JP3199340B2 - Catalytic electrode - Google Patents

Catalytic electrode

Info

Publication number
JP3199340B2
JP3199340B2 JP32318793A JP32318793A JP3199340B2 JP 3199340 B2 JP3199340 B2 JP 3199340B2 JP 32318793 A JP32318793 A JP 32318793A JP 32318793 A JP32318793 A JP 32318793A JP 3199340 B2 JP3199340 B2 JP 3199340B2
Authority
JP
Japan
Prior art keywords
catalyst
electrode
carbon sheet
carbon
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32318793A
Other languages
Japanese (ja)
Other versions
JPH07150381A (en
Inventor
哲司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP32318793A priority Critical patent/JP3199340B2/en
Publication of JPH07150381A publication Critical patent/JPH07150381A/en
Application granted granted Critical
Publication of JP3199340B2 publication Critical patent/JP3199340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、隔膜電解法により水素
や塩素等のガスを製造する電解槽で用いられる触媒電極
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst electrode used in an electrolytic cell for producing a gas such as hydrogen or chlorine by a diaphragm electrolysis method.

【0002】[0002]

【従来の技術】従来、この種の電解槽の一つとして、薄
膜状の隔膜の両面に、電解液が流通可能な空隙を備えた
炭素繊維からなる板状電極を密着配置したものが用いら
れているが、電解時の電力消費量低減のために、電極に
触媒を担持することにより活性化過電圧を低下させるこ
とが行なわれている。このようなものの担持形態として
は電解液が流通可能な前記板状電極に触媒を直接担持す
る方法、(特公昭63−3591号公報)や薄板状のカ
ーボンシートに触媒を担持し、このシート状の触媒電極
を隔膜と板状電極との間に挾み込む方法 (特開昭63−
50490号公報)が知られている。
2. Description of the Related Art Heretofore, as one type of such an electrolytic cell, there has been used an electrolytic cell in which a plate-like electrode made of carbon fiber having a space through which an electrolytic solution can flow is closely attached to both surfaces of a thin film-like diaphragm. However, in order to reduce power consumption during electrolysis, an activation overvoltage is reduced by carrying a catalyst on an electrode. Examples of such a supporting form include a method in which a catalyst is directly supported on the plate-like electrode through which an electrolyte can flow, and a method in which the catalyst is supported on a thin carbon sheet. Method of sandwiching the catalyst electrode between the diaphragm and the plate electrode
No. 50490) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
電極では、板状電極に直接触媒を担持した場合、フェル
ト状の電極の内側まで触媒が浸透しているので、反応に
より発生したガスが電極内に留まり、発生したガスによ
り電解液の見かけの導電率が低下し電解液での電圧降下
が増大してしまった。この電圧降下は板状電極の厚さ方
向において、対極(つまり隔膜)から遠ざかるほど大と
なり、電極反応は隔膜の近傍において集中的に起こり、
隔膜から遠い部分では触媒が有効に利用されていなかっ
た。
However, in the conventional electrode, when the catalyst is directly supported on the plate-like electrode, the catalyst penetrates to the inside of the felt-like electrode, so that the gas generated by the reaction is in the electrode. The apparent gas conductivity decreased due to the generated gas, and the voltage drop in the electrolyte increased. This voltage drop increases in the thickness direction of the plate-like electrode as the distance from the counter electrode (that is, the diaphragm) increases, and the electrode reaction occurs intensively near the diaphragm,
The catalyst was not effectively used in the portion far from the diaphragm.

【0004】触媒として白金族金属等高価な触媒を用い
た場合、触媒が有効に利用されないのは大きな問題であ
るが、触媒を電極の隔膜に接する面近傍に選択的に担持
するのは煩雑な工程が必要となり製作費が大きくなると
いう問題があった。
When an expensive catalyst such as a platinum group metal is used as a catalyst, it is a major problem that the catalyst is not effectively used. However, it is complicated to selectively support the catalyst in the vicinity of the surface of the electrode in contact with the diaphragm. There is a problem that a process is required and the production cost increases.

【0005】また隔膜と板状電極との間に触媒を担持し
たカーボンシートを挾み込む方法も、炭素繊維から構成
されるカーボンシート内部に発生したガスが滞留し、同
じように電解液による電圧降下の増大、すなわち電解電
圧が増大し電力消費量が増大するという問題が生じてい
た。そこで、本発明は電極内のガス留りを低減すること
により電解電圧を低減し、さらに高価な触媒を有効利用
して触媒の使用量低減が可能な触媒電極を提供すること
を目的とする。
A method of sandwiching a carbon sheet carrying a catalyst between a diaphragm and a plate-like electrode also involves a method in which a gas generated inside a carbon sheet composed of carbon fibers stays and a voltage generated by an electrolytic solution is similarly increased. There has been a problem that the drop increases, that is, the electrolytic voltage increases and the power consumption increases. Accordingly, an object of the present invention is to provide a catalyst electrode capable of reducing an electrolytic voltage by reducing gas retention in the electrode and effectively using an expensive catalyst to reduce the amount of catalyst used.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明の触媒電極は、炭素繊維から構成され、かつ
微細な空隙を有するカーボンシートに触媒を担持した電
極において、前記カーボンシートが多数のスリット状の
切れ込みを有することを特徴とする。炭素繊維から構成
され、かつ微細な空隙を有するカーボンシートとして
は、カーボンフェルト及び炭素クロスなども使用するこ
とができる。またスリットとしては、直線状、下向き樹
枝状、その他の形状のものが用いられる。なお、本発明
の触媒電極は、イオン交換膜と電極の間に介挿して密着
させることにより、その効果が発揮できるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a catalyst electrode according to the present invention is an electrode comprising a carbon fiber and having a catalyst carried on a carbon sheet having fine voids. Characterized by having a slit-shaped notch. As a carbon sheet composed of carbon fibers and having fine voids, carbon felt, carbon cloth, and the like can also be used. Further, as the slit, a linear, downward dendritic, or other shape is used. The effect of the catalyst electrode of the present invention can be exerted by interposing it between the ion exchange membrane and the electrode and bringing the electrode into close contact therewith.

【0007】[0007]

【作用】上記手段においては、カーボンシートが反応層
として機能し、かつ電解により発生するガスがスリット
を介して放出されるため電解電圧を低減することができ
るとともに、担持した触媒をすべて有効に利用すること
ができる。
In the above means, the carbon sheet functions as a reaction layer, and the gas generated by the electrolysis is released through the slit, so that the electrolysis voltage can be reduced, and all the supported catalysts are effectively used. can do.

【0008】[0008]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。なお、本発明の触媒電極の性能評価に用い
た電解槽としては、電解槽をイオン交換膜で仕切り、イ
オン交換膜の片面にカーボンフェルトより成る陽極電極
を密着配置すると共に、イオン交換膜の残る片面に、触
媒を担持したカーボンシート(実施例では多数のスリッ
トを有するもの)を介挿してカーボンフェルトより成る
陰極電極を密着配置したものを用いた。
Embodiments of the present invention will be described below with reference to the drawings. As the electrolytic cell used for the performance evaluation of the catalyst electrode of the present invention, the electrolytic cell was partitioned by an ion-exchange membrane, and an anode electrode made of carbon felt was placed on one side of the ion-exchange membrane in close contact with the ion-exchange membrane. On one surface, a cathode sheet made of carbon felt was placed in close contact with a carbon sheet (having a large number of slits in this embodiment) supporting a catalyst.

【0009】ここで、図1に示すように、縦 250mm、横
200mmのカーボンシート2の周辺縦10mm横9mmを除く範
囲に、幅2mm、長さ 230mmの16本のスリット3を等間隔
で開けたスリット有りで厚さ 0.3mmのカーボンシート1
(実施例)及び縦 250mm、横200mmのスリット無しで厚
さ 0.3mmのカーボンシート (比較例1)、のそれぞれ
に、触媒として白金 (Pt) を0.56mg/cm2担持させ、実
施例及び比較例1用の触媒付きカーボンシートを作製し
た。触媒の担持は、塩化白金酸液に有機溶剤の希釈液
(本実施例では2−プロパノールを純水で希釈した液)
を加えた塩化白金酸希釈液を、上記各カーボンシートに
含浸担持させた後、水素還元を施して行った。
[0009] Here, as shown in FIG.
0.3mm thick carbon sheet 1 with 16 slits 2 of width 2mm and length 230mm at equal intervals in the area excluding the peripheral 10mm 9mm horizontal 9mm of 200mm carbon sheet 2
(Example) and 0.56 mg / cm 2 of platinum (Pt) as a catalyst were supported on each of a carbon sheet (comparative example 1) having a thickness of 250 mm and a width of 200 mm without slits and a thickness of 0.3 mm (Comparative Example 1). A catalyst-attached carbon sheet for Example 1 was produced. The catalyst is supported by diluting an organic solvent with a chloroplatinic acid solution.
(In this embodiment, 2-propanol is diluted with pure water)
Each of the carbon sheets was impregnated and supported with the chloroplatinic acid diluted solution to which was added, and then subjected to hydrogen reduction.

【0010】そして、触媒付きスリット有りカーボンシ
ート及びスリット無しカーボンシート(共に0.56mg/cm2
Pt担持) を、先に述べた電解槽に使用し、下記条件で
同時に電解実験したところ、電解電圧の経時変化は、図
3に示すようになった。 (電解条件) 温度 :60℃ 陽極液 : 1.0mol/l FeSO4 、 0.5mol/l H2 SO
4 水溶液 陰極液 : 0.5mol/l H2 SO4 水溶液 電解方法 :定電流電解50、 100A (100 、200mA/cm2
相当) 陽極及び陰極 :厚さ5mmのカーボンフェルト
[0010] A carbon sheet with a catalyst and a carbon sheet without a slit (both 0.56 mg / cm 2
(Pt supported) was used in the above-mentioned electrolytic cell, and an electrolysis experiment was conducted simultaneously under the following conditions. As a result, the change with time of the electrolytic voltage was as shown in FIG. (Electrolysis conditions) Temperature: 60 ° C Anolyte: 1.0 mol / l FeSO 4 , 0.5 mol / l H 2 SO
4 aqueous solution Catholyte: 0.5 mol / l H 2 SO 4 aqueous solution Electrolysis method: constant current electrolysis 50, 100 A (100, 200 mA / cm 2
Anode and cathode: 5mm thick carbon felt

【0011】図3より100mA/cm2 で電解したときは、電
解電圧にはほとんど差が認められなかったが、200mA/cm
2 の電流密度では、スリット有りカーボンシートの方が
スリット無しカーボンシートより電解電圧が0.07Vほど
低くなっている。これは触媒電極の近傍に滞留するガス
がスリットから有効に排出されるためであり、ガス発生
の多い高電流密度において、その効果が明らかである。
FIG. 3 shows that when electrolysis was carried out at 100 mA / cm 2 , there was almost no difference in the electrolysis voltage.
At the current density of 2, the electrolysis voltage of the carbon sheet with slits is about 0.07 V lower than that of the carbon sheet without slits. This is because the gas staying in the vicinity of the catalyst electrode is effectively exhausted from the slit, and the effect is apparent at a high current density where gas generation is large.

【0012】又、上記と同じ触媒付きスリット有りカー
ボンシート(0.56mg/cm2 Pt担持)(実施例)及び0.56m
g/cm2Pt担持(比較例2)と1.5mg/cm2 Pt担持(比
較例3)の触媒付きカーボンフェルトを電解槽に使用
し、上記と同じ条件(ただし電流密度は 100A(200mA/c
m2相当) のみ)で電解したところ、電解電圧の経時変化
は図4に示すようになった。
Further, the same carbon sheet with a slit having a catalyst as described above (supporting 0.56 mg / cm 2 Pt) (Example) and 0.56 m
g / cm 2 Pt-supported (Comparative Example 2) and 1.5 mg / cm 2 Pt-supported (Comparative Example 3) carbon felts with catalyst were used for the electrolytic cell under the same conditions as above (except that the current density was 100 A (200 mA / c).
(equivalent to m 2 )), and the change with time in the electrolysis voltage was as shown in FIG.

【0013】図4よりスリット有り触媒担持カーボンシ
ートでは、触媒担持カーボンフェルトに比べ 1/3の白金
量で同等の性能が得られており、触媒である白金が有効
に利用されていることがわかる。
FIG. 4 shows that the performance of the catalyst-carrying carbon sheet with slits is equivalent to that of the catalyst-carrying carbon felt with a platinum amount of 1/3 of that of the catalyst-carrying carbon felt, and that the platinum catalyst is effectively used. .

【0014】次に図2に示すように、縦 250mm、横 200
mmのカーボンシート2の周辺20mmを除く範囲に直径5mm
の空孔(パンチ)5を10mm間隔で縦17列横22列合計 374
個開けた、実施例のスリット有りカーボンシートと同様
の触媒有効面積を有する、空孔有りカーボンシート4を
作製し、前述と同様の方法で白金(Pt)を0.56mg/cm2
担持した触媒電極を比較例4の電極として用意した。触
媒付きスリット有りカーボンシート(0.56mg/cm2 Pt担
持) (実施例)及び0.56mg/cm2Pt担持の触媒付き空孔
有りで厚さ 0.3mmのカーボンシート (比較例4)を電解
槽に使用し、上記と同じ条件(ただし電流密度は 100A
(200mA/cm2相当) のみ)で同時に電解実験したところ、
電解電圧の経時変化は、図5に示すようになった。図5
からスリットの方が、空孔より0.04乃至0.07V電解電圧
が低くなっており、スリットの方が効率のよい反応を得
られることがわかる。 これは、スリットは、ガスが上
方へ抜け易いが、空孔は、それぞれの孔の上方にガス留
りが生じて抜け悪いためと考えられる。
Next, as shown in FIG.
5mm in diameter excluding 20mm around carbon sheet 2mm
Of holes (punches) 5 at intervals of 10 mm in 17 rows and 22 rows total 374
A holed carbon sheet 4 having the same catalytic effective area as that of the slitted carbon sheet of the example was prepared, and 0.56 mg / cm 2 of platinum (Pt) was prepared in the same manner as described above.
The supported catalyst electrode was prepared as an electrode of Comparative Example 4. A carbon sheet with a slit with a catalyst (supporting 0.56 mg / cm 2 Pt) (Example) and a carbon sheet with a pore with a catalyst supporting 0.56 mg / cm 2 Pt and having a thickness of 0.3 mm (Comparative Example 4) were used as electrolytic cells. Use the same conditions as above (except that the current density is 100A
(200mA / cm 2 equivalent) only)
The change with time of the electrolysis voltage was as shown in FIG. FIG.
This indicates that the electrolysis voltage of the slit is 0.04 to 0.07 V lower than that of the hole, and that the slit can obtain a more efficient reaction. This is presumably because the gas easily escapes upward through the slits, but the holes are difficult to escape due to gas trapping above the respective holes.

【0015】以上のことから、本発明のスリット有りカ
ーボンシート電極は、触媒担持量低減及び電力消費量低
減の面でより効果的であることがわかる。
From the above, it can be seen that the carbon sheet electrode with slits of the present invention is more effective in reducing the amount of supported catalyst and the power consumption.

【0016】なお、上記実施例においては、触媒として
白金を使用する場合について述べたが、これに限定され
るものではなく、例えば金、銀、パラジウム又はロジウ
ム等の単体や合金、酸化物等を触媒として使用してもよ
い。又、スリットは、上下方向の直線状のものに限ら
ず、下向きの樹枝状、その他のガスの抜け易い形状のも
のとしてもよい。
In the above embodiment, the case where platinum is used as the catalyst has been described. However, the present invention is not limited to this case. For example, a simple substance such as gold, silver, palladium or rhodium, an alloy, an oxide or the like may be used. It may be used as a catalyst. Further, the slit is not limited to a linear shape in the up-down direction, but may be a tree-like shape facing downward, or a shape in which gas can easily escape.

【0017】[0017]

【発明の効果】以上説明したように、本発明の触媒電極
によれば、カーボンシートが反応層として機能し、かつ
電解により発生するガスがスリットを介して放出される
ので、電極近傍でのガス滞留を低減することができ、従
来に比して触媒量を大幅に低減し、かつ低い電解電圧で
電気分解でき、ひいては電力消費量を低減させることが
できる。
As described above, according to the catalyst electrode of the present invention, the carbon sheet functions as a reaction layer, and the gas generated by electrolysis is released through the slit. The retention can be reduced, the amount of the catalyst can be significantly reduced as compared with the related art, and the electrolysis can be performed at a low electrolytic voltage, and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いる触媒付きスリット有り
カーボンシートの正面図である。
FIG. 1 is a front view of a slit-equipped carbon sheet with a catalyst used in an embodiment of the present invention.

【図2】比較例4に用いた空孔有りカーボンシートの正
面図である。
FIG. 2 is a front view of a carbon sheet with holes used in Comparative Example 4.

【図3】触媒付きスリット有りとスリット無しのカーボ
ンシートを用いた電解実験による電解電圧の経時変化を
示す説明図である。
FIG. 3 is an explanatory view showing a change over time of an electrolysis voltage in an electrolysis experiment using a carbon sheet with and without a slit with a catalyst.

【図4】触媒付きスリット有りカーボンシートと従来の
触媒付きカーボンフェルトを用いた電解実験による電解
電圧の経時変化を示す説明図である。
FIG. 4 is an explanatory diagram showing a change over time of an electrolysis voltage in an electrolysis experiment using a carbon sheet with a slit with a catalyst and a conventional carbon felt with a catalyst.

【図5】触媒付きスリット有りカーボンシートと触媒付
き空孔有りカーボンシートを用いた電解実験による電解
電圧の経時変化を示す説明図である。
FIG. 5 is an explanatory diagram showing a change over time of an electrolysis voltage in an electrolysis experiment using a carbon sheet with a slit with a catalyst and a carbon sheet with a hole with a catalyst.

【符号の説明】[Explanation of symbols]

1 触媒付きスリット有りカーボンシート 2 カーボンシート 3 スリット 4 触媒付き空孔有りカーボンシート 5 空孔 DESCRIPTION OF SYMBOLS 1 Carbon sheet with a slit with a catalyst 2 Carbon sheet 3 Slit 4 Carbon sheet with a hole with a catalyst 5 Hole

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維から構成され、かつ微細な空隙
を有するカーボンシートに触媒を担持した電極におい
て、前記カーボンシートが多数のスリット状の切れ込み
を有することを特徴とする触媒電極。
1. An electrode comprising a carbon sheet made of carbon fibers and having a catalyst carried on a carbon sheet having fine voids, wherein the carbon sheet has a large number of slit-shaped cuts.
JP32318793A 1993-11-29 1993-11-29 Catalytic electrode Expired - Fee Related JP3199340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32318793A JP3199340B2 (en) 1993-11-29 1993-11-29 Catalytic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32318793A JP3199340B2 (en) 1993-11-29 1993-11-29 Catalytic electrode

Publications (2)

Publication Number Publication Date
JPH07150381A JPH07150381A (en) 1995-06-13
JP3199340B2 true JP3199340B2 (en) 2001-08-20

Family

ID=18152042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32318793A Expired - Fee Related JP3199340B2 (en) 1993-11-29 1993-11-29 Catalytic electrode

Country Status (1)

Country Link
JP (1) JP3199340B2 (en)

Also Published As

Publication number Publication date
JPH07150381A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
EP0026994B1 (en) Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
KR101132065B1 (en) Structures for gas diffusion materials and method for their fabrication
Hara et al. Electrocatalytic formation of CH 4 from CO 2 on a Pt gas diffusion electrode
US20220140354A1 (en) Fuel cell electrode with catalysts grown in situ on ordered structure microporous layer and method for preparing membrane electrode assembly
Watanabe et al. Applications of the gas diffusion electrode to a backward feed and exhaust (BFE) type methanol anode
US20100252422A1 (en) Carbon fiber-electrocatalysts for the oxidation of ammonia and ethanol in alkaline media and their application to hydrogen production, fuel cells, and purification processes
JP5127225B2 (en) Electrochemical cell
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
Sáez et al. Electrocatalytic hydrogenation of acetophenone using a polymer electrolyte membrane electrochemical reactor
KR100908797B1 (en) Rhodium electrode catalyst and preparation method thereof
WO2010150058A1 (en) Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same
JP7072161B2 (en) Sith-Alkene manufacturing equipment and manufacturing method
EP1929572B1 (en) Methanol fuel cells
Biswas et al. Electrocatalytic activities of graphite-supported platinum electrodes for methanol electrooxidation
JP4190026B2 (en) Gas diffusion electrode
Lu et al. Sulfur dioxide depolarized electrolysis for hydrogen production: development status
JP2005516120A (en) Electrochemical half-cell
JP3092771B2 (en) Electrolytic cell
CN116575045B (en) MEA water splitting device applied to water splitting catalysis and preparation method thereof
JP2789288B2 (en) Electrode
JPS5943885A (en) Electrode device for gas generation electrolytic cell and vertical plate electrode therefor
JP3199340B2 (en) Catalytic electrode
JP2004502284A (en) Electrochemical battery
Ogura et al. Electroreduction of CO2 to C2 and C3 compounds on Bis (4, 5-dihydroxybenzene-1, 3-disulphonato) ferrate (II)-fixed polyaniline| Prussian Blue-modified electrode in aqueous solutions
JP4519950B2 (en) Electrode-electrolyte-unit manufacturing method by catalyst electrolyte deposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees