JP3197429B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3197429B2
JP3197429B2 JP09913794A JP9913794A JP3197429B2 JP 3197429 B2 JP3197429 B2 JP 3197429B2 JP 09913794 A JP09913794 A JP 09913794A JP 9913794 A JP9913794 A JP 9913794A JP 3197429 B2 JP3197429 B2 JP 3197429B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
cooled
dioxide gas
transport path
cooled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09913794A
Other languages
Japanese (ja)
Other versions
JPH07280406A (en
Inventor
克巳 藤間
誠 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP09913794A priority Critical patent/JP3197429B2/en
Publication of JPH07280406A publication Critical patent/JPH07280406A/en
Application granted granted Critical
Publication of JP3197429B2 publication Critical patent/JP3197429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はトンネル状冷却空間の搬
入部より出口側に向けて被冷却体の搬送路を形成し、該
搬送路に沿って被冷却体を移送させながら被冷却体の冷
却を行う冷凍装置として適用される発明に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transport path for a cooled object from an entrance of a tunnel-shaped cooling space to an exit side, and transferring the cooled object along the transport path. The present invention relates to an invention applied as a refrigerating device for performing cooling.

【0002】[0002]

【従来技術】従来より冷凍食品の製造等で被凍結物を所
望の低温度に冷却して凍結させ連続的に凍結製品を得る
凍結装置として、冷気が供給されている断熱トンネル内
に、両端の搬入部、出口側開口の間に設けたベルトコン
ベヤの如き搬送手段により被凍結物を移送して、この間
前記したトンネル内に供給された冷気により被凍結物を
冷却し、出口側より凍結製品として搬出する装置が用い
られている。しかしながらかかる装置では、トンネル内
を駆動部を有するベルトコンベアにより機械的に移送す
る構成を取るために、多大な動力、設備費、設置スペー
スを必要とし、而も駆動部分が騒音振動源となってい
た。
2. Description of the Related Art Conventionally, as a freezing device for cooling a frozen object to a desired low temperature and producing a frozen product continuously in the manufacture of frozen foods and the like, a heat insulation tunnel to which cold air is supplied is provided. The frozen object is transferred by a transport means such as a belt conveyor provided between the carry-in part and the outlet side opening, and the frozen object is cooled by the cool air supplied into the tunnel during this time, and as a frozen product from the outlet side. An unloading device is used. However, such a device requires a large amount of power, equipment cost, and installation space in order to mechanically transfer the inside of the tunnel by a belt conveyor having a driving unit, and the driving unit is a noise vibration source. Was.

【0003】又、前記装置では上面側では気流による間
接冷却方式で、且つ底面側はコンベアベルトが接地され
ている為に冷気による伝熱が効率的に行われず、冷却効
率に問題があった。しかも前記したトンネル内を通過し
ながら被冷却体は、常温域から凍結域まで広い温度差を
有しながら冷却を行うために、コンベアベルト等に必然
的に熱歪が生じやすく、この為該熱歪みを吸収するた
め、複雑な高度の調整技術を必要とした。かかる欠点を
解消する為にステンレスのような熱伝導性の良い金属材
をメッシュ状に編成してメッシュベルトを形成するとと
もに、該メッシュベルトに背面側より冷熱源を接触さ
せ、いわゆるフリーザベルトを構成した装置も存在する
が、かかる装置においては冷却効率及び熱歪の面では有
利であるが、機械的移送装置であることには変りがな
く、動力消費、設備費、設置スペース、而も駆動騒音源
となるという問題は解消しない。
Further, in the above-mentioned apparatus, the indirect cooling system by air flow is used on the upper surface side, and since the conveyor belt is grounded on the bottom side, heat is not efficiently transferred by cold air, so that there is a problem in cooling efficiency. Moreover, while passing through the above-mentioned tunnel, the object to be cooled is cooled while having a wide temperature difference from the normal temperature range to the freezing range, so that heat distortion is inevitably generated in the conveyor belt or the like. Complex distortion adjustment techniques were required to absorb the distortion. In order to solve such a drawback, a metal belt having good heat conductivity such as stainless steel is knitted into a mesh to form a mesh belt, and a cold heat source is brought into contact with the mesh belt from the back side to form a so-called freezer belt. Although such devices exist, such devices are advantageous in terms of cooling efficiency and thermal strain, but are still mechanical transfer devices, and consume power, equipment costs, installation space, and drive noise. The problem of becoming a source remains.

【0004】かかる欠点を解消するために、例えばピラ
フ等の粒状食品の冷凍を行う為に、外筒と内筒間に冷媒
を入れた複胴コンベアを出口側に向けて下向きに傾斜さ
せて配置し、該複胴コンベアを回転させながら前記粒状
食品を入口側に投下させる事により重力により複胴コン
ベア内を落下させつつ凍結を行う方法が特開平4−26
3773号に提案されている。しかしながらかかる方法
では、急速凍結した際に粒状食品が複胴コンベア内に固
着してしまう恐れが多く、円滑な搬送が困難になる。
[0004] In order to solve such a drawback, for freezing granular foods such as pilaf, for example, a double-barrel conveyor containing a refrigerant between an outer cylinder and an inner cylinder is arranged to be inclined downward toward the outlet side. Japanese Patent Application Laid-Open No. Hei 4-26 discloses a method in which the granular food is dropped on the entrance side while rotating the double-body conveyor, thereby causing the granulated food to fall in the multi-body conveyor by gravity and freeze.
No. 3,773. However, in such a method, when the food is rapidly frozen, there is a high possibility that the granular food will adhere to the inside of the multi-body conveyor, and it is difficult to smoothly transport the food.

【0005】かかる欠点を解消する為に、特開平2−1
83784号において、長手軸線を中心に回転可能なト
ンネル体を出口側に向けて下向きに傾斜させ、そのトン
ネルの内面に液体窒素の溜りを設け、被冷却体を液体窒
素内を浸漬けしながら通過することにより、被冷却体の
凍結とともに、その表面に液体窒素のフィルム状被膜を
形成し、該被膜により隣接する被冷却体及びトンネル体
内面との固着を防止しつつ凍結が行われる技術が開示さ
れている。
[0005] In order to solve such a drawback, Japanese Patent Laid-Open No.
No. 83784, a tunnel body rotatable about a longitudinal axis is inclined downward toward an exit side, a pool of liquid nitrogen is provided on the inner surface of the tunnel, and a cooling object is passed through the liquid nitrogen while being immersed in the liquid nitrogen. Thus, there is disclosed a technique in which, while freezing the cooled object, a film-like film of liquid nitrogen is formed on the surface thereof, and the film prevents freezing while preventing the adjacent cooled object and the inner surface of the tunnel from sticking to each other. ing.

【0006】しかしながら液体窒素は高価であるのみな
らず、その液化温度−70〜−80℃前後と極めて低
く、この為凍結食品に低温脆性に起因する各種品質劣化
が生じやすく、而もトンネル自体もこの低温に耐え得る
材料を用いなければいけないために、設備費が増大す
る。本発明はかかる従来技術の欠点に鑑み、機械的な搬
送手段を用いる事なく又トンネル体内面との固着を防止
しつつ円滑に出口側に向け搬送可能な冷凍装置として適
用される発明を提供することにある。又本発明の他の目
的は、冷却効率の向上とともに、動力費、設備費、設置
スペース、更には騒音や振動を大幅に低減し得る冷凍装
置として適用される発明を提供することにある。
[0006] However, liquid nitrogen is not only expensive, but its liquefaction temperature is extremely low, around -70 to -80 ° C. Therefore, frozen foods are liable to undergo various quality deteriorations due to low-temperature brittleness. Since a material that can withstand this low temperature must be used, equipment costs increase. In view of the drawbacks of the prior art, the present invention provides an invention which is applied as a refrigeration apparatus which can be smoothly transported to an exit side without using mechanical transporting means and preventing sticking to the inner surface of a tunnel. It is in. Another object of the present invention is to provide an invention which is applied as a refrigeration apparatus capable of significantly reducing power cost, equipment cost, installation space, and noise and vibration while improving cooling efficiency.

【0007】[0007]

【課題を解決するための手段】本発明は、いわゆるトン
ネル型の冷凍装置において、前記搬送路を搬入部から出
口側に向かって下り勾配を有するスロープ状の搬送路面
として形成した点は前記従来技術と同様であるが、更に
前記搬送路面と被冷却体間に固化炭酸ガス体若しくはそ
の昇華ガス膜を介在させ、そして好ましくは被冷却体が
搬入部側に導入される際に、初速を持って導入可能に初
速生成手段を設けたことを特徴とする。
The present invention relates to a so-called tunnel type refrigeration apparatus, wherein the transport path is formed as a slope-shaped transport path surface having a downward slope from a loading section toward an exit side. The same as above, but further interposed a solidified carbon dioxide gas body or a sublimation gas film between the conveyance path surface and the cooled object, and preferably, when the cooled object is introduced to the loading section side, with initial velocity An initial speed generating means is provided so that it can be introduced.

【0008】そしてこのような構成は、液化炭酸ガスを
噴射する噴射部を少なくとも搬入部側に設け、該噴射部
より搬入部に導入された被冷却体と搬送路面間に液化炭
酸ガスを噴出させる事により、該搬送路面と被冷却体間
に転動可能な粉状若しくは粒状の固化炭酸ガス体を生成
される。又更に、前記被冷却体を移送する搬送路の搬入
部から出口側までに位置する搬送路内の適宜位置に、液
化炭酸ガスを噴射する噴射部を設け、該噴射部噴出され
た液化炭酸ガスにより、該搬送路面と被冷却体間に粉状
若しくは粒状の固化炭酸ガス体を生成し、該固化炭酸ガ
ス体が出口位置まで継続して搬送路面と被冷却体間に介
在させるように構成するのが好ましい。
In such a configuration, an injection section for injecting the liquefied carbon dioxide gas is provided at least on the carry-in section side, and the liquefied carbon dioxide gas is ejected from the injection section to the space between the cooled object introduced into the carry-in section and the conveying path surface. As a result, a powdery or granular solidified carbon dioxide gas body that can roll between the conveying path surface and the object to be cooled is generated. Further, an injection unit for injecting liquefied carbon dioxide gas is provided at an appropriate position in the conveyance path located from the loading section to the exit side of the conveyance path for transferring the cooled object, and the liquefied carbon dioxide gas ejected from the injection section is provided. Thereby, a powdery or granular solidified carbon dioxide gas body is generated between the conveyance path surface and the object to be cooled, and the solidified carbon dioxide gas body is continuously interposed between the conveyance path surface and the object to be cooled until the outlet position. Is preferred.

【0009】[0009]

【作用】本発明の作用を例示的に説明する。先ず、被冷
却体が適当な初速を持ってトンネル状冷却空間の搬入部
に入庫されると被冷却体底面と搬送路面との間に、冷却
あるいは凍結のために必要な冷媒量の全部又は一部に対
応する量の液化炭酸ガスを前記噴出部から噴射される。
噴射された液化炭酸ガスは三重点以下(大気圧近傍)に
減圧、断熱膨張されて、固化炭酸ガス体の粉粒体を生成
し、被冷却体と搬送路面の間にばらまかれた状態にな
る。そして固化炭酸ガス体の粉粒体は昇華し被冷却体底
部を直接冷却すると同時に、固化炭酸ガス体若しくはそ
の昇華ガス膜とによって被冷却体を搬送路面から浮かし
た状態を維持しつつ、初速度と搬送路面の下り勾配によ
って出口側に移送される。このような状態では被冷却体
と搬送面間の摩擦は固化炭酸ガス体の転がり摩擦又は/
及びその昇華ガス膜によって大幅に低下し、且つ搬送路
面と被冷却体が直接接触することない為凍結時の両者間
の固着を完全に防止できる。そして前記搬送の間、固化
炭酸ガス体が昇華しながらその潛熱と顕熱により冷却さ
れた後出口側より、庫外に搬出される。
The operation of the present invention will be described by way of example. First, when the object to be cooled enters the entrance of the tunnel-shaped cooling space with an appropriate initial velocity, all or one of the amount of refrigerant required for cooling or freezing is placed between the bottom surface of the object to be cooled and the surface of the transport path. A quantity of liquefied carbon dioxide gas corresponding to the part is injected from the jetting part.
The injected liquefied carbon dioxide gas is decompressed and adiabatically expanded below the triple point (near the atmospheric pressure) to generate solidified carbon dioxide gas particles, which are scattered between the cooled object and the conveyance path surface. . The powder of the solidified carbon dioxide gas sublimates and directly cools the bottom of the object to be cooled, and at the same time, maintains the state in which the object to be cooled is floated from the conveyance path surface by the solidified carbon dioxide gas or the sublimated gas film, and has an initial velocity. Is transported to the exit side by the downward slope of the conveying path surface. In such a state, the friction between the object to be cooled and the transfer surface is the rolling friction of the solidified carbon dioxide gas body and / or
In addition, since the sublimation gas film greatly reduces the temperature, and the conveyance path surface does not come into direct contact with the object to be cooled, sticking between the two during freezing can be completely prevented. During the transportation, the solidified carbon dioxide body is sublimated and cooled by the latent heat and sensible heat, and then carried out of the refrigerator from the outlet side.

【0010】搬送途中で固化炭酸ガス体の粉粒体が全部
昇華するような場合には搬送路内の適宜位置に、液化炭
酸ガスを噴射する噴射部を設け、固化炭酸ガス体が出口
位置まで継続して搬送路面と被冷却体間に介在させる。
従ってかかる構成によれば、被冷却体との搬送路を搬入
部から出口側に向かって下り勾配に設け、その重力を利
用して被冷却体を搬送させながら冷却し凍結製品を排出
させるも該搬送路面と被冷却体間には固化炭酸ガス体若
しくはその昇華ガス膜が介在しているために、該ガス体
の搬送路面と被冷却体が直接接触することなく、この為
凍結時の両者間の固着を完全に防止でき、而も該固化炭
酸ガス体が被冷却体の奪熱によっても昇華ガス膜となる
為に、いわゆる被冷却体の浮遊状態を維持でき、搬送路
の傾斜角度が小さくても円滑な搬送が可能となる。
In the case where the powdered solidified carbon dioxide gas sublimates in the middle of the transportation, an injection unit for injecting the liquefied carbon dioxide gas is provided at an appropriate position in the transportation path, and the solidified carbon dioxide gas body reaches the outlet position. Continue to be interposed between the conveyance path surface and the object to be cooled.
Therefore, according to this configuration, the conveyance path with the cooled object is provided at a downward slope from the loading section toward the exit side, and the cooled object is conveyed by using the gravity to discharge the frozen product. Since the solidified carbon dioxide gas or its sublimation gas film is interposed between the transfer path surface and the cooled object, the transfer path surface of the gas body and the cooled object do not come into direct contact with each other. Can be completely prevented, and since the solidified carbon dioxide gas also becomes a sublimation gas film even by the heat of the cooled object, the so-called floating state of the cooled object can be maintained, and the inclination angle of the transport path is small. However, smooth conveyance is possible.

【0011】[0011]

【実施例】以下、本発明を図に示した実施例を用いて詳
細に説明する。但し、この実施例に記載される構成部品
の寸法、材質、形状、その相対配置などは特に特定的な
記載が無い限り、この発明の範囲をそれのみに限定する
趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples, unless otherwise specified. Absent.

【0012】図1は本発明の実施例に係る冷凍装置を示
す全体概略図である。同図において、冷凍装置1は、断
熱壁により構成される略方形筒状若しくは円筒状に形成
された筐体2とともに、そして筐体2の入口側に搬入部
2aに被冷却体を導入するための搬入コンベア5が、又
筐体2の出口側に出口部2bより被冷却体を出庫するた
めの排出コンベア6が夫々配設されている。前記筐体2
は、搬入コンベア5から移送された被冷却体3が運びこ
まれる搬入部2a、被冷却体3が排出コンベア6に送出
される出口部2b、及びファン17を有した排気部2c
が設け、一方筐体2内には、搬入部2a側より出口部2
b側に向けて下向き勾配に設定した搬送路4が設けられ
ている。また、搬入部2aのエアーカーテンとして、外
部からの暖気の侵入を遮切るスリット状送気管15が開
口端を上に向けて搬入部2a内壁に隣接して配設されて
いる。
FIG. 1 is an overall schematic diagram showing a refrigeration apparatus according to an embodiment of the present invention. In FIG. 1, a refrigeration apparatus 1 is provided with a casing 2 formed in a substantially rectangular cylindrical or cylindrical shape constituted by a heat insulating wall, and for introducing a cooled body into a carry-in portion 2 a at an entrance side of the casing 2. And a discharge conveyer 6 for discharging the object to be cooled from the outlet 2b on the outlet side of the housing 2. The housing 2
Is a carry-in portion 2a into which the cooled object 3 transferred from the carry-in conveyor 5 is carried, an outlet portion 2b through which the cooled object 3 is sent out to the discharge conveyor 6, and an exhaust portion 2c having a fan 17
The housing 2 has an outlet 2 from the loading unit 2a side.
The transport path 4 is set to have a downward slope toward the side b. Further, a slit-shaped air supply pipe 15 for blocking the invasion of warm air from the outside is provided adjacent to the inner wall of the loading section 2a with its open end facing upward as an air curtain of the loading section 2a.

【0013】送気管15と隣接して図2に示すように噴
出口16を鍵型状に折曲して搬送面に沿って液化炭酸ガ
スが噴出可能に噴出管11が設けられ、該噴出管11は
弁8及び管12を介して液化炭酸ガス容器7に連結され
ている。この液化炭酸ガス容器7は所定圧力下に液化炭
酸ガスが貯溜されている。該液化炭酸ガス容器7には管
14及び弁9を介して搬送路4のほぼ中間位置に延在す
る第2の噴出管13が設けられている。炭酸ガス(CO
2 )は、図3(CO2 のp−t線図)に示されるよう
に、液体、気体及び固化が共存する三重点Trの5.2
8kg/cm2 より圧力が高く、また−56.6℃より
温度が高い範囲においては液体として存在することがで
きる。そして、三重点以下のラインSの範囲においては
通称ドライアイスと呼ばれる固化二酸化炭素と気体が共
存できるとともに、固化が溶融すると液体とならず直接
に気体に昇華するものであり、この昇華により被冷却体
3の冷却が行なわれるものである。液化炭酸ガス容器7
に貯蔵されている液化炭酸ガスは、噴出管11または管
13の先端の噴出口16、23から噴射されると、三重
点より下の大気圧付近に減圧膨張して、粉末状若しくは
粒状の固化炭酸ガス体19を生成する。
As shown in FIG. 2, an ejection pipe 11 is bent in a key shape adjacent to the air supply pipe 15 so that liquefied carbon dioxide gas can be ejected along the conveying surface. Reference numeral 11 is connected to the liquefied carbon dioxide container 7 via a valve 8 and a pipe 12. The liquefied carbon dioxide gas container 7 stores liquefied carbon dioxide gas under a predetermined pressure. The liquefied carbon dioxide gas container 7 is provided with a second ejection pipe 13 that extends through the pipe 14 and the valve 9 at a substantially intermediate position of the transport path 4. Carbon dioxide (CO
As shown in FIG. 3 (pt diagram of CO 2 ), 5.2) of the triple point Tr where liquid, gas and solidification coexist is shown in FIG.
It can exist as a liquid in the range where the pressure is higher than 8 kg / cm 2 and the temperature is higher than -56.6 ° C. In the range of the line S below the triple point, solidified carbon dioxide and gas, commonly called dry ice, can coexist, and when solidification is melted, it does not become a liquid but directly sublimates into a gas. The cooling of the body 3 is performed. Liquefied carbon dioxide gas container 7
When the liquefied carbon dioxide gas stored in the nozzle is ejected from the ejection ports 16 and 23 at the tip of the ejection pipe 11 or the pipe 13, the liquefied carbon dioxide gas is decompressed and expanded to near the atmospheric pressure below the triple point, and solidified into powdery or granular form. A carbon dioxide body 19 is generated.

【0014】図2は、搬送路入口側の拡大図を示し、同
図において、噴出管11の先端部にある噴出口16は、
搬送路4の先端部4aから被冷却体3の移送方向に向け
て搬送路4の上面に開口し、送気管15の先端部は上方
に向かって開口している。
FIG. 2 is an enlarged view of the inlet side of the conveying path. In FIG.
An opening is formed on the upper surface of the transfer path 4 from the tip 4a of the transfer path 4 toward the transfer direction of the cooled object 3, and the tip of the air supply pipe 15 is opened upward.

【0015】次に、かかる実施例の動作を図1及び図2
を用いて説明する。搬入コンベア5から適当な初速を以
て搬入部開口2aより筐体2内に搬入された被冷却体3
は、送気管15によるエアーカテン通過後、噴出口16
から液化炭酸ガスが搬送路4上面に沿って噴出される
と、該噴射された液化炭酸ガスは三重点以下(大気圧近
傍)に減圧、断熱膨張されて、固化炭酸ガス体19の粉
粒体を生成し、搬送路上面に散在しながら該搬送路面を
出口側に向けて摺動する。この状態で搬送路4面上に被
冷却体3が侵入すると、固化炭酸ガス体19の粉粒体は
昇華しつつ被冷却体3底部を直接冷却すると同時に、固
化炭酸ガス体19と昇華ガスとによって被冷却体3を搬
送路面から浮かした状態を維持しつつ、初速度と搬送路
4面の下り勾配によって出口側に移送される。
Next, the operation of this embodiment will be described with reference to FIGS.
This will be described with reference to FIG. The cooled object 3 carried into the housing 2 from the carry-in conveyor 2 through the carry-in opening 2a at an appropriate initial speed from the carry-in conveyor 5.
After passing through the air curtain by the air supply pipe 15,
When the liquefied carbon dioxide gas is ejected along the upper surface of the transport path 4, the injected liquefied carbon dioxide gas is reduced in pressure and adiabatically expanded to a triple point or lower (near the atmospheric pressure), and the powdered particles of the solidified carbon dioxide gas body 19 Is generated, and the conveying path surface is slid toward the exit side while being scattered on the upper surface of the conveying path. When the cooled body 3 enters the surface of the transport path 4 in this state, the solidified carbon dioxide body 19 directly cools the bottom of the cooled body 3 while sublimating, and at the same time, the solidified carbon dioxide body 19 and the sublimated gas are cooled. While maintaining the state in which the cooled object 3 is floated from the surface of the transport path, the object 3 is transferred to the outlet side by the initial speed and the downward slope of the surface of the transport path 4.

【0016】そして該搬送途中で固化炭酸ガス体19の
粉粒体が全部昇華する恐れがあるために、搬送路4内の
途中位置に設けた噴出管13の噴出口より液化炭酸ガス
を搬送路面に沿って噴射する事により、固化炭酸ガス体
19の粉粒体再度搬送路4面に補充され、出口部2cま
で継続して粉粒状の固化炭酸ガス体19が散在する事に
なる。
Since there is a possibility that the powdered solid matter of the solidified carbon dioxide gas body 19 may be sublimated in the course of the transportation, the liquefied carbon dioxide gas is supplied from the ejection port of the ejection pipe 13 provided at an intermediate position in the transportation path 4. The powder of the solidified carbon dioxide gas body 19 is replenished to the surface of the conveying path 4 again, and the powdered and solidified carbon dioxide gas body 19 is scattered continuously to the outlet 2c.

【0017】そして前記搬送の間、固化炭酸ガス体19
が昇華しながらその潛熱と顕熱により冷却された後出口
側より、排出コンベア6を利用して庫外に搬出される。
搬送路4の途中に配設された噴出管13は一本に限定さ
れず、必要に応じて、複数本設けてもよい。
During the transportation, the solidified carbon dioxide gas body 19
Is cooled by the latent heat and the sensible heat while sublimating, and then carried out of the warehouse from the outlet side using the discharge conveyor 6.
The number of the ejection pipes 13 provided in the middle of the transport path 4 is not limited to one, and a plurality of ejection pipes may be provided as necessary.

【0018】図4は、前記した液化炭酸ガス噴出管の例
示構成を示し、搬入部2b開口側に位置する噴出口16
は搬送面ほぼ全幅に亙る偏平スリット状をなし、該噴出
口16より噴出生成された粉粒状の固化炭酸ガス体19
が搬送面全幅に亙って散在されるように構成する。又搬
送路4面の出口側途中位置に配設した第2の噴出口23
は、搬送路4の上面と平行且つ出口側に向けて所定角度
変向配置された一対の噴出口13a、13bを備えてい
る。この噴出口13a及び13bにより、被冷却体3と
搬送路4の表面間に固化炭酸ガス体19の粉粒体19を
充分に補給することができるものである。尚、必要に応
じて噴出口13a、13bは、片方のみでもよく、又、
搬送路4移送方向に沿って複数対設けてもよい。
FIG. 4 shows an example of the structure of the above-mentioned liquefied carbon dioxide gas ejection pipe, and the ejection port 16 located at the opening side of the loading section 2b.
Has a flat slit shape extending over substantially the entire width of the conveying surface, and powdery and solidified carbon dioxide gas body 19 ejected and generated from the ejection port 16.
Are scattered over the entire width of the transport surface. A second jet port 23 disposed at a position halfway on the exit side of the transport path 4 surface.
Has a pair of ejection ports 13a, 13b parallel to the upper surface of the transport path 4 and deflected by a predetermined angle toward the exit side. By the injection ports 13 a and 13 b, the powdered particles 19 of the solidified carbon dioxide gas body 19 can be sufficiently supplied between the surface of the cooled object 3 and the surface of the transport path 4. Incidentally, if necessary, only one of the ejection ports 13a and 13b may be provided.
A plurality of pairs may be provided along the transport direction of the transport path 4.

【0019】[0019]

【効果】以上記載した如く本発明によれば、被冷却体の
搬送路を搬入部から出口側に向かって下り勾配に設け且
つ固化炭酸ガス体により搬送面上より浮動状態にある為
に、極めて小さな摩擦抵抗で重力により円滑に移送させ
る事が出来る。従って、本発明の搬送路には移送駆動用
の動力が不要で、省設備スペース化が達成されるととも
に、騒音及び振動が著しく低減される。また、本発明は
その搬送路内において被冷却体が固化炭酸ガス体19と
昇華ガス膜により搬送面上より浮動状態にある為に被冷
却体が搬送路に固着することがなく、且つ直接冷却が可
能であるために、被冷却体の冷却が効率良く且つ均一に
なるという効果を奏する。
According to the present invention, as described above, the transfer path for the object to be cooled is provided with a downward slope from the carry-in portion toward the outlet side, and is floating from the transfer surface by the solidified carbon dioxide gas body. It can be smoothly transferred by gravity with small frictional resistance. Therefore, the transfer path of the present invention does not require power for driving the transfer, which saves equipment space and significantly reduces noise and vibration. Further, according to the present invention, since the object to be cooled is floating above the conveying surface by the solidified carbon dioxide gas body 19 and the sublimation gas film in the conveying path, the object to be cooled does not adhere to the conveying path, and is directly cooled. Since the cooling is possible, the cooling target can be efficiently and uniformly cooled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る冷凍装置の全体概略図で
ある。
FIG. 1 is an overall schematic diagram of a refrigeration apparatus according to an embodiment of the present invention.

【図2】図1の被冷却体搬入部側の拡大図を示す。FIG. 2 is an enlarged view of the cooled object carrying-in side in FIG. 1;

【図3】炭酸ガスのp−t線図である。FIG. 3 is a pt diagram of carbon dioxide gas.

【図4】搬送路上に配設した液化炭酸ガス噴出管の形状
を例示する斜視図である。
FIG. 4 is a perspective view illustrating the shape of a liquefied carbon dioxide gas ejection pipe disposed on a transport path.

【符号の説明】[Explanation of symbols]

1 冷凍装置 2 筐体 3 被冷却体 4 搬送路 16、23 噴出口 19 固化炭酸ガス体 DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 2 Housing | casing 3 Object to be cooled 4 Conveyance path 16, 23 Spouting port 19 Solidified carbon dioxide gas body

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25D 3/11 A23L 3/36 F25D 3/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) F25D 3/11 A23L 3/36 F25D 3/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 トンネル状冷却空間の搬入部より出口側
に向けて被冷却体の搬送路を形成し、該搬送路に沿って
被冷却体を移送させながら被冷却体の冷却を行う冷凍装
置において、 前記トンネル状冷却空間内に、搬入部から出口側に向か
って下り勾配を有するスロープ状の搬送路面を形成する
とともに、 該搬送路面と被冷却体間に固化炭酸ガス体若しくはその
昇華ガス膜を介在させながら前記搬送路面に沿って被冷
却体を搬送可能に構成したことを特徴とする冷凍装置。
1. A refrigeration apparatus that forms a transport path for a cooled object from an entrance of a tunnel-shaped cooling space toward an outlet side, and cools the cooled object while transferring the cooled object along the transport path. In the above-mentioned tunnel-shaped cooling space, while forming a slope-shaped conveying path surface having a downward slope from the carry-in part toward the outlet side, a solidified carbon dioxide gas body or a sublimation gas film thereof between the conveying path surface and the object to be cooled A refrigeration apparatus configured to be capable of transporting the object to be cooled along the transport path surface while interposing a cooling medium.
【請求項2】 トンネル状冷却空間の搬入部より出口側
に向けて被冷却体の搬送路を形成し、該搬送路に沿って
被冷却体を移送させながら被冷却体の冷却を行う冷凍装
置において、 前記搬送路を搬入部から出口側に向かって下り勾配を有
するスロープ状の搬送路面として形成するとともに、 液化炭酸ガスを噴射する噴射部を少なくとも搬入部側に
設け、該噴射部より搬入部に導入された被冷却体と搬送
路面間に液化炭酸ガスを噴出させ、該搬送路面と被冷却
体間に粉状若しくは粒状の固化炭酸ガス体を生成可能に
構成した事を特徴とする冷凍装置
2. A refrigerating apparatus that forms a transport path for a cooled object from an entrance of a tunnel-shaped cooling space toward an outlet side, and cools the cooled object while transferring the cooled object along the transport path. In the above, the transport path is formed as a slope-shaped transport path surface having a downward slope from the loading section toward the exit side, and an injection section for injecting liquefied carbon dioxide gas is provided at least on the loading section side, and the loading section is provided from the injection section. A refrigeration apparatus characterized in that liquefied carbon dioxide gas is ejected between the cooled object introduced into the cooling path and the conveying path surface, and a powdered or granular solidified carbon dioxide gas substance can be generated between the conveying path surface and the cooled object.
【請求項3】 被冷却体が搬入部側に導入される際に、
初速を持って導入可能に初速生成手段を設けたことを特
徴とする請求項1記載の冷凍装置。
3. When the object to be cooled is introduced into the loading section,
2. The refrigeration system according to claim 1, further comprising an initial speed generating means that can be introduced at an initial speed.
【請求項4】 被冷却体を移送する搬送路の搬入部から
出口側までに位置する搬送路内の適宜位置に、液化炭酸
ガスを噴射する噴射部を設け、該噴射部噴出された液化
炭酸ガスにより、該搬送路面と被冷却体間に粉状若しく
は粒状の固化炭酸ガス体を生成し、該固化炭酸ガス体が
出口位置まで継続して搬送路面と被冷却体間に介在させ
たことを特徴とする請求項2記載の冷凍装置。
4. An injection section for injecting liquefied carbon dioxide gas is provided at an appropriate position in the transport path located from the loading section to the exit side of the transport path for transporting the cooled object, and the liquefied carbon dioxide ejected from the injection section is provided. By the gas, a powdery or granular solidified carbon dioxide gas is generated between the conveying path surface and the cooled object, and the solidified carbon dioxide gas is continuously interposed between the conveying path surface and the cooled object until the outlet position. 3. The refrigeration apparatus according to claim 2, wherein:
JP09913794A 1994-04-14 1994-04-14 Refrigeration equipment Expired - Fee Related JP3197429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09913794A JP3197429B2 (en) 1994-04-14 1994-04-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09913794A JP3197429B2 (en) 1994-04-14 1994-04-14 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07280406A JPH07280406A (en) 1995-10-27
JP3197429B2 true JP3197429B2 (en) 2001-08-13

Family

ID=14239337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09913794A Expired - Fee Related JP3197429B2 (en) 1994-04-14 1994-04-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3197429B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321300C (en) * 2005-09-30 2007-06-13 上海交通大学 CO2 steam-solid particle refrigerating system
JP2008224206A (en) * 2008-04-02 2008-09-25 Mayekawa Mfg Co Ltd Dual refrigerating cycle device

Also Published As

Publication number Publication date
JPH07280406A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US6877327B2 (en) Flow enhanced tunnel freezer
US5170631A (en) Combination cryogenic and mechanical freezer apparatus and method
US2254420A (en) Refrigerating apparatus
US6334330B2 (en) Impingement cooler
EP0836062A2 (en) Liquid air food freezer and method
US3531946A (en) Cryogenic-mechanical refrigeration apparatus
US5765381A (en) Multitier crossflow cryogenic freezer and method of use
US3605434A (en) Refrigeration apparatus including a conveyor and employing cryogenic fluid
CA2280199C (en) Impingement cooler
US5606861A (en) Crossflow cryogenic freezer and method of use
US4077226A (en) Cryogenic freezer
JP3197429B2 (en) Refrigeration equipment
US5836166A (en) Cooling apparatus
JP2000081266A (en) Refrigerating body for vehicle, such as truck, trailer, or semitrailer
US5156006A (en) Apparatus for cooling a heat transfer fluid
CA2053976C (en) Refrigeration apparatus and method of refrigeration
US20050120726A1 (en) Deep freezer and method of freezing products
EP1214553B1 (en) A thermal processing chamber and a method of thermally processing products
US5349828A (en) Conveyor belt cleaning apparatus for food freezing
US20100162727A1 (en) Freezer with pulse flow generator
JP2611928B2 (en) Food freezing method and food freezing equipment
FR2779810A1 (en) Continuous freezing of food products
JPS6020671B2 (en) Rapid freezing method and equipment for food
WO2013101769A2 (en) Cryogenic spiral freezer
JP2004245469A (en) Refrigerator car

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees