JP3198474B2 - Method for evaluating laminated structure of semiconductor substrate - Google Patents

Method for evaluating laminated structure of semiconductor substrate

Info

Publication number
JP3198474B2
JP3198474B2 JP32034493A JP32034493A JP3198474B2 JP 3198474 B2 JP3198474 B2 JP 3198474B2 JP 32034493 A JP32034493 A JP 32034493A JP 32034493 A JP32034493 A JP 32034493A JP 3198474 B2 JP3198474 B2 JP 3198474B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
injection
energy
electrons
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32034493A
Other languages
Japanese (ja)
Other versions
JPH07174700A (en
Inventor
達 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32034493A priority Critical patent/JP3198474B2/en
Priority to US08/359,193 priority patent/US5559330A/en
Publication of JPH07174700A publication Critical patent/JPH07174700A/en
Application granted granted Critical
Publication of JP3198474B2 publication Critical patent/JP3198474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、探針から半導体基板へ
注入した電子により、前記半導体基板の表面下深部に埋
設された積層構造内の極微小領域で生じた発光を測定
し、あるいは前記電子の注入位置を走査しながら、各電
子注入位置における電子の注入エネルギーと発光量を検
出することにより、量子構造の厚み分布をナノメータ・
オーダの高空間分解能で測定することを可能にする、半
導体基板の積層構造評価方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring light emission generated in an extremely small area in a laminated structure buried deep under the surface of a semiconductor substrate by electrons injected from a probe into the semiconductor substrate. By detecting the electron injection energy and the light emission amount at each electron injection position while scanning the electron injection position, the thickness distribution of the quantum structure can be measured in nanometers.
The present invention relates to a method for evaluating a laminated structure of a semiconductor substrate, which enables measurement with a high spatial resolution on the order.

【0002】[0002]

【従来の技術】近年、半導体結晶の成長・加工技術の進
展により電子波長サイズの積層構造(=量子構造)が作
製可能になってきている。量子構造内では、電子は顕著
な量子効果を発現し、この効果を制御・利用することに
より新しい機能を持つデバイス(=量子デバイス)が実
現する可能性がある。
2. Description of the Related Art In recent years, with the progress of semiconductor crystal growth and processing techniques, it has become possible to produce a laminated structure (= quantum structure) having an electron wavelength size. In a quantum structure, electrons exhibit a remarkable quantum effect, and a device having a new function (= quantum device) may be realized by controlling and using this effect.

【0003】量子デバイスでは電子波長サイズと同程度
のナノメートル・オーダの構造ゆらぎがデバイス特性に
大きく影響するため、デバイス特性の向上には、量子構
造をナノメートル・オーダの空間分解能で評価すること
が必要となる。
In quantum devices, structural fluctuations on the order of nanometers, which are about the same as the electron wavelength size, greatly affect device characteristics. To improve device characteristics, a quantum structure must be evaluated with a spatial resolution on the order of nanometers. Is required.

【0004】従来の量子構造の評価手段としては、外部
から光または電子を量子構造内に注入し、生成した励起
子が再結合する際の発光(=励起子発光)を利用するも
のがある。
As a conventional means for evaluating a quantum structure, there is a method in which light or electrons are injected into the quantum structure from the outside, and light emission (= exciton light emission) generated when excitons generated recombine is used.

【0005】励起子は電子とほぼ同じ10nm前後のサ
イズであり、また発光エネルギーが量子構造のわずかな
変化に対して敏感に変化するので、励起子発光の測定に
より量子構造の様子を極めて高い精度で知ることができ
る。
Since excitons have a size of about 10 nm, which is almost the same as an electron, and the emission energy changes sensitively to a slight change in the quantum structure, the state of the quantum structure can be measured with extremely high precision by measuring the exciton emission. Can be found at

【0006】実際の測定方法としては、電子・正孔対を
生成させる手段として光を用いるフォトルミネッセンス
(以下、「PL」と略記する)と高エネルギー電子を用
いるカソードルミネッセンス(以下、「CL」と略記す
る)がある。
As actual measuring methods, photoluminescence (hereinafter abbreviated as “PL”) using light as means for generating electron-hole pairs and cathodoluminescence (hereinafter abbreviated as “CL”) using high-energy electrons are used. (Abbreviated).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
PL及びCLにおいては、以下に述べるように励起子拡
散長とプローブ径(=励起ビーム径)の問題があり、空
間分解能を劣化させている。
However, these PLs and CLs have problems of exciton diffusion length and probe diameter (= excitation beam diameter) as described below, and deteriorate spatial resolution.

【0008】まず、励起子拡散の影響について述べる。
PL,CLいずれの場合も、励起子は生成してから発光
するまでの時間内に、生成した場所から遠方へ拡散す
る。拡散する範囲はサブミクロン程度以上の広がりを持
ち、PL,CLの空間分解能の向上を困難にしている。
First, the effect of exciton diffusion will be described.
In both cases of the PL and the CL, the exciton diffuses far from the place where the exciton is generated within a period from generation to emission of light. The range of diffusion has an extent of submicron or more, making it difficult to improve the spatial resolution of PL and CL.

【0009】また、励起子は生成した場所よりもエネル
ギーが低い(=厚い量子構造)領域へ拡散する特性があ
るため、厚い量子構造からの発光が必然的に強くなり、
発光量分布が必ずしも厚み分布を正確に反映しない問題
があった。
In addition, since excitons have the property of diffusing into a region having a lower energy (= thick quantum structure) than the place where they are generated, light emission from a thick quantum structure inevitably becomes stronger.
There is a problem that the light emission amount distribution does not always accurately reflect the thickness distribution.

【0010】次に励起ビーム径の影響について述べる。
PLでは励起光として通常、可視光あるいはそれよりも
長波長の赤外光を用いるが、これらの光の波長は1ミク
ロン程度である。
Next, the effect of the excitation beam diameter will be described.
In the PL, visible light or infrared light having a wavelength longer than that is usually used as the excitation light, and the wavelength of these lights is about 1 micron.

【0011】励起光のスポットサイズは光の波長より小
さくできず、また他の装置構成上の要因で生じる広がり
も考慮すると、実際にはビーム径をミクロン・オーダ以
下にすることは困難である。
In consideration of the fact that the spot size of the excitation light cannot be smaller than the wavelength of the light, and in consideration of the spread caused by other factors in the configuration of the apparatus, it is actually difficult to reduce the beam diameter to the order of microns or less.

【0012】また、CLでは、電子エネルギーが高いた
めに試料内で広範囲に散乱され、散乱後の電子も電子・
正孔対を生成するので、例え電子ビーム径を細くして
も、電子・正孔対を生成する領域(=生成体積)を小さ
くすることは難しい。
In the CL, since the electron energy is high, the electrons are scattered over a wide range in the sample, and the electrons after the scattering are electrons / electrons.
Since a hole pair is generated, it is difficult to reduce a region (= generation volume) for generating an electron-hole pair even if the electron beam diameter is reduced.

【0013】このように、これらの手法では、励起子の
拡散長や励起ビーム径が大きいので、空間分解能をサブ
ミクロン・オーダより改善することが困難であり、ナノ
メータ・オーダの極微小領域の測定には適用できなかっ
た。
As described above, in these methods, since the diffusion length of the exciton and the diameter of the excitation beam are large, it is difficult to improve the spatial resolution from the submicron order, and the measurement of an extremely small area on the order of nanometers is performed. Could not be applied to

【0014】なお、ナノメータ・オーダの高分解空間能
を有する光学的評価手段として、光STM及びフォトン
走査顕微鏡があるが、いずれの方法も測定領域は試料表
面に限定され、表面下深部に埋設された構造の評価は、
原理的に不可能である。
Optical STM and photon scanning microscopes are used as optical evaluation means having a high resolution spatial capability on the order of nanometers. In each case, the measurement area is limited to the sample surface and is buried deep under the surface. The evaluation of the structure
In principle impossible.

【0015】以上、述べたように、表面下深部に埋設さ
れた量子構造の厚み分(=閉じ込めエネルギー)をナノ
メータ・オーダの空間分解能で測定可能な装置は、現在
のところ存在しない。
As described above, at present, there is no device capable of measuring the thickness (= confinement energy) of a quantum structure buried deep under the surface with a spatial resolution of the order of nanometers.

【0016】ここにおいて本発明は、ナノメートル・オ
ーダの超高分解能で量子構造を測定可能とする半導体基
板の積層構造評価方法を提供せんとするものである。
It is an object of the present invention to provide a method for evaluating a laminated structure of a semiconductor substrate, which enables a quantum structure to be measured with ultra-high resolution on the order of nanometers.

【0017】[0017]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法を採用すること
により達成される。すなわち、本発明方法の第1の特徴
は、まず、積層構造を有する半導体基板にトンネル電流
を利用してエネルギーの異なる電子を注入し、次いで、
前記半導体基板に注入された電流値を注入エネルギー毎
に測定し、引続き、エネルギーの異なる電子を注入時に
得られる前記半導体基板からの発光量を注入エネルギー
毎に測定し、さらに、注入エネルギー毎に得られた発光
量を半導体基板に注入された電流値で除算することによ
り、異なる深さにおかれた量子構造からの規格化された
発光強度を測定してなる半導体基板の積層構造評価方法
である。
The above object can be attained by adopting the following novel characteristic construction method of the present invention. That is, a first feature of the method of the present invention is that, first, electrons having different energies are injected into a semiconductor substrate having a stacked structure by using a tunnel current,
The current value injected into the semiconductor substrate is measured for each injection energy, and subsequently, the amount of light emitted from the semiconductor substrate obtained at the time of injection of electrons having different energies is measured for each injection energy, and further obtained for each injection energy. This is a method for evaluating a laminated structure of a semiconductor substrate, in which a normalized luminescence intensity from a quantum structure placed at a different depth is measured by dividing an amount of emitted light by a current value injected into the semiconductor substrate. .

【0018】本発明方法の第2の特徴は、前記本発明方
法の第1の特徴における半導体基板にエネルギーの異な
る電子の注入が、まず、当該注入点を制御しながら変化
させ、次いで、各注入点での発光量を注入エネルギー毎
に測定して半導体基板に注入された電流値で除算するこ
とにより異なる深さにおかれた量子構造からの規格化さ
れた発光強度を測定し、引続き、当該規格化された発光
強度を各注入点の位置毎に対応させて表示することによ
り半導体基板の量子構造の厚みの空間分布を測定してな
る半導体基板の積層構造評価方法である。
According to a second feature of the method of the present invention, the injection of electrons having different energies into the semiconductor substrate in the first feature of the method of the present invention is first changed while controlling the injection point. The normalized luminescence intensity from the quantum structures placed at different depths is measured by measuring the luminescence amount at a point for each injection energy and dividing by the current value injected into the semiconductor substrate, and subsequently, This is a method for evaluating a laminated structure of a semiconductor substrate, in which a standardized emission intensity is displayed corresponding to each injection point position to measure a spatial distribution of a thickness of a quantum structure of the semiconductor substrate.

【0019】[0019]

【作用】本発明は、前記した新規な手法を講ずるので、
所定のエネルギーで電子を探針から試料内に注入し、注
入電流と、試料表面下深部に埋設された量子構造に達し
た電子により生じた発光の光量またはエネルギーを測定
することにより、当該量子構造の厚みをナノメートル・
オーダの超高空間分解能で測定することを可能とする。
According to the present invention, the novel method described above is employed.
Electrons are injected into the sample from the probe with a predetermined energy, and the injection current and the quantity or energy of light emitted by the electrons reaching the quantum structure buried deep below the surface of the sample are measured. Thickness of nanometer
It is possible to measure with ultra high spatial resolution of the order.

【0020】[0020]

【実施例】(本発明方法で用いる装置) 本発明方法を説明する前に、本発明方法にて用いる積層
構造評価装置の一例を、量子構造の中の井戸構造を評価
する場合について図面を参照して説明する。図1は積層
構造評価装置の概略構成を示す図である。図中、Aは積
層構造評価装置、Pは測定点、1は探針、2はトンネル
電流、3はトンネル電流検出器、4は可変バイアス電
源、5は空間、6は試料、6aは試料表面、7は試料6
に内在し上下障壁層7aと当該上下障壁層7aに挟まれ
た中間井戸層7bからなるサンドイッチ状の量子構造、
8は電子・正孔対の再結合により生成した発光、9は試
料6内から外部に放出される発光8を受光する分光器及
び光電変換器等からなる光検出器、10はトンネル電流
検出器3及び光検出器9からの出力測定信号S1,S2
を処理・表示及び記録する信号処理装置、11は例えば
ピエゾ素子等を用いた探針駆動機構、12は信号処理装
置10からの動作指令信号S3を受け探針駆動機構11
を制御する制御操作信号S4を発する制御装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Apparatus used in the method of the present invention) Before describing the method of the present invention, an example of a laminated structure evaluation apparatus used in the method of the present invention will be described with reference to the drawings for the case of evaluating a well structure in a quantum structure. I will explain. FIG. 1 is a diagram showing a schematic configuration of a laminated structure evaluation apparatus. In the figure, A is a laminated structure evaluation device, P is a measurement point, 1 is a probe, 2 is a tunnel current, 3 is a tunnel current detector, 4 is a variable bias power supply, 5 is a space, 6 is a sample, and 6a is a sample surface. , 7 is sample 6
, A sandwich-like quantum structure comprising upper and lower barrier layers 7a and an intermediate well layer 7b sandwiched between the upper and lower barrier layers 7a;
Reference numeral 8 denotes light emission generated by recombination of electron-hole pairs, 9 denotes a photodetector including a spectroscope and a photoelectric converter for receiving light emission 8 emitted from the inside of the sample 6 to the outside, and 10 denotes a tunnel current detector. 3 and output measurement signals S1 and S2 from the photodetector 9.
, A probe driving mechanism using, for example, a piezo element, and 12, a probe driving mechanism 11 receiving an operation command signal S3 from the signal processing apparatus 10.
Is a control device that issues a control operation signal S4 for controlling the control operation.

【0021】次に積層構造評価装置Aの動作原理につき
説明する。まず、探針1を試料6表面6aの極く近傍に
設置し、探針1と試料6表面6aとの間に探針1が試料
6表面6aに対して正電位となるように可変バイアス電
源4によりバイアス電圧を加える。
Next, the operation principle of the laminated structure evaluation apparatus A will be described. First, the probe 1 is placed very close to the surface 6a of the sample 6, and a variable bias power supply is provided between the probe 1 and the surface 6a of the sample 6 so that the probe 1 has a positive potential with respect to the surface 6a of the sample 6. 4 applies a bias voltage.

【0022】バイアス電圧を調節して、注入エネルギー
を障壁層7aのポテンシャル・エネルギーより低い範囲
内で設定する。これにより探針1先端から試料6表面6
aに向かって、空間5を通してトンネル電流2が放射さ
れる。
The implantation energy is set within a range lower than the potential energy of the barrier layer 7a by adjusting the bias voltage. Thereby, the surface of the sample 6 from the tip of the probe 1
A tunnel current 2 is emitted through the space 5 toward a.

【0023】バイアス電圧で定められた注入エネルギー
を得て試料6内に注入されたトンネル電流2の多くは試
料6内である程度の距離をエネルギーを失うことなく直
進する。
Most of the tunnel current 2 injected into the sample 6 by obtaining the injection energy determined by the bias voltage travels a certain distance in the sample 6 without losing energy.

【0024】この、固体内でエネルギーを失うことなく
移動する電子を、「弾道電子」と呼ぶ。また、電子がエ
ネルギーを失うことなく進む距離の平均値を、「平均自
由行程」と呼ぶ。
The electrons that move in the solid without losing energy are called "ballistic electrons". The average value of the distance that the electron travels without losing energy is referred to as “mean free path”.

【0025】試料6の表面6aから平均自由行程内に量
子構造7があれば、弾道電子は量子構造7に注入エネル
ギーを保持したまま到達する。量子構造7に弾道電子と
共鳴するエネルギー準位がある時には、発光強度が増大
する。
If the quantum structure 7 exists within the mean free path from the surface 6a of the sample 6, the ballistic electrons reach the quantum structure 7 while maintaining the injected energy. When the quantum structure 7 has an energy level that resonates with a ballistic electron, the emission intensity increases.

【0026】文献[L. D. Bell and W. J. Kaiser, Phy
s. Rev. Let. 61, 2368 (1988)]によれば、ポテンシャ
ルが変化する領域(以下、「ポテンシャル境界」とす
る)では進行方向がポテンシャル境界に対して垂直から
一定角度以上はずれた電子はポテンシャル境界を通過で
きないので、ポテンシャル領域を透過できる電子はそれ
以前に散乱を受けていない弾道電子であると考えて良
い。ポテンシャル境界を透過した弾道電子の横方向広が
りは極めて狭く、ナノメートル・オーダまで抑えられ
る。
Reference [LD Bell and WJ Kaiser, Phy
According to s. Rev. Let. 61, 2368 (1988)], in a region where the potential changes (hereinafter, referred to as a “potential boundary”), an electron whose traveling direction deviates from the vertical by a certain angle with respect to the potential boundary is Since the electrons cannot pass through the potential boundary, electrons that can pass through the potential region can be considered to be ballistic electrons that have not been scattered before. The lateral spread of ballistic electrons that have passed through the potential boundary is extremely narrow, and can be suppressed to the order of nanometers.

【0027】積層構造評価装置Aにおいては、障壁層7
a(ポテンシャル境界とみなせる)を透過し量子構造7
の井戸層7bに達した弾道電子のエネルギーが電子・正
孔対のエネルギーに一致する場合には、多数の電子・正
孔対が生成される。電子・正孔対が生成する領域の大き
さは、弾道電子ビームの直径程度のナノメートル・オー
ダであり、極めて狭い。
In the laminated structure evaluation apparatus A, the barrier layer 7
a (which can be regarded as a potential boundary) and the quantum structure 7
When the energy of the ballistic electrons reaching the well layer 7b of the first layer coincides with the energy of the electron-hole pairs, a large number of electron-hole pairs are generated. The size of the region where the electron-hole pairs are generated is extremely narrow, on the order of nanometers, which is about the diameter of a ballistic electron beam.

【0028】生成した電子・正孔対は、励起子を形成
後、再結合して発光する。発光8量は量子構造7の井戸
層7bに達した弾道電子が創生した電子・正孔対の個数
に比例する。発光8量と弾道電子エネルギーとの関係を
測定することにより量子構造7の井戸層7bの厚みを測
定することができる。
The generated electron-hole pairs recombine after forming excitons and emit light. The amount of light emission 8 is proportional to the number of electron-hole pairs created by the ballistic electrons reaching the well layer 7b of the quantum structure 7. The thickness of the well layer 7b of the quantum structure 7 can be measured by measuring the relationship between the amount of emitted light 8 and the ballistic electron energy.

【0029】ところで、トンネル電流2は試料6表面6
aの状態に極めて敏感であり、表面状態のわずかな変化
でトンネル電流2が大きく変化する。この変化は測定対
象たる試料6の量子構造7とは無関係であり、結果的に
測定誤差となるので、トンネル電流2変動の影響を取り
除くために、信号処理装置10において発光8量をトン
ネル電流2で規格化(単位トンネル電流あたりの発光量
に換算)する。この値を、以下本願においては、「規格
化した発光強度」と呼ぶ。
Incidentally, the tunnel current 2 is applied to the surface 6 of the sample 6.
It is extremely sensitive to the state of a, and a slight change in the surface state greatly changes the tunnel current 2. This change is irrelevant to the quantum structure 7 of the sample 6 to be measured, and results in a measurement error. Therefore, in order to remove the influence of the tunnel current 2 fluctuation, the signal processor 10 reduces the amount of light emission 8 by the tunnel current 2. Is standardized (converted to the amount of light emission per unit tunnel current). This value is hereinafter referred to as “normalized light emission intensity” in the present application.

【0030】積層構造評価装置Aにおいても、電子・正
孔対は発光消滅するまでに、従来のPLやCLで生じる
のと同様に、量子構造7内を拡散する。しかし、積層構
造評価装置Aでは、従来のCLのような電子・正孔対が
拡散した後に発光した場所のエネルギーではなく、電子
・正孔対が生成した場所のエネルギーを測定しているの
で、電子・正孔対が生成する位置の量子構造7の情報を
拡散長とは無関係に測定することが可能である。
Also in the laminated structure evaluation apparatus A, the electron-hole pairs are diffused in the quantum structure 7 until the light emission disappears in the same manner as in the conventional PL or CL. However, the laminated structure evaluation apparatus A measures the energy of the place where the electron-hole pair is generated, not the energy of the place where light is emitted after the diffusion of the electron-hole pair like the conventional CL. It is possible to measure the information of the quantum structure 7 at the position where the electron-hole pair is generated irrespective of the diffusion length.

【0031】電子・正孔対が生成する位置の広がりは、
ほぼ弾道電子ビームの直径程度であり、これはナノメー
トル・オーダであって、従来のPLやCLと比較して著
しく狭い。すなわち、積層構造評価装置Aでは、電子・
正孔対等の拡散の影響を排除でき、ビーム径をナノメー
トル・サイズにできることから測定の最終的な空間分解
能をナノメートル・オーダまで高めることが可能であ
る。
The spread of the positions where the electron-hole pairs are generated is as follows.
It is about the diameter of a ballistic electron beam, which is on the order of nanometers, and is significantly narrower than conventional PLs and CLs. That is, in the laminated structure evaluation apparatus A,
Since the influence of diffusion such as hole pairs can be eliminated and the beam diameter can be made nanometer size, it is possible to increase the final spatial resolution of the measurement to the order of nanometers.

【0032】(方法例) 次に、本発明の方法例につきその実行手順を述べる。ま
ず、量子構造7中の井戸層7bの厚みを求める手順を述
べる。積層構造の試料6上の測定点Pに探針1を位置決
めし、試料6外に放出されて来る発光8を検出できるよ
うに分光器等の光検出器9を設定する。次いで、電子の
注入エネルギーを可変バイアス電源4によりバイアス電
圧を制御して変化させ、発光8の量と注入トンネル電流
2を測定し、信号処理装置10で「規格化した発光強
度」を求める。
(Example of Method) Next, an execution procedure of an example of the method of the present invention will be described. First, a procedure for obtaining the thickness of the well layer 7b in the quantum structure 7 will be described. The probe 1 is positioned at the measurement point P on the sample 6 having a laminated structure, and the photodetector 9 such as a spectroscope is set so that the light emission 8 emitted outside the sample 6 can be detected. Next, the injection energy of electrons is changed by controlling the bias voltage by the variable bias power supply 4, the amount of light emission 8 and the injection tunnel current 2 are measured, and the “normalized light emission intensity” is obtained by the signal processing device 10.

【0033】以降、同様に、バイアス電圧を制御して注
入エネルギーを変化させながら、各注入エネルギーごと
に発光8量とトンネル電流2を測定し、「規格化した発
光強度」と注入エネルギーとの関係を求める。
Thereafter, similarly, while controlling the bias voltage to change the injection energy, the luminescence 8 and the tunnel current 2 are measured for each injection energy, and the relationship between the “normalized luminescence intensity” and the injection energy is measured. Ask for.

【0034】発光8量がピークとなるときの注入エネル
ギーが測定点Pにおける量子構造7の厚みを表すので、
これにより当該測定点Pにおける量子構造7の井戸層7
bの厚みが求められる。
Since the injection energy at the time when the amount of light emission 8 reaches a peak represents the thickness of the quantum structure 7 at the measurement point P,
Thereby, the well layer 7 of the quantum structure 7 at the measurement point P
The thickness of b is required.

【0035】ここで、量子構造7の井戸層7bの厚みの
空間分布を測定する場合について述べる。さらに、可変
バイアス電源4により探針1のバイアス電圧を制御し
て、測定対象の量子構造7の閉じ込めエネルギーに相当
する値に電子の注入エネルギーを設定する。引続き、こ
の注入エネルギーを保持したまま、信号処理装置10の
動作指令信号S3を受けた制御装置12の次の測定点P
のプロット制御操作信号S4の指示に従って探針1を試
料6上で探針駆動機構11により走査する。
Here, a case where the spatial distribution of the thickness of the well layer 7b of the quantum structure 7 is measured will be described. Further, the bias voltage of the probe 1 is controlled by the variable bias power supply 4 to set the electron injection energy to a value corresponding to the confinement energy of the quantum structure 7 to be measured. Subsequently, the next measurement point P of the control device 12 which has received the operation command signal S3 of the signal processing device 10 while holding the injection energy is maintained.
The probe 1 is scanned by the probe drive mechanism 11 on the sample 6 according to the instruction of the plot control operation signal S4.

【0036】その上、各測定点Pで発光8量とトンネル
電流2を測定し、発光量8をトンネル電流2で「規格化
した発光強度」を求める。加えて、この「規格化した発
光強度」をプロットした各測定点Pの位置に対応させて
表示すると、測定対象たる試料6の量子構造7の井戸層
7bの厚みの空間分布が最終的に得られる。
In addition, the amount of light emission 8 and the tunnel current 2 are measured at each measurement point P, and the “normalized light emission intensity” of the light emission amount 8 is obtained using the tunnel current 2. In addition, when this "normalized emission intensity" is displayed in correspondence with the position of each measurement point P plotted, the spatial distribution of the thickness of the well layer 7b of the quantum structure 7 of the sample 6 to be measured is finally obtained. Can be

【0037】以上の実施例においては、量子井戸構造を
持った半導体基板の評価に関して説明を行ったが、他の
量子構造、例えば、量子細線構造、量子箱構造等の評価
に関しても同様に本願の方法例を用いて評価を行えば、
従来よりも数段優れた精度で評価を行えることはいうま
でもない。
In the above embodiments, description has been made regarding the evaluation of a semiconductor substrate having a quantum well structure. However, evaluation of other quantum structures, for example, a quantum wire structure, a quantum box structure, etc., is similarly performed in the present invention. If you evaluate using the example method,
It goes without saying that the evaluation can be performed with several levels of accuracy higher than in the past.

【0038】[0038]

【発明の効果】以上のように、本発明の半導体基板の積
層構造評価方法によれば、トンネル電流の注入エネルギ
ーとトンネル電流で「規格化した発光量」を検出するこ
とにより、表面下深部にある量子構造の厚みをナノメー
トル・オーダの超高空間分解能で測定することが可能と
なる等優れた有用性を発揮する。
As described above, according to the method for evaluating a laminated structure of a semiconductor substrate of the present invention, the "normalized light emission amount" is detected by the injection energy of the tunnel current and the tunnel current, so that a deep portion below the surface can be obtained. It has excellent usefulness, such as being able to measure the thickness of a certain quantum structure with ultra-high spatial resolution on the order of nanometers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法例を説明する概略構成模式図であ
る。
FIG. 1 is a schematic structural view illustrating a method example of the present invention.

【符号の説明】[Explanation of symbols]

A…積層構造評価装置 P…測定点 S1,S2…測定信号 S3…動作指令信号 S4…制御操作信号 1…探針 2…トンネル電流 3…トンネル電流検出器 4…可変バイアス電源 5…空間 6…試料 6a…試料表面 7…量子構造 7a…障壁層 7b…井戸層 8…発光 9…光検出器 10…信号処理装置 11…探針駆動機構 12…制御装置 A: Lamination structure evaluation device P: Measurement point S1, S2: Measurement signal S3: Operation command signal S4: Control operation signal 1: Probe tip 2: Tunnel current 3: Tunnel current detector 4: Variable bias power supply 5: Space 6: Sample 6a: Sample surface 7: Quantum structure 7a: Barrier layer 7b: Well layer 8: Light emission 9: Photodetector 10: Signal processing device 11: Probe driving mechanism 12: Control device

フロントページの続き (56)参考文献 特開 平7−120483(JP,A) 特開 平5−343023(JP,A) 特開 平6−201584(JP,A) 特開 平6−74899(JP,A) 特開 平5−136238(JP,A) 特開 平5−133897(JP,A) 特公 昭53−9114(JP,B2) 特公 平3−12772(JP,B2) 米国特許4823004(US,A) R.Berndt,R.R.Schl ittler,and J.K.Gim zewski、“Photon emi ssion scannig tunn eling microscope”、 Journal of Vacuum Science & Technolo gy B、米国、American V acuum Society、平成3 年、第9巻、第2号、Part 2、 p.573−577 塚田捷、“走査トンネル顕微鏡の最近 の発展”、日本物理学会誌、平成5年8 月、第48巻、第8号、p.615−623 上原洋一、潮田資勝、“走査型電子顕 微鏡の発光現象”、応用物理、平成3 年、第60巻、第12号、p.1235−1238 (58)調査した分野(Int.Cl.7,DB名) G01N 13/10 - 13/24 G01N 21/62 - 21/74 JICSTファイル(JOIS)Continuation of front page (56) References JP-A-7-120483 (JP, A) JP-A-5-343023 (JP, A) JP-A-6-201584 (JP, A) JP-A-6-74899 (JP, A) JP-A-5-136238 (JP, A) JP-A-5-133897 (JP, A) JP-B-53-9114 (JP, B2) JP-B-3-12772 (JP, B2) U.S. Pat. (US, A) Berndt, R .; R. Schl ittler, and J. et al. K. Gim zewski, "Photon emission scanning tunneling microscopy", Journal of Vacuum Science & Technology, Technology, Vol. 573-577 Tsukada, K., "Recent Development of Scanning Tunneling Microscope", Journal of the Physical Society of Japan, August 1993, Vol. 48, No. 8, p. 615-623 Yoichi Uehara, Shikatsu Shioda, "Emission Phenomena of Scanning Electron Microscope", Applied Physics, 1991, Vol. 60, No. 12, p. 1235-1238 (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 13/10-13/24 G01N 21/62-21/74 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】まず、積層構造を有する半導体基板にトン
ネル電流を利用してエネルギーの異なる電子を注入し、 次いで、前記半導体基板に注入された電流値を注入エネ
ルギー毎に測定し、 引続き、エネルギーの異なる電子を注入時に得られる前
記半導体基板からの発光量を注入エネルギー毎に測定
し、 さらに、注入エネルギー毎に得られた発光量を半導体基
板に注入された電流値で除算することにより、異なる深
さにおかれた量子構造からの規格化された発光強度を測
定することを特徴とする半導体基板の積層構造評価方
法。
At first, electrons having different energies are injected into a semiconductor substrate having a laminated structure using a tunnel current, and then a current value injected into the semiconductor substrate is measured for each injection energy. By measuring the amount of light emission from the semiconductor substrate obtained at the time of injection of different electrons for each injection energy, and further dividing the amount of light emission obtained for each injection energy by the current value injected into the semiconductor substrate, A method for evaluating a laminated structure of a semiconductor substrate, comprising measuring a standardized light emission intensity from a quantum structure placed at a depth.
【請求項2】半導体基板にエネルギーの異なる電子の注
入は、 まず、当該注入点を制御しながら変化させ、 次いで、各注入点での発光量を注入エネルギー毎に測定
して半導体基板に注入された電流値で除算することによ
り異なる深さにおかれた量子構造の規格化された発光強
度を測定し、 引続き、当該規格化された発光強度を各注入点の位置毎
に対応させて表示することにより半導体基板の量子構造
の厚みの空間分布を測定することを特徴とする請求項1
記載の半導体基板の積層構造評価方法。
2. Injecting electrons having different energies into the semiconductor substrate, first changing the injection points while controlling the injection points, and then measuring the amount of light emitted at each injection point for each injection energy to be injected into the semiconductor substrate. The normalized luminescence intensity of the quantum structures at different depths is measured by dividing by the current value obtained, and then the normalized luminescence intensity is displayed in correspondence with each injection point position 2. The method according to claim 1, further comprising measuring a spatial distribution of a thickness of the quantum structure of the semiconductor substrate.
13. The method for evaluating a laminated structure of a semiconductor substrate according to the above.
JP32034493A 1993-12-20 1993-12-20 Method for evaluating laminated structure of semiconductor substrate Expired - Lifetime JP3198474B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32034493A JP3198474B2 (en) 1993-12-20 1993-12-20 Method for evaluating laminated structure of semiconductor substrate
US08/359,193 US5559330A (en) 1993-12-20 1994-12-19 Scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32034493A JP3198474B2 (en) 1993-12-20 1993-12-20 Method for evaluating laminated structure of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH07174700A JPH07174700A (en) 1995-07-14
JP3198474B2 true JP3198474B2 (en) 2001-08-13

Family

ID=18120432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32034493A Expired - Lifetime JP3198474B2 (en) 1993-12-20 1993-12-20 Method for evaluating laminated structure of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3198474B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399781B2 (en) * 1997-05-09 2003-04-21 日本電信電話株式会社 Scanning emission microscope
JP2012088283A (en) * 2010-10-22 2012-05-10 Nippon Telegr & Teleph Corp <Ntt> Probe type light measuring device, and light measuring method
CN102590559B (en) * 2012-02-07 2013-10-09 厦门大学 Method for testing electric injection luminescence of nano structure quantum state

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R.Berndt,R.R.Schlittler,and J.K.Gimzewski、"Photon emission scannig tunneling microscope"、Journal of Vacuum Science & Technology B、米国、American Vacuum Society、平成3年、第9巻、第2号、Part 2、p.573−577
上原洋一、潮田資勝、"走査型電子顕微鏡の発光現象"、応用物理、平成3年、第60巻、第12号、p.1235−1238
塚田捷、"走査トンネル顕微鏡の最近の発展"、日本物理学会誌、平成5年8月、第48巻、第8号、p.615−623

Also Published As

Publication number Publication date
JPH07174700A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
Ambrose et al. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy
Urbaszek et al. Fine structure of highly charged excitons in semiconductor quantum dots
JPH07174770A (en) Reflection type feedback probe device for optical detection
JPH09243649A (en) Scanning near-field optical microscope
Krenn et al. Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures
US20030085351A1 (en) Optical fiber probe and scanning probe microscope provided with the same
Parlangeli et al. Optical observation of the energy-momentum dispersion of spatially indirect excitons
JP3198474B2 (en) Method for evaluating laminated structure of semiconductor substrate
Tsuruoka et al. Light emission spectra of AlGaAs/GaAs multiquantum wells induced by scanning tunneling microscope
Pfister et al. Atomic structure and luminescence excitation of GaAs/(AlAs) n (GaAs) m quantum wires with the scanning tunneling microscope
McNeill et al. Imaging organic device function with near-field scanning optical microscopy
Toropov et al. Optically enhanced emission of localized excitons in In x Ga 1− x N films by coupling to plasmons in a gold nanoparticle
Hamers et al. Surface photovoltage on Si (111)‐(7× 7) probed by optically pumped scanning tunneling microscopy
US5198667A (en) Method and apparatus for performing scanning tunneling optical absorption spectroscopy
Petrov Cathodoluminescence microscopy
Fischer Scanning near-field optical microscopy
Ushioda Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures
US4238686A (en) Method of analyzing localized nonuniformities in luminescing materials
JP3267685B2 (en) Micro surface observation device
JP3143884B2 (en) Emission scanning tunneling microscope
Kim et al. Near-field optical recording of photochromic materials using bent cantilever fiber probes
Fujita et al. Light emission induced by tunnelling electrons from a p-type GaAs (110) surface observed at near-field by a conductive optical fibre probe
Dunstan On the measurement of absolute radiative and non-radiative recombination efficiencies in semiconductor lasers
De Vittorio et al. Low temperature tool for photoluminescence mapping with submicron resolution
JP3193996B2 (en) Heterostructure evaluation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 13

EXPY Cancellation because of completion of term