JP3201670B2 - Powder supply method in continuous casting - Google Patents

Powder supply method in continuous casting

Info

Publication number
JP3201670B2
JP3201670B2 JP03480993A JP3480993A JP3201670B2 JP 3201670 B2 JP3201670 B2 JP 3201670B2 JP 03480993 A JP03480993 A JP 03480993A JP 3480993 A JP3480993 A JP 3480993A JP 3201670 B2 JP3201670 B2 JP 3201670B2
Authority
JP
Japan
Prior art keywords
powder
continuous casting
mold
compression
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03480993A
Other languages
Japanese (ja)
Other versions
JPH06226411A (en
Inventor
浩 関口
治志 奥田
純一 蓮沼
敏行 橋目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03480993A priority Critical patent/JP3201670B2/en
Publication of JPH06226411A publication Critical patent/JPH06226411A/en
Application granted granted Critical
Publication of JP3201670B2 publication Critical patent/JP3201670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造におけるパウダ
−供給方法に係り、特に極低炭素鋼の連続鋳造において
Cのピックアップやのろかみ等の欠陥を発生せず、パウ
ダ−本来の作用を円滑に行うことのできるパウダ−供給
方法に関し、極低炭素鋼の連続鋳造技術として有効に利
用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of supplying powder in continuous casting, and particularly to the continuous casting of ultra-low carbon steel, which does not cause defects such as pick-up of C and sluggishness. Regarding a powder supply method that can be performed smoothly, it is effectively used as a continuous casting technique of ultra-low carbon steel.

【0002】[0002]

【従来の技術】連続鋳造におけるモールドパウダーは、
鋳型内溶鋼から熱供給を受け、上方から未溶解パウダ−
層、焼結層、溶融層を形成し、溶融したモールドパウダ
ーは、鋳型壁と凝固殻間に流入して鋳片の潤滑作用を行
うほか、断気、保温、介在物の捕捉吸収等の重要な作用
を果し、きわめて重要な機能を有している。しかしなが
らダミ−バによる連続鋳造開始時、もしくは連々鋳によ
る後チャ−ジ鋳込初期、またタンディッシュ交換直後等
においては、モールドパウダーの溶融が不十分であり、
かつ湯面の変動が大きいこと等により、溶鋼が未溶融モ
ールドパウダーに接触して侵炭を起こし、または未滓化
パウダ−の巻き込みによる「のろかみ」等の欠陥が発生
する。特に極低炭素鋼の連続鋳造の場合には、この傾向
が大で問題になっている。
2. Description of the Related Art Mold powder in continuous casting is:
Heat is supplied from molten steel in the mold, and unmelted powder is
Formed layer, sintered layer and molten layer, the molten mold powder flows between the mold wall and the solidified shell to lubricate the slab, as well as to prevent air loss, heat insulation and absorption of inclusions. It has a very important function. However, at the start of continuous casting with a damper, or at the beginning of post-charging by continuous casting, or immediately after replacement of a tundish, etc., the melting of the mold powder is insufficient,
In addition, due to large fluctuations in the molten metal level, the molten steel comes into contact with the unmelted mold powder to cause carburization, or defects such as "slowness" due to entrainment of the unsmelted powder occur. In particular, in the case of continuous casting of extremely low carbon steel, this tendency is large and poses a problem.

【0003】この対策として特開昭60−87959
号、特開平1−202349号では、鋳造初期に予め溶
融したモールドパウダーを使用することを提案してい
る。しかし溶融状態のパウダ−を添加するためには、パ
ウダ−を溶融炉で溶融する必要がある。通常の工程パウ
ダ−には溶融速度を抑制するために1〜5%の遊離炭素
を含有している。従って1〜5%の遊離炭素を含むパウ
ダ−が溶解効率が著しく悪いので、溶融状態で使用する
パウダ−としてはC含有のないいわゆるホワイトパウダ
−が望ましい。図1はモールドパウダー中に含まれる
F.C.(遊離炭素)の溶解効率(%)に及ぼす影響を示
す図であって、3%の遊離炭素を含む場合には溶解効率
がきわめて悪くなる。従って単に溶融層を形成するため
にはCは不必要である。また、モールドパウダーは粉末
状態と溶融状態においては、例えば表1の如くパウダ−
の嵩比重が著しく変化する。 また、図2に示す如く、嵩比重が大となると溶解効率
(%)が急激に悪化する。 かくの如くモールドパウダ
ーを溶融しようとしても、粉末状態に合わせた炉容積に
しようとすれば、極めて大容量のものを要するので、追
加して何回にも分けて添加することとして溶融容量を比
較的小さく設定するかは、判断に苦しむ処である。また
粉末状態のパウダ−は断熱材である空気を大量に含んで
おり、図2の如く溶解効率が極めて悪いので、粉末状態
のモールドパウダーを溶解することは極めて困難であ
り、コスト的にも甚だ高価となることは避けられない。
As a countermeasure against this, Japanese Patent Application Laid-Open No. Sho 60-87959
Japanese Patent Application Laid-Open No. Hei 1-202349 proposes to use a mold powder that has been melted in advance in the early stage of casting. However, in order to add powder in a molten state, it is necessary to melt the powder in a melting furnace. Normal process powders contain 1 to 5% free carbon to suppress the melting rate. Therefore, since a powder containing 1 to 5% of free carbon has a remarkably low dissolving efficiency, a so-called white powder containing no C is preferable as a powder used in a molten state. FIG. 1 is a graph showing the effect of F.C. (free carbon) contained in mold powder on the dissolution efficiency (%). When 3% of free carbon is contained, the dissolution efficiency becomes extremely poor. Therefore, C is not necessary simply to form a molten layer. The mold powder is in a powder state and a molten state, for example, as shown in Table 1.
Has a significant change in bulk specific gravity. Further, as shown in FIG. 2, when the bulk specific gravity is large, the dissolution efficiency (%) is rapidly deteriorated. Even if the mold powder is to be melted as described above, if the furnace volume is adjusted to the powder state, an extremely large capacity is required. Whether to set a target value is a place where judgment is difficult. In addition, powder in a powder state contains a large amount of air as a heat insulating material, and has a very low dissolving efficiency as shown in FIG. 2. Therefore, it is extremely difficult to dissolve the powder in a powder state, and the cost is extremely high. It is inevitable that it will be expensive.

【0004】[0004]

【発明が解決しようとする課題】上記の如く、粉末モー
ルドパウダーによる侵炭、のろかみ等の欠陥を解決する
ために、溶融モールドパウダーを使用すべきであるが、
その溶解方法を如何にすべきかは甚だ難しい問題であ
る。本発明の目的は、モールドパウダーの溶解に際し、
最も効率的に溶融することができる効果的な溶解方法を
含む連続鋳造におけるパウダ−の供給方法を提供するに
ある。
As described above, in order to solve defects such as carburization and lazyness caused by powder mold powder, molten mold powder should be used.
How to dissolve it is a very difficult problem. An object of the present invention is to dissolve mold powder,
An object of the present invention is to provide a method for supplying powder in continuous casting including an effective melting method capable of melting most efficiently.

【0005】[0005]

【課題を解決するための手段および作用】本発明の要旨
とするところは次の如くである。すなわち、 (1)Cを含有しない連続鋳造用パウダ−に3〜10重
量%の有機質粘結剤を添加し混練した後圧縮成形する段
階と、前記圧縮成形したパウダ−を溶融した後連続鋳造
用鋳型に供給する段階と、有して成ることを特徴とする
連続鋳造におけるパウダ−供給方法。 (2)連続鋳造用パウダ−に3〜10重量%の有機質粘
結剤を添加し混練した後圧縮成形する段階と、前記圧縮
成形したパウダ−を溶融した後1250℃以上に保持す
る段階と、前記1250℃以上に保持した溶融パウダ−
を連続鋳造用鋳型に供給する段階と、を有して成ること
を特徴とする連続鋳造におけるパウダ−供給方法。 (3)前記圧縮成形したパウダ−の嵩比重は1.5以上
である上記(1)もしくは(2)に記載の連続鋳造にお
けるパウダ−供給方法。 (4)前記添加する有機質粘結剤はフエノ−ル系レジン
である上記(1)もしくは(2)に記載の連続鋳造にお
けるパウダ−供給方法。
The gist of the present invention is as follows. That is, (1) a step of adding 3 to 10% by weight of an organic binder to a continuous casting powder containing no C, kneading the mixture, and compression molding; and melting the compression molded powder to form a continuous casting powder. A method for supplying powder in continuous casting, comprising: supplying the powder to a mold. (2) A step of adding 3 to 10% by weight of an organic binder to the powder for continuous casting, kneading and compression-molding, and a step of melting the compression-molded powder and keeping it at 1250 ° C. or higher; The molten powder maintained at 1250 ° C. or higher
Supplying powder to a casting mold for continuous casting. (3) The powder supply method in continuous casting according to the above (1) or (2), wherein the bulk specific gravity of the compression-molded powder is 1.5 or more. (4) The powder supply method in continuous casting according to the above (1) or (2), wherein the organic binder to be added is a phenolic resin.

【0006】以下、本発明の詳細について説明する。先
ず、本発明に使用するモールドパウダー粉は、溶解効率
の点からCを含有しない粉末状モールドパウダーの方が
よい。これに重量比にて3〜10%の有機質粘結剤を添
加し混錬する。粘結剤としてはフエノ−ル系レジンが好
適である。粘結剤の添加率を3〜10%に限定したの
は、圧縮成形には少くとも3%の粘結剤が必要である
が、粘結剤の粘結形成作用は10%の添加で飽和し、1
0%を越す添加でも溶融過程で消失して実害はないが無
駄でありコスト高となるので10%を上限とする。通常
重量比にて5〜6%の添加が、嵩密度上昇の効果ならび
に圧縮成形後の型くずれ防止効果から最適である。圧縮
成形したモールドパウダーは坩堝に入れて電気加熱等の
方法で溶融するが、高周波電気による加熱炉が望まし
い。
Hereinafter, the present invention will be described in detail. First, the mold powder powder used in the present invention is preferably a powder mold powder containing no C from the viewpoint of dissolution efficiency. An organic binder in a weight ratio of 3 to 10% is added and kneaded. Phenolic resins are preferred as the binder. The reason why the addition rate of the binder is limited to 3 to 10% is that at least 3% of the binder is required for compression molding, but the binding forming action of the binder is saturated by adding 10%. And 1
Addition exceeding 0% disappears in the melting process and causes no actual harm, but is useless and increases the cost, so the upper limit is 10%. Usually, the addition of 5 to 6% in terms of weight ratio is optimal in view of the effect of increasing the bulk density and the effect of preventing mold collapse after compression molding. The compression-molded mold powder is put into a crucible and melted by a method such as electric heating, but a heating furnace using high-frequency electricity is desirable.

【0007】溶融したモールドパウダーを連続鋳造鋳型
に添加する温度が何度が適当であるかについては、特開
昭60−87959号では実設備で1100℃で添加し
た実施例があり、特開昭63−230259号ではC≦
2.0%を含有するモールドパウダーで、溶解温度+Δ
TとしてΔT≧100℃が適温としている。本発明者ら
は、メニスカス部での伝熱のシュミレ−ションおよび実
機において種々の温度でのパウダ−溶融添加実験を行っ
た結果、連鋳パウダ−を予め溶融し添加する場合は12
50℃以上であるべきであることを見出した。すなわち
溶融モールドパウダーの添加温度が1,250℃未満の
場合には、連鋳スタ−ト時に十分な溶融層を確保するこ
とができず、またメニカス部の溶鋼を保温するのに十分
でない。したがって少くとも1,250℃以上を必要と
し、望ましくは1,300℃以上である。 かくの如き
従来の溶融添加温度より150〜200℃高い温度で添
加することにより、Cのピックアップも完全に防止する
ことができることが判明した。従って高温溶解を実施す
る場合の原料モールドパウダーは必ずしもC含有のない
ものに限定する必要がない。
Regarding the appropriate temperature at which the molten mold powder is added to the continuous casting mold, Japanese Patent Application Laid-Open No. 60-87959 discloses an example in which the powder is added at 1100 ° C. in actual equipment. In 63-230259, C ≦
Melting temperature + Δ with mold powder containing 2.0%
As T, ΔT ≧ 100 ° C. is an appropriate temperature. The inventors of the present invention conducted simulations of heat transfer in the meniscus portion and performed powder melt addition experiments at various temperatures in an actual machine. As a result, when the continuous casting powder was previously melted and added, 12
It has been found that it should be at least 50 ° C. That is, when the temperature of the molten mold powder is less than 1,250 ° C., it is not possible to secure a sufficient molten layer at the time of continuous casting, and it is not sufficient to keep the molten steel in the meniscus part warm. Therefore, at least 1,250 ° C or more is required, and preferably 1,300 ° C or more. It has been found that by adding at a temperature 150 to 200 ° C. higher than the conventional melting addition temperature, C pickup can be completely prevented. Therefore, the raw material mold powder in the case of carrying out the high-temperature melting does not necessarily need to be limited to one that does not contain C.

【0008】従って、上記(2)の如きパウダ−の供給
方法も可能である。すなわち、C含有の有無に関係なく
連鋳用パウダ−に重量比にて3〜10%のフエノ−ル系
レジンの如き有機質粘結剤を添加し、混錬した後圧縮成
形してブリケットとする。このブリケットを1250℃
に溶融した溶融パウダ−を連鋳鋳型に供給する方法であ
る。この方法により、極低炭素鋼の連続鋳造において
も、「のろかみ」もなく、Cのピックアップもない鋳片
を製造することができた。なお、本発明において、粉末
のモールドパウダーに3〜10%の有機質粘結剤を添加
し、混錬した後圧縮成形したブリケット状塊の嵩比重は
いずれも1.5以上であり、図2により明らかな如く溶
解効率の点から嵩比重を1.5(Kg/l)以上に圧縮
成形すべきである。
Therefore, the method of supplying powder as described in (2) above is also possible. That is, irrespective of the presence or absence of C, 3 to 10% by weight of an organic binder such as phenolic resin is added to the powder for continuous casting, and the mixture is kneaded and then compression-molded into briquettes. . This briquette is 1250 ° C
This is a method in which molten powder melted in the mold is supplied to a continuous casting mold. By this method, even in continuous casting of ultra-low carbon steel, it was possible to produce a cast piece without "sloppyness" and without C pickup. In the present invention, the bulk specific gravity of the briquette-like mass obtained by adding 3 to 10% of the organic binder to the powder mold powder, kneading the mixture, and compression-molding is 1.5 or more. As is apparent from the viewpoint of dissolution efficiency, the bulk specific gravity should be compression-molded to 1.5 (Kg / l) or more.

【0009】[0009]

【実施例】C≦30ppmの極低炭素鋼の連続鋳造に当
り、従来法により粉状モールドパウダーをそのまま添加
した場合、1200℃に溶融した後鋳型に添加した場合
と、本発明により3〜10%のフエノ−ル系レジンを粘
結剤とし混錬した後、圧縮成形し、これを1300℃で
溶融した後、鋳型に添加し、それぞれ鋳片を得た。冷却
後の鋳片をスタ−ト後2mの位置でのCピックアップ、
およびスタ−ト後2mまでののろかみ個数を調査する比
較試験を行った。この比較試験は実機によったもので、
鋳型寸法は215mm厚×1600幅であり、原料粉末
モールドパウダーの分析値は次の如くであった。 T.C SiO2 CaO Al23 MgO 2.5% 29.1 28.8 5.6 5.2 上記成分の粉状モールドパウダー10Kgを1300℃
に溶融した後、連鋳ダミ−バ−スタ−ト時に、溶鋼注入
に先立って一括して鋳型に投入した。溶融パウダ−投入
直後、溶鋼注入した。鋳込んだそれぞれの鋳片は冷却後
連鋳スタ−ト後タンディッシュ方向へ2mの位置におけ
るCピックアップおよびスタ−トから2mまでののろか
み個数を調査した結果は表1のとおりである。 表1から明らかな如く、Cピックアップ、のろかみ個数
とも本発明が格段に優れていることが判明した。なお、
従来法ではいずれもメニスカス部が凝固したので手動撹
拌実施して操業を継続した。
Examples In the continuous casting of ultra-low carbon steel of C ≦ 30 ppm, the case where powdery mold powder was added as it was by a conventional method, the case where it was melted at 1200 ° C. and then added to a mold, and the case where it was 3 to 10 according to the present invention. % Phenolic resin was used as a binder, kneaded, compression-molded, melted at 1300 ° C., and added to a mold to obtain a slab. C pickup at a position of 2m after starting the cast slab after cooling,
A comparative test was conducted to investigate the number of sluggish pieces up to 2 m after the start. This comparative test was based on actual equipment.
The mold dimensions were 215 mm thick x 1600 width, and the analytical values of the raw material powder mold powder were as follows. T. C SiO 2 CaO Al 2 O 3 MgO 2.5% 29.1 28.8 5.6 5.2 10 kg of powdered mold powder of the above-mentioned components is placed at 1300 ° C.
After being melted, the molten steel was poured into a mold at a time before the molten steel was poured at the time of continuous casting. Immediately after charging the molten powder, molten steel was injected. Table 1 shows the results of investigating the number of C pick-ups and the number of slugs from the start to 2 m from the start in the tundish direction after the continuous casting start after cooling. As is clear from Table 1, it was found that the present invention was remarkably excellent in both the C pickup and the sluggish number. In addition,
In any of the conventional methods, the meniscus portion was solidified, and thus the operation was continued by performing manual stirring.

【0010】[0010]

【発明の効果】上記実施例から明らかな如く、本発明に
おいては粉状モールドパウダーに3〜10%の有機質粘
結剤を添加、混錬した後圧縮成形し、これを1250℃
以上に溶融した後、鋳型に供給する方法をとったので次
の如き効果を挙げることができた。 (イ)連鋳スタ−ト時に溶融したモールドパウダー層を
確保した後、溶鋼を注入するので、Cピックアップによ
る侵炭が極めて少なくなり、「のろかみ」は完全に一掃
することができ、極低炭素鋼の品質向上に著しく貢献す
ることができた。 (ロ)連鋳スタ−ト時からメニスカス部の溶鋼を保温で
きるので、スタ−ト時における浸漬ノズルの折損、ブレ
−クアウト等のトラブルが一掃でき、操業が安定でき
た。 (ハ)粉状パウダ−を圧縮成形して溶解するので、溶解
装置ならびに原料装入装置が小型ですみ、取扱が容易に
なった。 (ニ)従来の粉末溶融に比較し、溶解効率が著しく優れ
ているので、迅速な溶解が可能となり、操業が安定した
連鋳スタ−トが可能となった。
As is evident from the above examples, in the present invention, 3 to 10% of an organic binder is added to a powdery mold powder, kneaded and then compression-molded.
After the above melting, a method of supplying the mixture to the mold was adopted, and the following effects were obtained. (A) Since molten steel is injected after securing the molten mold powder layer at the time of continuous casting start, carburization by the C pickup is extremely reduced, and "sloppyness" can be completely eliminated. This significantly contributed to the improvement of the quality of low carbon steel. (B) Since the molten steel in the meniscus part can be kept warm from the start of the continuous casting, troubles such as breakage of the immersion nozzle and breakout at the start can be eliminated, and the operation can be stabilized. (C) Since the powdery powder is compressed and melted, the melting device and the raw material charging device are small, and the handling is easy. (D) Compared to conventional powder melting, the melting efficiency is remarkably excellent, so that quick melting is possible and a continuous casting start with stable operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粉状モールドパウダー中に含まれる遊離炭素
(F.C)の溶解効率(%)に及ぼす影響を示す線図で
ある。
FIG. 1 is a graph showing the effect of free carbon (FC) contained in powdery mold powder on the dissolution efficiency (%).

【図2】圧縮成形パウダ−の嵩比重(Kg/l)の溶解
効率に及ぼす影響を示す線図である。
FIG. 2 is a graph showing the effect of the bulk specific gravity (Kg / l) of compression molding powder on the dissolution efficiency.

───────────────────────────────────────────────────── フロントページの続き 審査官 金 公彦 (56)参考文献 特開 昭52−133032(JP,A) 特開 平1−202349(JP,A) 特開 昭63−230259(JP,A) 特開 昭54−50404(JP,A) 特開 昭55−32757(JP,A) 特開 昭49−106916(JP,A) 特開 昭56−89372(JP,A) 特開 昭60−87959(JP,A) 特開 平2−205236(JP,A) 特開 昭51−132113(JP,A) 特開 平4−327353(JP,A) 特開 昭55−14865(JP,A) 特開 昭56−6762(JP,A) 特開 昭56−7641(JP,A) 特開 平5−269560(JP,A) 実開 昭53−128316(JP,U) (58)調査した分野(Int.Cl.7,DB名) B22D 11/108 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Kimhiko Kim (56) References JP-A-52-133032 (JP, A) JP-A-1-202349 (JP, A) JP-A-63-230259 (JP, A) JP-A-54-50404 (JP, A) JP-A-55-32757 (JP, A) JP-A-49-106916 (JP, A) JP-A-56-89372 (JP, A) JP-A-60-87959 (JP, A) JP, A) JP-A-2-205236 (JP, A) JP-A-51-132113 (JP, A) JP-A-4-327353 (JP, A) JP-A-55-14865 (JP, A) JP JP-A-56-6762 (JP, A) JP-A-56-7641 (JP, A) JP-A-5-269560 (JP, A) Japanese utility model application Sho-53-128316 (JP, U) (58) Fields investigated (Int) .Cl. 7 , DB name) B22D 11/108

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cを含有しない連続鋳造用パウダ−に3
〜10重量%の有機質粘結剤を添加し混練した後圧縮成
形する段階と、前記圧縮成形したパウダ−を溶融した後
連続鋳造用鋳型に供給する段階と、有して成ることを特
徴とする連続鋳造におけるパウダ−供給方法。
1. A continuous casting powder containing no C
A step of adding and kneading 10 to 10% by weight of an organic binder, kneading and compression-molding, and a step of melting the compression-molded powder and supplying it to a continuous casting mold. Powder supply method in continuous casting.
【請求項2】 連続鋳造用パウダ−に3〜10重量%の
有機質粘結剤を添加し混練した後圧縮成形する段階と、
前記圧縮成形したパウダ−を溶融した後1250℃以上
に保持する段階と、前記1250℃以上に保持した溶融
パウダ−を連続鋳造用鋳型に供給する段階と、を有して
成ることを特徴とする連続鋳造におけるパウダ−供給方
法。
2. A step of adding 3 to 10% by weight of an organic binder to a powder for continuous casting, kneading and then compression molding.
The method comprises the steps of: melting the compression-molded powder and maintaining the temperature at 1250 ° C. or higher after melting; and supplying the molten powder maintained at 1250 ° C. or higher to a continuous casting mold. Powder supply method in continuous casting.
【請求項3】 前記圧縮成形したパウダ−の嵩比重は
1.5以上である請求項1もしくは2に記載の連続鋳造
におけるパウダ−供給方法。
3. The powder supply method in continuous casting according to claim 1, wherein a bulk specific gravity of the compression-molded powder is 1.5 or more.
【請求項4】 前記添加する有機質粘結剤はフエノ−ル
系レジンである請求項1もしくは2に記載の連続鋳造に
おけるパウダ−供給方法。
4. The powder supply method in continuous casting according to claim 1, wherein the organic binder to be added is a phenolic resin.
JP03480993A 1993-01-29 1993-01-29 Powder supply method in continuous casting Expired - Fee Related JP3201670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03480993A JP3201670B2 (en) 1993-01-29 1993-01-29 Powder supply method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03480993A JP3201670B2 (en) 1993-01-29 1993-01-29 Powder supply method in continuous casting

Publications (2)

Publication Number Publication Date
JPH06226411A JPH06226411A (en) 1994-08-16
JP3201670B2 true JP3201670B2 (en) 2001-08-27

Family

ID=12424549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03480993A Expired - Fee Related JP3201670B2 (en) 1993-01-29 1993-01-29 Powder supply method in continuous casting

Country Status (1)

Country Link
JP (1) JP3201670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495505B1 (en) * 2002-10-22 2005-06-14 주식회사 경동보일러 Multi-Control Possible The Gas Burner
WO2007148939A1 (en) * 2006-06-22 2007-12-27 Posco Mold flux and continuous casting method using the same

Also Published As

Publication number Publication date
JPH06226411A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US4248630A (en) Method of adding alloy additions in melting aluminum base alloys for ingot casting
CN101209491A (en) Method for casting printing machine as-cast nodular iron roller body
JP4366015B2 (en) Refractory for casting rare earth alloy, method for producing the same, and method for casting rare earth alloy
JP3201670B2 (en) Powder supply method in continuous casting
CN107695311B (en) Input material and casting method using same
KR101224911B1 (en) Environment-friendly manufacturing method of ingot for hot dipped zinc-aluminium-magnesium alloy coating
IL22434A (en) Materials for treating molten ferrous metals to produce nodular iron
JPH0575803B2 (en)
US3642052A (en) Process of continuous casting of steel
JPH0679419A (en) Method for adding powder in continuous casting operation
KR100544422B1 (en) Method for Manufacturing Molten Steel
US4919187A (en) Method for making additions to molten alloys and bodies molded from alloying metals
US3340045A (en) Methods of slag and metal treatment with perlite
JP2975182B2 (en) Material for die casting of iron alloy containing carbon, method of preparing the same, and method of using the same
US4088176A (en) Method of making ferrotitanium alloy
US2229117A (en) Alloy
JP2000102846A (en) Mold powder for continuous casting
JP3869597B2 (en) Mold flux for continuous casting
JPS6040653A (en) Continuous casting method by vacuum melting
JPS5850172A (en) Melt casting method for copper alloy
US3225399A (en) Casting process using borax-silica slag
SU1125274A1 (en) Method for processing wastes of non-ferrous alloys
WO2004042090A1 (en) Inmould process for the spheroidization and inoculation treatment of cast sg iron
CN116638068A (en) Preparation method of long-service-life anode copper casting mold
JPH0985403A (en) Molding powder for starting continuous casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees