JP3201818B2 - Spray pyrolysis method and apparatus - Google Patents

Spray pyrolysis method and apparatus

Info

Publication number
JP3201818B2
JP3201818B2 JP05147492A JP5147492A JP3201818B2 JP 3201818 B2 JP3201818 B2 JP 3201818B2 JP 05147492 A JP05147492 A JP 05147492A JP 5147492 A JP5147492 A JP 5147492A JP 3201818 B2 JP3201818 B2 JP 3201818B2
Authority
JP
Japan
Prior art keywords
reaction chamber
gas
spray pyrolysis
partition wall
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05147492A
Other languages
Japanese (ja)
Other versions
JPH05253468A (en
Inventor
省吾 新谷
彰 小寺
静夫 相嶋
崇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkawara Kokohki Co Ltd
Original Assignee
Ohkawara Kokohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkawara Kokohki Co Ltd filed Critical Ohkawara Kokohki Co Ltd
Priority to JP05147492A priority Critical patent/JP3201818B2/en
Publication of JPH05253468A publication Critical patent/JPH05253468A/en
Application granted granted Critical
Publication of JP3201818B2 publication Critical patent/JP3201818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、噴霧熱分解方法および
装置に関する。
The present invention relates to a spray pyrolysis method and apparatus.

【0002】[0002]

【従来の技術】ファインセラミックスのよりファインな
性質は、原料の純度、化学組成、微細な組織の制御によ
り初めて得ることができる。製造プロセス、特に原料の
合成法が製品開発の鍵を握ることも少なくない。高純度
かつ化合物・混合物の場合の組成の高均一性、また微細
で反応活性が高いことが原料粉体に共通して求められ
る。このような性質を有するセラミックス粉体を得るた
めの合成法は種々考案されているが、微細、高純度、高
組成均一性の要求を満たすための合成法として気相や液
相を経由した合成法がある。従来の固相を用いた場合と
異なり、液相を経由した合成法は各構成元素が原子オー
ダーで混合していると考えられている。液相法は、溶媒
中に存在する金属元素を水酸化物、硝酸塩、硫酸塩、炭
酸塩などにして析出させ、これを熱分解して酸化物微粉
末を合成する方法である。液相法には、金属塩の析出方
法や熱分解の方法の違いにより多くの方法が開発されて
いるが、噴霧熱分解法はその一方法である。
2. Description of the Related Art Finer properties of fine ceramics can be obtained only by controlling the purity, chemical composition and fine structure of raw materials. Manufacturing processes, especially the synthesis of raw materials, are often key to product development. It is required that the raw material powders have high purity, high composition uniformity in the case of compounds and mixtures, and fine and high reaction activity. Various synthesis methods have been devised to obtain ceramic powders having such properties.However, as a synthesis method to satisfy the requirements of fineness, high purity, and high composition uniformity, synthesis via the gas phase or liquid phase is required. There is a law. Unlike the case where a conventional solid phase is used, it is considered that each constituent element is mixed in the atomic order in the synthesis method via the liquid phase. The liquid phase method is a method in which a metal element existing in a solvent is precipitated as a hydroxide, a nitrate, a sulfate, a carbonate, or the like, and is thermally decomposed to synthesize an oxide fine powder. Many methods have been developed for the liquid phase method, depending on the method of depositing metal salts and the method of thermal decomposition, and the spray pyrolysis method is one of the methods.

【0003】噴霧熱分解法は、金属塩溶液を、熱分解が
起こる温度以上の高温に保持した雰囲気中に微細な液滴
として噴霧し、極めて短時間で溶媒の蒸発、金属塩の析
出、その熱分解を行ない、酸化物(非酸化物も可能)微
粉末を合成する方法である。この方法による粉末は、原
子スケールでの組成均一性や微量成分元素の均一分散性
の利点を有しており、分散性のよい微粒子が得られる。
そして、たとえ乾燥、熱分解による組成の不均一性があ
っても、それは分割された微粒子内に物理的に限定され
るので、成分の再配列による組成分離が少ない。また、
噴霧された個々の溶液に含まれる成分の割合は、調整さ
れた溶液のそれに極めて近く、そのため成分の分散を厳
密に制御することができる。
[0003] In the spray pyrolysis method, a metal salt solution is sprayed as fine droplets in an atmosphere maintained at a temperature higher than the temperature at which thermal decomposition occurs, and evaporation of a solvent, deposition of a metal salt, and In this method, thermal decomposition is performed to synthesize oxide (non-oxide) fine powder. The powder obtained by this method has advantages of composition uniformity on an atomic scale and uniform dispersibility of a trace component element, and fine particles having good dispersibility can be obtained.
And even if there is a non-uniformity of the composition due to drying and thermal decomposition, it is physically limited within the divided fine particles, so that there is little composition separation due to rearrangement of components. Also,
The proportion of components contained in each sprayed solution is very close to that of the conditioned solution, so that the dispersion of the components can be tightly controlled.

【0004】以上説明したように、噴霧熱分解法は、フ
アインセラミックスや酸化物超電導材料の原料の金属塩
溶液を、例えば500〜1300℃の高温の熱分解装置
に霧状に噴霧し、極めて短時間に熱分解・反応または合
成を行ない、微粉末を製造する方法である。
As described above, in the spray pyrolysis method, a metal salt solution as a raw material of fine ceramics or oxide superconducting material is sprayed in a mist state at a high temperature of, for example, 500 to 1300 ° C. This is a method for producing fine powder by performing thermal decomposition / reaction or synthesis in a short time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の噴霧熱分解法は、実験室的段階に留まってい
る状況で、試験規模の非常に小さいものしかなく、また
運転時間も短く、連続運転性を考慮したものはなかっ
た。また、製品回収は、反応室下部に堆積した製品微粒
子を運転終了後に、運転終了の都度回収するという方法
が採られていた。従って本発明は、上記のような従来の
課題を解決し、製品を連続的に回収できるようにした噴
霧熱分解方法と装置を提供することを目的とするもので
ある。
However, such a conventional spray pyrolysis method has only a very small test scale, has a short operation time, and has a small continuous operation time, even in a laboratory stage. There was no one that considered drivability. Further, in the product recovery, a method has been adopted in which product fine particles deposited in a lower portion of the reaction chamber are recovered after the operation is completed, each time the operation is completed. Accordingly, an object of the present invention is to solve the conventional problems as described above and to provide a spray pyrolysis method and apparatus capable of continuously collecting products.

【0006】[0006]

【課題を解決するための手段】そして、その目的は、本
発明によれば、原液を竪型反応室の上部から反応室内に
噴霧するとともに、噴霧された原液を反応室内において
固化後熱分解し、得られた粉体を反応室下部より取り出
す噴霧熱分解方法において、反応室下部を傾斜角40〜
80°の逆円錐台状であって、底部に粉体取出し口を有
する内側隔壁とそれを取り囲む外側隔壁からなる半二重
構造とし、冷却用ガスを該半二重構造の隔壁間であって
内側隔壁の外側面に向かって導入することにより、内側
隔壁の外側面を冷却して噴霧熱分解後の固気混合物を間
接的に冷却するとともに、該冷却用ガスは該内側隔壁の
外側面と衝突して流速が減速した後、反応室下部におい
て該固気混合物と混合し該固気混合物をさらに冷却する
ことを特徴とする噴霧熱分解方法により達成することが
できる。
According to the present invention, an undiluted solution is sprayed into the reaction chamber from the upper part of the vertical reaction chamber, and the sprayed undiluted solution is solidified in the reaction chamber and then thermally decomposed. In the spray pyrolysis method of taking out the obtained powder from the lower part of the reaction chamber, the lower part of the reaction chamber is inclined at an angle of 40 to
80 ° inverted truncated cone with a powder outlet at the bottom
And the inner partition wall for the half-duplex structure consisting of an outer partition wall surrounding it, the cooling gas A between the partition walls of the semi double structure
By introducing it towards the outer surface of the inner bulkhead ,
While cooling the outer surface of the partition wall to indirectly cool the solid-gas mixture after spray pyrolysis , the cooling gas is applied to the inner partition wall.
After colliding with the outer surface and reducing the flow velocity,
And then further cooling the solid-gas mixture with the solid-gas mixture .

【0007】また、本発明によれば、竪型反応室と、該
反応室の上部に配置された噴霧器とを備えた噴霧熱分解
装置において、該反応室の下部を傾斜角40〜80°の
逆円錐台状に形成するとともに、底部に粉体取出し口を
有する内側隔壁とそれを取り囲む外側隔壁からなる半二
重構造とし、反応室下部の外側隔壁に冷却用ガス導入口
を設けたことを特徴とする噴霧熱分解装置が提供され
る。なお、本発明の噴霧熱分解方法では、冷却用ガスの
種類としては噴霧される原液により異なるが、一般に空
気、N2ガスまたはArガスを用いることが好ましく、
また冷却用ガスの温度としては40〜120℃が好まし
い。さらに、冷却用ガスにより粉体を同伴するガス温度
を70〜260℃まで冷却することが、下流側のサイク
ロン、バグフィルター等の固気分離装置の耐熱性に鑑み
て好ましい。
Further, according to the present invention, in a spray pyrolysis apparatus including a vertical reaction chamber and a sprayer disposed above the reaction chamber, the lower part of the reaction chamber has an inclination angle of 40 to 80 °. <br/> In addition to forming an inverted truncated cone , a powder outlet at the bottom
A spray pyrolysis apparatus is provided, which has a half-duplex structure including an inner partition wall having the inner partition wall and an outer partition wall surrounding the inner partition wall, and a cooling gas inlet is provided in the outer partition wall below the reaction chamber. In the spray pyrolysis method of the present invention, the type of cooling gas varies depending on the stock solution to be sprayed, but it is generally preferable to use air, N 2 gas or Ar gas,
The temperature of the cooling gas is preferably from 40 to 120C. Further, it is preferable to cool the gas temperature accompanying the powder to 70 to 260 ° C. with a cooling gas in view of the heat resistance of the solid-gas separation device such as a cyclone and a bag filter on the downstream side.

【0008】一方、噴霧熱分解装置としては、反応室内
雰囲気を熱分解温度以上に高く保持するため、反応室の
外側に反応室を取り囲んで加熱炉を設けることが好まし
い。なお、原液とガスとが接触し、燃焼等の反応熱によ
り高温になる場合には、加熱炉は特には必要でない
On the other hand, in the spray pyrolysis apparatus, it is preferable to provide a heating furnace outside the reaction chamber so as to surround the reaction chamber in order to keep the atmosphere in the reaction chamber higher than the pyrolysis temperature. When the undiluted solution and gas come into contact with each other and become hot due to reaction heat such as combustion, a heating furnace is not particularly necessary .

【0009】[0009]

【作用】本発明者は、製品微粒子の品質を落とすことな
く、かつ反応室内部の反応に影響を与えることなく製品
微粒子を連続的に回収するために、得られる製品微粒子
の温度を下げるべく種々検討したところ、竪型反応室下
部に冷却用のガスを直接注入したのでは、反応室内部に
おけるガス流に乱れが生じ、噴霧熱分解に好ましくない
ことを見出した。そこで、竪型反応室の下部において、
冷却用のガスの流れが製品微粒子を運搬するキャリアガ
スと直接接触するような方法で注入することを止め、反
応室の下部を半(セミ)二重構造とする構成を採用し、
間接接触するような方法で冷却用のガスを注入すること
としたのである。
In order to continuously recover the product fine particles without deteriorating the quality of the product fine particles and without affecting the reaction inside the reaction chamber, the present inventor has made various attempts to lower the temperature of the obtained product fine particles. As a result of the investigation, it was found that if the cooling gas was directly injected into the lower part of the vertical reaction chamber, the gas flow inside the reaction chamber was disturbed, which was not preferable for spray pyrolysis. Therefore, in the lower part of the vertical reaction chamber,
Stop the injection of the cooling gas flow in such a way as to make direct contact with the carrier gas that carries the product particles, and adopt a configuration in which the lower part of the reaction chamber has a semi-semi-double structure.
The cooling gas was injected in such a way as to make indirect contact.

【0010】即ち、反応室下部のセミ二重構造は、その
内部構造が、逆円錐台状で底部に粉体取出し口を有する
内側隔壁を形成しており、その外部構造が内側隔壁を包
んだ構造を有する。冷却用ガスは、内側隔壁の外側面に
向かって注入されるので、外側面を冷却して反応室下部
内の粉体を同伴したキャリアガスと熱交換を行ない、ま
た注入された冷却用ガスは内側隔壁の外側面に衝突する
ことによって運動エネルギーを失って流速が減速され
る。次に、冷却用ガスは、内側隔壁底部の粉体取出し口
からのキャリアガスと混合することによりキャリアガス
をさらに冷却し、かつキャリアガスと共に落下してきた
製品微粒子を混合し、攪拌し、そして冷却する。
That is, in the semi-double structure at the lower part of the reaction chamber, the inner structure forms an inner partition having an inverted truncated cone shape and a powder outlet at the bottom, and the outer structure surrounds the inner partition. Having a structure. Since the cooling gas is injected toward the outer surface of the inner partition wall, the outer surface is cooled to perform heat exchange with the carrier gas accompanied by the powder in the lower portion of the reaction chamber. By colliding with the outer surface of the inner partition, kinetic energy is lost and the flow velocity is reduced. Next, the cooling gas further cools the carrier gas by mixing with the carrier gas from the powder outlet at the bottom of the inner partition wall, mixes the product fine particles that have fallen with the carrier gas, stirs, and cools. I do.

【0011】その結果、下流側に配置されるサイクロ
ン、バグフィルタなどの固・気分離装置に通ずる、反応
室下方部の冷却用ガスとキャリアガスとの混合室におい
て、適温の製品微粒子を同伴するガスを得ることができ
るのである。また、内側隔壁の側面は、反応室から混合
室への熱輻射の影響を防止することができる。内側隔壁
の側面は、注入されたガスによって外側から冷却される
ので、高耐熱性の材料を側面に使用する必要はなく、イ
ンコネル、ハステロイ、ステンレスなどの通常の金属材
料を使用することができる。内側隔壁6の傾斜角αは、
製品微粒子が流動し易くするため40〜80°、好まし
くは45〜75°に形成する。
As a result, fine particles of the product at an appropriate temperature are entrained in the mixing chamber of the cooling gas and the carrier gas at the lower part of the reaction chamber, which communicates with a solid / gas separation device such as a cyclone and a bag filter arranged on the downstream side. You can get gas. Further, the side surface of the inner partition wall can prevent the influence of heat radiation from the reaction chamber to the mixing chamber. Since the side surface of the inner partition wall is cooled from the outside by the injected gas, it is not necessary to use a high heat-resistant material for the side surface, and a normal metal material such as Inconel, Hastelloy, or stainless steel can be used. The inclination angle α of the inner partition wall 6 is
In order to make the product fine particles flow easily, the angle is formed at 40 to 80 °, preferably 45 to 75 °.

【0012】[0012]

【実施例】次に、本発明の実施例を図面に基ずいて更に
詳しく説明するが、本発明はこれらの実施例に限られる
ものではない。 (実施例1)図1は、本発明の噴霧熱分解装置の一例を
示す概略断面図である。図1において、噴霧熱分解装置
1は、竪型反応室2と、竪型反応室2の外側を囲んでな
るファーネス3と、竪型反応室2の上部に配置された噴
霧器たる二流体ノズル4を備えている。竪型反応室2の
下部5は、底部に粉体取出し口8を有する逆円錐台状の
内側隔壁(ホッパー)6と、同じく逆円錐台状の外側隔
壁7と、外側隔壁7から下方に連続して形成される混合
室9とからなり、セミ二重構造に構成されている。ま
た、外側隔壁7には冷却用ガス注入口10が設けられ、
混合室9には図示しない下流側のバグフィルターなどの
固気分離装置に通じる吸引口11が、それぞれ設けられ
ている。
Next, embodiments of the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these embodiments. (Embodiment 1) FIG. 1 is a schematic sectional view showing an example of the spray pyrolysis apparatus of the present invention. In FIG. 1, a spray pyrolysis apparatus 1 includes a vertical reaction chamber 2, a furnace 3 surrounding the outside of the vertical reaction chamber 2, and a two-fluid nozzle 4 serving as a sprayer disposed above the vertical reaction chamber 2. It has. The lower part 5 of the vertical reaction chamber 2 has an inverted frustoconical inner partition wall (hopper) 6 having a powder outlet 8 at the bottom, an inverted frustoconical outer partition wall 7, and a continuous downward from the outer partition wall 7. And a semi-double structure. Further, a cooling gas injection port 10 is provided in the outer partition 7,
Each of the mixing chambers 9 is provided with a suction port 11 that communicates with a solid-gas separation device such as a downstream bag filter (not shown).

【0013】また竪型反応室2は、300mmφ×10
00mm(高さ)の石英管12を採用した。ファーネス
3は、温度調節のできる電気ヒーターと耐火物から構成
され、石英管12との間に空間15を設けた。ファーネ
ス3の上部、下部は各々耐火物14によって保持され、
熱ロスを防止するためファーネス3の外側には保温部材
13を配設してある。又、内側隔壁(ホッパー)6の傾
斜角αは60°とした。逆円錐台状の外側隔壁7の傾斜
角βは、内側隔壁6の傾斜角αよりも約10°大きくと
って実施した。
The vertical reaction chamber 2 has a size of 300 mmφ × 10
A 00 mm (height) quartz tube 12 was employed. The furnace 3 is composed of an electric heater capable of adjusting the temperature and a refractory, and a space 15 is provided between the furnace 3 and the quartz tube 12. The upper and lower parts of the furnace 3 are each held by a refractory material 14,
A heat retaining member 13 is provided outside the furnace 3 to prevent heat loss. The inclination angle α of the inner partition wall (hopper) 6 was set to 60 °. The inclination angle β of the outer partition 7 having the shape of an inverted truncated cone was set to be about 10 ° larger than the inclination angle α of the inner partition 6.

【0014】原料溶液としては、硝酸アルミニウムと珪
酸エチルのムライト(3Al23・2SiO2 )組成
として0.2mol/lとなるように水およびエタノー
ル(50:50vol%)を加えて調整した溶液を用
い、二流体ノズルの微粒化用ガス、キャリアガス、およ
び冷却用ガスに夫々空気を用いて、表1の条件で運転を
行ない、表1の結果を得た。
The raw material solution is a solution prepared by adding water and ethanol (50:50 vol%) so that the composition of mullite of aluminum nitrate and ethyl silicate (3Al 2 O 3 .2SiO 2 ) becomes 0.2 mol / l. The operation was performed under the conditions shown in Table 1 using air as the atomizing gas, the carrier gas, and the cooling gas of the two-fluid nozzle, and the results shown in Table 1 were obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果から、冷却用ガス注入口10か
ら空気を表1の条件で注入して、反応後のキャリアガス
と製品微粒子の温度の低下、反応室下部5の状況を調べ
たところ、40℃未満の温度の冷却用ガスの注入では、
局所的に温度が下がり過ぎ、壁面に結露が生じ、製品微
粒子がその部分に付着する。また、反応室下部5の金属
部材が腐蝕され易くなることが分かった。一方120℃
を超える温度の冷却用ガスの注入では、冷却効果が小さ
く、大量のガスの導入が必要となる。従って、冷却用ガ
スの最適温度は40〜120℃であることが分かった。
このような温度範囲の冷却用ガスの使用により、反応室
の下部5のセミ二重構造内における冷却効果を保持する
ことができるので、これを構成するホッパー6、外側隔
壁7、混合室9、冷却用ガス注入口10、および吸引口
11の部材として、インコネル、ハステロイ、ステンレ
スなどの通常の金属を使用したが特段の支障はなかっ
た。
From the results shown in Table 1, air was injected from the cooling gas inlet 10 under the conditions shown in Table 1, and the temperatures of the carrier gas and the product fine particles after the reaction were reduced, and the condition of the lower portion 5 of the reaction chamber were examined. Injecting a cooling gas at a temperature below 40 ° C.
When the temperature is too low locally, dew condensation occurs on the wall surface, and product particles adhere to the portion. It was also found that the metal member in the lower part 5 of the reaction chamber was easily corroded. 120 ° C
Injecting a cooling gas having a temperature exceeding the above, the cooling effect is small, and a large amount of gas needs to be introduced. Therefore, it was found that the optimum temperature of the cooling gas was 40 to 120 ° C.
By using the cooling gas in such a temperature range, the cooling effect in the semi-duplex structure in the lower part 5 of the reaction chamber can be maintained, so that the hopper 6, the outer partition 7, the mixing chamber 9, As the members of the cooling gas injection port 10 and the suction port 11, ordinary metals such as Inconel, Hastelloy, and stainless steel were used, but there was no particular problem.

【0017】(実施例2)実施例1と基本的に同一の装
置、同一の原料溶液を用い、反応室下部の混合室の構造
を図2、図3、表2のように変えて、反応室内のガスの
乱れ、混合室下部温度への影響を調べた。なお、図2で
は、内側隔壁(ホッパー)6の外側に、外側隔壁21を
反応室2に外挿して混合室22とした。図3は、噴霧熱
分解装置1の反応室2の下部をそのまま混合室31と
し、その最下部側部中心部に冷却用ガス注入口10を吸
引口11と対向して設けた状況を示す。その条件、結果
を表2に示す。
(Example 2) Using the same apparatus and the same raw material solution as in Example 1, the structure of the mixing chamber below the reaction chamber was changed as shown in FIGS. The influence of the turbulence of the gas in the room and the temperature on the lower part of the mixing room was investigated. In FIG. 2, a mixing chamber 22 was formed by extrapolating an outer partition 21 outside the inner partition (hopper) 6 into the reaction chamber 2. FIG. 3 shows a situation in which the lower part of the reaction chamber 2 of the spray pyrolysis apparatus 1 is used as it is as the mixing chamber 31, and the cooling gas inlet 10 is provided at the center of the lowermost part thereof so as to face the suction port 11. Table 2 shows the conditions and results.

【0018】[0018]

【表2】 [Table 2]

【0019】表2の結果を評価するに際し、反応室内の
ガスの乱れがある場合には反応室内に粉体の片寄り付着
が発生するので、その付着の有無で判断した。なお、製
品微粒子の平均粒子径は2μmであった。表2の結果か
ら、内側隔壁(ホッパー)6の傾斜角が40〜80°の
場合に反応室のガスの乱れ、粉体の堆積が殆どないこと
が判明した。また、図3のように、内側隔壁を設けない
構造では、反応室のガスの乱れが大きいことも確認でき
た。
In evaluating the results shown in Table 2, if there was turbulence in the gas in the reaction chamber, the powder was unevenly deposited in the reaction chamber. The average particle size of the product fine particles was 2 μm. From the results in Table 2, it was found that when the inclination angle of the inner partition wall (hopper) 6 was 40 to 80 °, the gas in the reaction chamber was not turbulent and the powder was hardly deposited. Further, as shown in FIG. 3, it was also confirmed that the gas in the reaction chamber was largely disturbed in the structure without the inner partition.

【0020】[0020]

【発明の効果】以上説明したように、本発明の噴霧熱分
解方法および装置によれば、冷却用ガスの導入によって
も反応室のガスの乱れを生じることなく、熱分解後のキ
ャリアガス及び製品微粒子を冷却することができる。ま
た粉体の堆積も殆どなく、連続的に製品微粒子を取り出
す連続運転が可能となる。さらに反応室下部のホッパー
は、冷却用ガスによって冷却されるので、高耐熱性の材
料を使用する必要はなく、通常の金属材料を使用するこ
とができる。
As described above, according to the spray pyrolysis method and apparatus of the present invention, the carrier gas and the product after the pyrolysis can be produced without causing the turbulence of the gas in the reaction chamber even by introducing the cooling gas. The fine particles can be cooled. Further, there is almost no accumulation of powder, and continuous operation for continuously extracting product fine particles becomes possible. Further, since the hopper at the lower part of the reaction chamber is cooled by the cooling gas, there is no need to use a material having high heat resistance, and a normal metal material can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の噴霧熱分解装置の一例を示す概略断面
図である。
FIG. 1 is a schematic sectional view showing one example of a spray pyrolysis apparatus of the present invention.

【図2】反応室下部の構造の一例を示す説明図である。FIG. 2 is an explanatory view showing an example of a structure of a lower part of a reaction chamber.

【図3】反応室下部の構造の他の例を示す説明図であ
る。
FIG. 3 is an explanatory view showing another example of the structure of the lower part of the reaction chamber.

【符号の説明】[Explanation of symbols]

1 噴霧熱分解装置 2 反応室 3 ファーネス 4 二流体ノズル 5 反応室の下部 6 内側隔壁(ホッパー) 7 外側隔壁 8 粉体取出し口 9 混合室 10 冷却用ガス注入口 11 吸引口 12 石英管 13 保温部材 14 耐火物 15 空間 21 外側隔壁 22 混合室 31 混合室 DESCRIPTION OF SYMBOLS 1 Spray pyrolysis apparatus 2 Reaction chamber 3 Furnace 4 Two-fluid nozzle 5 Lower part of reaction chamber 6 Inner partition wall (hopper) 7 Outer partition wall 8 Powder outlet 9 Mixing chamber 10 Cooling gas inlet 11 Suction port 12 Quartz tube 13 Heat insulation Member 14 Refractory 15 Space 21 Outer partition wall 22 Mixing chamber 31 Mixing chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 崇 神奈川県横浜市緑区池辺町3847 大川原 化工機株式会社内 (56)参考文献 実開 平4−17832(JP,U) 実開 昭63−94533(JP,U) 実開 平2−52300(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 B01J 19/00 301 B01J 2/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Ito 3847 Ikebe-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture Inside Okawara Kakoki Co., Ltd. 94533 (JP, U) Hira 2-52300 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 19/00 B01J 19/00 301 B01J 2/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原液を竪型反応室の上部から反応室内に
噴霧するとともに、噴霧された原液を反応室内において
固化後熱分解し、得られた粉体を反応室下部より取り出
す噴霧熱分解方法において、反応室下部を傾斜角40〜
80°の逆円錐台状であって、底部に粉体取出し口を有
する内側隔壁とそれを取り囲む外側隔壁からなる半二重
構造とし、冷却用ガスを該半二重構造の隔壁間であって
内側隔壁の外側面に向かって導入することにより、内側
隔壁の外側面を冷却して噴霧熱分解後の固気混合物を間
接的に冷却するとともに、該冷却用ガスは該内側隔壁の
外側面と衝突して流速が減速した後、反応室下部におい
て該固気混合物と混合し該固気混合物をさらに冷却する
ことを特徴とする噴霧熱分解方法。
1. A spray pyrolysis method in which a stock solution is sprayed into a reaction chamber from the upper part of a vertical reaction chamber, and the sprayed stock solution is solidified in the reaction chamber and then pyrolyzed, and the obtained powder is taken out from a lower part of the reaction chamber. in the tilt angle 40 and the reaction chamber lower portion
80 ° inverted truncated cone with a powder outlet at the bottom
And the inner partition wall for the half-duplex structure consisting of an outer partition wall surrounding it, the cooling gas A between the partition walls of the semi double structure
By introducing it towards the outer surface of the inner bulkhead ,
While cooling the outer surface of the partition wall to indirectly cool the solid-gas mixture after spray pyrolysis , the cooling gas is applied to the inner partition wall.
After colliding with the outer surface and reducing the flow velocity,
And further cooling the solid-gas mixture with the solid-gas mixture .
【請求項2】 冷却用ガスが空気、N2ガスまたはAr
ガスである請求項1記載の噴霧熱分解方法。
2. The cooling gas is air, N 2 gas or Ar.
The spray pyrolysis method according to claim 1, which is a gas.
【請求項3】 冷却用ガス温度が40〜120℃である
請求項1記載の噴霧熱分解方法。
3. The spray pyrolysis method according to claim 1, wherein the temperature of the cooling gas is 40 to 120 ° C.
【請求項4】 冷却用ガスにより、粉体を同伴するガス
温度を70〜260℃まで冷却する請求項1記載の噴霧
熱分解方法。
4. The spray pyrolysis method according to claim 1, wherein the temperature of the gas accompanying the powder is cooled to 70 to 260 ° C. by the cooling gas.
【請求項5】 竪型反応室と、該反応室の上部に配置さ
れた噴霧器とを備えた噴霧熱分解装置において、該反応
室の下部を傾斜角40〜80°の逆円錐台状に形成する
とともに、底部に粉体取出し口を有する内側隔壁とそれ
を取り囲む外側隔壁からなる半二重構造とし、反応室下
部の外側隔壁に冷却用ガス導入口を設けたことを特徴と
する噴霧熱分解装置。
5. A spray pyrolysis apparatus comprising a vertical reaction chamber and a sprayer disposed above the reaction chamber, wherein the lower part of the reaction chamber is formed into an inverted truncated cone having an inclination angle of 40 to 80 °. And an inner bulkhead having a powder outlet at the bottom
A spray pyrolysis apparatus characterized in that it has a half-duplex structure composed of outer partition walls surrounding the reactor, and a cooling gas inlet is provided in the outer partition wall below the reaction chamber.
【請求項6】 反応室の外側に、該反応室を取り囲んで
加熱炉を設けた請求項5記載の噴霧熱分解装置。
Outside of 6. The reaction chamber, spray pyrolysis apparatus according to claim 5, wherein the heating furnace is provided surrounding the reaction chamber.
JP05147492A 1992-03-10 1992-03-10 Spray pyrolysis method and apparatus Expired - Lifetime JP3201818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05147492A JP3201818B2 (en) 1992-03-10 1992-03-10 Spray pyrolysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05147492A JP3201818B2 (en) 1992-03-10 1992-03-10 Spray pyrolysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH05253468A JPH05253468A (en) 1993-10-05
JP3201818B2 true JP3201818B2 (en) 2001-08-27

Family

ID=12887953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05147492A Expired - Lifetime JP3201818B2 (en) 1992-03-10 1992-03-10 Spray pyrolysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3201818B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703479B1 (en) 2001-12-03 2004-03-09 Uop Llc Process and apparatus for cooling polymer in a reactor
JP4762517B2 (en) 2004-09-09 2011-08-31 株式会社オプトニクス精密 Method for producing toner for printer
JP4854240B2 (en) * 2005-09-09 2012-01-18 株式会社オプトニクス精密 Ultrafine particles by pressure vibration and spray granulation
JP2008246391A (en) * 2007-03-30 2008-10-16 Japan Fine Ceramics Center Mist supply apparatus and spray pyrolysis apparatus
JP7266358B2 (en) * 2017-03-03 2023-04-28 太平洋セメント株式会社 Spray fine particle production equipment
JP6836426B2 (en) * 2017-03-08 2021-03-03 太平洋セメント株式会社 Spray fine particle manufacturing equipment

Also Published As

Publication number Publication date
JPH05253468A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
Gurav et al. Aerosol processing of materials
EP1370486B1 (en) Method for producing multinary metal oxide powders in a pulsed reactor
US6080232A (en) Spherical color pigments, process for their production and use thereof
KR960010247B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
Xu et al. Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method
Milošević et al. Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method
JPH08506080A (en) Method for producing nanometer-class ceramic powder
EP0601594B1 (en) Process for producing crystalline microballoons
JP4516642B2 (en) Spray pyrolysis equipment
JPH0796165A (en) Production of crystalline fine hollow body and crystalline fine hollow body
JP3201818B2 (en) Spray pyrolysis method and apparatus
US6416862B1 (en) Ultrafine particulate zinc oxide and production process thereof
US3273962A (en) Process for producing oxides in the form of hollow shells
US3415640A (en) Process for making dispersions of particulate oxides in metals
US3469941A (en) Ultrafine boron nitride and process of making same
Janaćković et al. Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis
JPS59107905A (en) Manufacture of hyperfine particle of metallic oxide
EP1215174B1 (en) Highly white zinc oxide fine particles and method for preparation thereof
JPH05253469A (en) Method and device for producing ceramic powder
JPH0244766B2 (en)
JPH0123415B2 (en)
EP0476050B1 (en) Alumina foams and method of producing the same
KATO et al. Preparation of hollow alumina microspheres by ultrasonic spray pyrolysis
US2890953A (en) Continuous process for the manufacture of titanium metal
Okuyama et al. Preparation of micro controlled particles using aerosol process technology

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11