%、
亜鉛、鉄、銅、マンガンおよび硫化ソーダの含有量はそ
れぞれ0.2ppm、0.3ppm、0.2ppm、
0.4ppmおよび4ppmであった。
As a result of the analysis, the purity of SFS was 99.8%,
The contents of zinc, iron, copper, manganese and sodium sulfide are 0.2 ppm, 0.3 ppm, 0.2 ppm, respectively.
0.4 ppm and 4 ppm.

【0026】[0026]

【発明の効果】本発明の方法によれば、SFS水溶液に
微量に含まれる重金属を、予め過剰の硫化ソーダで金属
硫化物として除去した後、残存する硫化ソーダを短時間
でかつ容易に定量し、当量の金属のハロゲン化物で金属
硫化物として簡単に除去することができる。その結果、
微量に含まれる重金属を定量し、これに見合う量の硫化
ソーダを加えて重金属を除去する従来の方法と比較し
て、容易かつ正確に重金属および硫化ソーダの含有量を
常に低い値にコントロールでき、高純度のSFSを得る
ことができる。
According to the method of the present invention, after a heavy metal contained in a trace amount in an SFS aqueous solution is previously removed as metal sulfide with excess sodium sulfide, the remaining sodium sulfide is easily and quickly quantified. , And can be easily removed as metal sulfide with an equivalent amount of metal halide. as a result,
Compared to the conventional method of quantifying heavy metals contained in traces and adding heavy amounts of sodium sulfide to remove heavy metals, the content of heavy metals and sodium sulfide can be controlled easily and accurately to always low values, High-purity SFS can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 正伸 兵庫県加古郡播磨町宮西346番地の1 住友精化株式会社別府工場内 (56)参考文献 特公 昭39−29834(JP,B1) 特公 昭32−9063(JP,B1) Chemical Abstract s,Vol.97,No.181727,1982 (58)調査した分野(Int.Cl.7,DB名) C07C 313/04 C07C 303/44 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masanobu Sakai 346 Miyanishi, Harima-cho, Kako-gun, Hyogo Prefecture Inside the Beppu Plant of Sumitomo Seika Co., Ltd. (56) References JP-B-39-29834 (JP, B1) JP-A 32-9063 (JP, B1) Chemical Abstracts, Vol. 97, no. 181727, 1982 (58) Fields investigated (Int. Cl. 7 , DB name) C07C 313/04 C07C 303/44 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜鉛、亜硫酸およびホルムアルデヒドを
原料としてナトリウムホルムアルデヒドスルホキシレー
トの水溶液を製造し、このナトリウムホルムアルデヒド
スルホキシレートの水溶液に過剰の硫化ソーダを加えて
重金属を除去した後、残存する硫化ソーダを定量し、そ
れと当量の金属のハロゲン化物を加えて金属硫化物とし
て除去することを特徴とするナトリウムホルムアルデヒ
ドスルホキシレートの精製方法。
1. An aqueous solution of sodium formaldehyde sulfoxylate is produced from zinc, sulfurous acid and formaldehyde as raw materials, excess sodium sulfide is added to the aqueous solution of sodium formaldehyde sulfoxylate to remove heavy metals, and the remaining sodium sulfide is removed. A method for purifying sodium formaldehyde sulfoxylate, comprising quantifying a metal halide and removing the metal sulfide by adding an equivalent amount of a metal halide.
【請求項2】 硫化ソーダの定量法が、比色分析法また
はイオン電極法である請求項1記載のナトリウムホルム
アルデヒドスルホキシレートの精製方法。
2. The method for purifying sodium formaldehyde sulfoxylate according to claim 1, wherein the method for determining sodium sulfide is a colorimetric method or an ion electrode method.
【請求項3】 金属のハロゲン化物が、金属の塩化物で
ある請求項1または2に記載のナトリウムホルムアルデ
ヒドスルホキシレートの精製方法。
3. The method for purifying sodium formaldehyde sulfoxylate according to claim 1, wherein the metal halide is a metal chloride.
【請求項4】 金属の塩化物が、塩化亜鉛、塩化銅また
は塩化ニッケルである請求項3記載のナトリウムホルム
アルデヒドスルホキシレートの精製方法。
4. The method for purifying sodium formaldehyde sulfoxylate according to claim 3, wherein the metal chloride is zinc chloride, copper chloride or nickel chloride.
JP08490594A 1994-04-22 1994-04-22 Purification method of sodium formaldehyde sulfoxylate Expired - Fee Related JP3203405B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08490594A JP3203405B2 (en) 1994-04-22 1994-04-22 Purification method of sodium formaldehyde sulfoxylate
DE19944439128 DE4439128B4 (en) 1994-04-22 1994-11-02 Process for purifying sodium formaldehyde sulfoxylate
TW083110092A TW360635B (en) 1994-04-22 1994-11-02 Method for purifying sodium formaldehydesulfoxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08490594A JP3203405B2 (en) 1994-04-22 1994-04-22 Purification method of sodium formaldehyde sulfoxylate

Publications (2)

Publication Number Publication Date
JPH07291919A JPH07291919A (en) 1995-11-07
JP3203405B2 true JP3203405B2 (en) 2001-08-27

Family

ID=13843758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08490594A Expired - Fee Related JP3203405B2 (en) 1994-04-22 1994-04-22 Purification method of sodium formaldehyde sulfoxylate

Country Status (3)

Country Link
JP (1) JP3203405B2 (en)
DE (1) DE4439128B4 (en)
TW (1) TW360635B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793305A (en) * 2016-09-05 2018-03-13 江苏勃仑化学有限公司 A kind of production method of low content of free formaldehyde low-zinc sodium bisulphite formaldehyde powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE752919C (en) * 1938-12-14 1952-12-01 Englert R Process for the production of pure solutions of oxymethanesulfinic acid alkali salts with the simultaneous production of pure zinc oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Abstracts,Vol.97,No.181727,1982

Also Published As

Publication number Publication date
DE4439128A1 (en) 1995-10-26
TW360635B (en) 1999-06-11
DE4439128B4 (en) 2005-12-15
JPH07291919A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
US4394354A (en) Silver removal with halogen impregnated activated carbon
DE2451274A1 (en) PROCESS FOR THE REMOVAL OF NITROGEN OXIDES FROM GASES CONTAINING NITROGEN
US20040062705A1 (en) Process for lowering the content of organic matter and nitrogenous products contained in bromide-containing effluents
CN111896418A (en) Method for measuring sulfur content in ferrosulfur alloy
US5262018A (en) Metals removal from aqueous peroxy acids or peroxy salts
JP3203405B2 (en) Purification method of sodium formaldehyde sulfoxylate
Velghe et al. Rapid spectrophotometric determination of nitrate with phenol
DE10144890A1 (en) Catalytic desulfurization of acid gas streams involves reaction with an aqueous solution of iron(III) methylglycine-diacetic acid complex followed by regeneration with oxidizing agent
Belcher et al. Spectrophotometric determination of niobium (V) with bromopyrogallol red
JPH0350114A (en) Purification of aqueous solution of alkali metal chloride
Miller Toluene-3: 4-dithiol as a selective reagent for tungsten: the detection of tungsten, especially in molybdenum and rhenium compounds, and in ferrous alloys
US6315811B1 (en) Method for producing platinum
CN108821354B (en) Method for preparing iridium nitrate solution
US5294417A (en) Process for removal of mercury from hydroxyl-ammonium nitrate solutions
DE10134812C2 (en) De-icing flux salt composition for flux baths
Agterdenbos The volumetric determination of nitrite with chloramine T
GB2285450A (en) Use of imidazoline or hexahydropyrimidine compounds for trapping hydrogen sulphide
Schulek et al. The formation of interhalogens
US2017440A (en) Purification of hydrogen peroxide
Magee et al. The spectrophotometric determination of palladium as tetraphenylarsonium palladous-thiocyanate
Tôei et al. Spectrophotometric determination of trace amounts of iron in pure reagent chemicals by solvent extraction as the ternary complex of iron (II), 4-chloro-2-nitrosophenol and Rhodamine B
DE1951260C (en) Continuous process for the production of copper (I) cyanide
US4999169A (en) Method for separating tungsten from molybednum
JP4024891B2 (en) Method for producing aminopolycarboxylic acid ferric salt
KR920008515B1 (en) Consumption of hypochlorite valves contained in perchlorate solutions of electrolysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees