JP3196720U - Thermal insulation structure - Google Patents

Thermal insulation structure Download PDF

Info

Publication number
JP3196720U
JP3196720U JP2014006132U JP2014006132U JP3196720U JP 3196720 U JP3196720 U JP 3196720U JP 2014006132 U JP2014006132 U JP 2014006132U JP 2014006132 U JP2014006132 U JP 2014006132U JP 3196720 U JP3196720 U JP 3196720U
Authority
JP
Japan
Prior art keywords
heat
aluminum foil
high reflectivity
respect
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2014006132U
Other languages
Japanese (ja)
Other versions
JP3196720U7 (en
Inventor
野口 修平
修平 野口
彩乃 野口
彩乃 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon-Shanetu Co., Ltd.
Original Assignee
Nihon-Shanetu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon-Shanetu Co., Ltd. filed Critical Nihon-Shanetu Co., Ltd.
Priority to JP2014006132U priority Critical patent/JP3196720U/en
Application granted granted Critical
Publication of JP3196720U publication Critical patent/JP3196720U/en
Anticipated expiration legal-status Critical
Publication of JP3196720U7 publication Critical patent/JP3196720U7/ja
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

【課題】タンク、乾燥炉等容器や炉の外壁側に、アルミホイル等の輻射熱に対して高反射率の素材を取り付ける事により保温性を高める遮熱保温構造を提供する。【解決手段】タンク、乾燥炉等の容器1または炉等の容体外壁表面に、ポリエステルやガラス等化学繊維シート2と、化学繊維シートの外側に積層したアルミホイル等の輻射熱に対して高反射率の素材とを有する遮熱材3を密着させた遮熱保温構造であって、容体外壁表面と輻射熱に対して高反射率の素材との間に、静止空気層が生じないように化学繊維シートが接着または溶着されている。輻射熱に対して高反射率の素材の厚さは7〜15ミクロン、化学繊維シートを含む全体の厚さは0.2ミリメートル以下に形成されている。【選択図】図1The present invention provides a heat insulation and heat insulation structure that enhances heat insulation by attaching a material having high reflectivity to radiant heat such as aluminum foil on a container such as a tank or a drying furnace or an outer wall side of the furnace. A container 1 such as a tank or a drying furnace or a chemical fiber sheet 2 such as polyester or glass on the surface of an outer wall of a furnace or the like, and a high reflectivity with respect to radiant heat such as aluminum foil laminated on the outside of the chemical fiber sheet. A heat insulating and heat insulating structure in which a heat insulating material 3 having the above material is closely attached, and a chemical fiber sheet so that a static air layer is not formed between the outer wall surface of the container and a material having high reflectivity with respect to radiant heat. Is glued or welded. The material having a high reflectivity with respect to radiant heat is 7 to 15 microns, and the total thickness including the chemical fiber sheet is 0.2 mm or less. [Selection] Figure 1

Description

本考案は、タンク、配管或いは乾燥炉等、容器や炉等から出る熱を阻止する遮熱保温構造を提供するものである。   The present invention provides a heat insulation and heat insulation structure that prevents heat from a container, a furnace, or the like, such as a tank, a pipe, or a drying furnace.

従来から、タンクや配管或いは乾燥炉等は、周囲をグラスウールやロックウール断熱材等で覆い、その上から板金加工されているものが殆どである。
例えば、断熱材の外面側をアルミ箔、ステンレス薄板などで被覆し、適当な箇所にホックを設けた遮熱カバーがある。この遮熱カバーは、排気管等の外周に巻き付けたときの重なり部分をホックで固定するように構成されている(特許文献1参照)。
Conventionally, most tanks, pipes, drying ovens, and the like are covered with glass wool or rock wool heat insulating material, and sheet metal processed from there.
For example, there is a heat insulating cover in which the outer surface side of the heat insulating material is covered with an aluminum foil, a stainless steel thin plate, etc., and a hook is provided at an appropriate location. This heat shield cover is configured to fix an overlapping portion with a hook when wound around the outer periphery of an exhaust pipe or the like (see Patent Document 1).

登録実用新案第3110394号公報Registered Utility Model No. 3110394

その為次のような問題があった。
タンクや配管或いは乾燥炉等容器や炉等には、内部を気体や液体等流体が流れているか又は保管されている。これら、容器や炉等内の温度が外気温より高ければ熱は内部から屋外側に移動する。又、容器や炉等の表面から屋外側に移動する熱は伝導熱、対流熱、輻射熱の3形態であるが、中でも輻射熱の量は最も大きい。
Therefore, there were the following problems.
In a tank, piping, a container such as a drying furnace, a furnace, or the like, a fluid such as gas or liquid flows or is stored therein. If the temperature inside these containers and furnaces is higher than the outside air temperature, the heat moves from the inside to the outside. In addition, the heat transferred from the surface of the container or furnace to the outdoor side is in three forms of conduction heat, convection heat, and radiant heat, but the amount of radiant heat is the largest.

容器や炉等から屋外側に移動する熱を阻止する為、容器や炉等の外側にグラスウールやロックウール等断熱材が使用されている。しかし、これら断熱材は伝導熱を阻止する効果は大きいものの、対流熱や輻射熱を阻止する事は難しく充分な保温効果は望めないという問題があった。   In order to prevent the heat moving from the container or the furnace to the outdoor side, a heat insulating material such as glass wool or rock wool is used outside the container or the furnace. However, although these heat insulating materials have a large effect of blocking conduction heat, it is difficult to block convection heat and radiant heat, and there is a problem that a sufficient heat retention effect cannot be expected.

グラスウールやロックウール断熱材は、鉱物を繊維化し綿状にしたもので、湿気を帯びると断熱性は大幅に低下してしまうという問題がある。又、物がぶつかると破損しやすい事もあり、容器や炉等の周囲は金属製の板でカバーしなければならずコストアップにもなっていた。   Glass wool or rock wool insulation is made of a fiber made of mineral and made into a cotton-like material, and there is a problem that the heat insulation performance is greatly reduced when wet. In addition, when objects collide with each other, they may be easily damaged, and the surroundings of the container and the furnace have to be covered with a metal plate, resulting in an increase in cost.

又、断熱性を高めようとすると断熱材の密度や厚みを厚くすることとなるが、容積が大きくなり余分のスペースが必要になるという問題もある。   In addition, increasing the heat insulating property increases the density and thickness of the heat insulating material, but there is a problem that the volume increases and an extra space is required.

又、特許文献1のような構成では、ホックを設けた箇所において巻き付けを固定していることから、ホックを設けていない大部分の箇所には隙間が生じる。また、巻き付けによって生じる応力が一様にならないことから、断熱材と排気管等の間に空間が生じる場合がある。そのため、これらの隙間等から輻射熱が外側へ放射されることになり、高い遮熱効果や保温効果を得ることが困難になるという問題がある。   Moreover, in the structure like patent document 1, since winding is fixed in the location which provided the hook, a clearance gap arises in the most locations which do not provide the hook. Moreover, since the stress generated by winding is not uniform, a space may be generated between the heat insulating material and the exhaust pipe. Therefore, radiant heat is radiated to the outside from these gaps and the like, and there is a problem that it is difficult to obtain a high heat shielding effect and a heat retaining effect.

本考案は、これらの問題を解決する為になされたものである。   The present invention has been made to solve these problems.

本考案に係る遮熱保温機構は、タンク、乾燥炉等の容器または炉等の容体外壁表面に、ポリエステルやガラス等化学繊維シートと、前記ポリエステルやガラス等化学繊維シートの外側に積層した輻射熱に対して高反射率の素材とを有する遮熱材を密着させた遮熱保温構造であって、前記遮熱材は、前記容体外壁表面と前記輻射熱に対して高反射率の素材との間に、静止空気層が生じないように前記輻射熱に対して高反射率の素材に前記ポリエステルやガラス等化学繊維シートが接着または溶着されており、厚さ7〜15ミクロンの前記輻射熱に対して高反射率の素材、及び、前記ポリエステルやガラス等化学繊維シートを含む全体の厚さは0.2ミリメートル以下に形成されていることを特徴とする。   The heat insulation and heat retention mechanism according to the present invention is applied to the surface of the outer wall of a container such as a tank, a drying furnace or the like, or a chemical fiber sheet such as polyester or glass, and radiant heat laminated on the outside of the chemical fiber sheet such as polyester or glass. A heat insulation structure in which a heat shielding material having a high reflectivity material is in close contact with each other, wherein the heat shield material is between the outer wall surface of the container and the material having a high reflectivity with respect to the radiant heat. In addition, a chemical fiber sheet such as polyester or glass is bonded or welded to a material having a high reflectivity with respect to the radiant heat so as not to generate a static air layer, and highly reflective to the radiant heat having a thickness of 7 to 15 microns. The total thickness including the material of the rate and the chemical fiber sheet such as polyester and glass is formed to be 0.2 mm or less.

また、前記輻射熱に対して高反射率の素材の表面に、電食を防ぐ高分子ポリマー系の高透過樹脂フィルム等を取り付けたことを特徴とする。   In addition, a high-polymer resin-based high polymer resin film that prevents electrolytic corrosion is attached to the surface of a material having a high reflectance with respect to the radiant heat.

本考案の最も大きなメリットは、タンク、乾燥炉等容器や炉の外壁材の外側に、輻射熱に対して高反射率の素材からなる外面を有する遮熱材を、直接空気層も設けず取り付けるだけで大きな省エネ効果を生み出せることにある。   The biggest merit of the present invention is that a heat shielding material having an outer surface made of a material having a high reflectivity with respect to radiant heat is directly attached to the outside of a vessel such as a tank or a drying furnace or the outer wall material of the furnace without providing an air layer. It is to produce a big energy saving effect.

輻射熱に対して高反射率の素材からなる外面を有する遮熱材を僅か0.2ミリメートル以下の厚みとしてタンク等に直接貼りつけるので、断熱層を保護する板金工事が必要なく費用を大幅に削減することが出来る。又余分なスペースを必要としなくなった。   A heat shield with an outer surface made of a material highly reflective to radiant heat is applied directly to a tank, etc. with a thickness of only 0.2 millimeters or less, so there is no need for sheet metal work to protect the heat insulation layer, greatly reducing costs. I can do it. Also, no extra space is required.

輻射熱に対して高反射率の素材からなる外面を有する遮熱材を、例えば容器、炉等の外壁材の外側(容器等の外壁材の外側に既に保温材による保温層が設けられている場合には、その外側)に、接着剤や接着テープで貼るだけなので作業は誰でも簡単に施工でき、この面でも大幅なコスト削減が可能である。   For example, a heat insulating material having an outer surface made of a material having a high reflectivity with respect to radiant heat, for example, an outer wall material such as a container or a furnace (when a heat insulating layer is already provided on the outer wall material such as a container) Since it can be simply applied to the outside) with an adhesive or adhesive tape, anyone can easily perform the work, and this can greatly reduce costs.

タンクにアルミホイル等輻射熱に対して高反射率の素材を取り付けた断面図である。It is sectional drawing which attached the raw material of a high reflectance with respect to radiant heats, such as aluminum foil, to a tank. 遮熱試験4による温度測定方法を示す説明図である。It is explanatory drawing which shows the temperature measuring method by the thermal-insulation test. 遮熱試験4による測定温度の経時変化を示す説明図である。It is explanatory drawing which shows the time-dependent change of the measured temperature by the thermal-insulation test 4. FIG. 保温試験による温度測定方法を示す説明図である。It is explanatory drawing which shows the temperature measuring method by a heat retention test.

以下、本考案を実施するための最良の形態について説明する。
タンク1や配管或いは乾燥炉等容器や炉等から屋外側に移動する熱は、伝導熱、対流熱、輻射熱の3つの形態をとるが、中でも輻射熱の量が最も多いとされている。
この輻射熱をカットする方法として、アルミホイル等輻射熱に対して高反射率の素材が有効であることも知られている。
Hereinafter, the best mode for carrying out the present invention will be described.
Heat transferred from the tank 1 or piping or a container such as a drying furnace or the furnace to the outdoor side takes three forms of conduction heat, convection heat, and radiant heat, and the amount of radiant heat is said to be the largest.
As a method for cutting off this radiant heat, it is also known that a material having high reflectivity with respect to radiant heat such as aluminum foil is effective.

アルミホイル等輻射熱に対して高反射率の素材は、輻射熱に対する反射が大きな目的であるから、熱の照射側に空気層を設けて使用するのが一般的である。即ち、タンク、配管、或いは乾燥炉等容器や炉等の外壁とアルミホイル等輻射熱に対して高反射率の素材との間にスペーサー等を取り付け、静止空気層即ち空間を設けることがよいとされている。   A material having high reflectivity with respect to radiant heat, such as aluminum foil, has a large purpose of reflecting with respect to radiant heat. Therefore, an air layer is generally provided on the heat irradiation side. In other words, it is recommended to install a static air layer, that is, a space, between a tank, piping, or the outer wall of a container such as a drying furnace or a furnace, and a material having high reflectivity against radiant heat such as aluminum foil. ing.

しかし本考案は、従来とは全く逆の考え方によるもので、静止空気層即ち空間の有無によらずに高性能の保温が出来るようにしたものである。   However, the present invention is based on a completely opposite concept to that of the prior art, and enables high-performance heat insulation regardless of the presence of a static air layer, that is, a space.

物質の輻射熱に対する反射率プラス放射率の和は壱である。例えば、アルミホイルの場合、輻射熱に対する反射率は98パーセントくらいであるが、この場合の放射率は僅か2パーセントと言う事になる。即ち、僅かな熱しか放射されないという事である。   The sum of the reflectance plus emissivity of a material against radiant heat is 壱. For example, in the case of aluminum foil, the reflectivity for radiant heat is about 98%, but the emissivity in this case is only 2%. That is, only a little heat is radiated.

(実施例)
図1は、本考案の遮熱保温構造による実施例を示すもので、タンクにアルミホイル等輻射熱に対して高反射率の素材を取り付けた断面図である。
本実施例は、タンク1、配管或いは乾燥炉等容器や炉等の外壁の屋外側に、アルミホイル3等輻射熱に対して高反射率の素材を直接取り付けるものである。このとき、タンク1、配管或いは乾燥炉等容器や炉等の外壁とアルミホイル3等輻射熱に対して高反射率の素材との間には空間を持たず密着させて取り付けるものである。仮に、タンク1、配管或いは乾燥炉等容器や炉等の外壁とアルミホイル3等輻射熱に対して高反射率の素材との間に空気等があると、タンク1、配管或いは乾燥炉等容器や炉等からの熱はこの空気に移動し、更にその外側のアルミホイル3等輻射熱に対して高反射率の素材に伝導され、アルミホイル3等輻射熱に対して高反射率の素材の外面から大気へと伝達される為、熱効率が低下することになる。
(Example)
FIG. 1 shows an embodiment of the heat insulation and heat insulation structure of the present invention, and is a cross-sectional view in which a material having a high reflectance with respect to radiant heat such as aluminum foil is attached to a tank.
In this embodiment, a material having high reflectivity with respect to radiant heat, such as the aluminum foil 3, is directly attached to the outside of the outer wall of a tank 1, a pipe, a container such as a drying furnace, or a furnace. At this time, the tank 1, the pipe or the outer wall of a container such as a drying furnace or the furnace, and the aluminum foil 3 or the like are attached in close contact with the material having high reflectivity with respect to the radiant heat. If there is air or the like between the outer wall of the tank 1, piping or drying furnace or the like and the outer wall of the furnace, etc., and the aluminum foil 3, etc., the material such as the tank 1, piping or drying furnace, The heat from the furnace moves to this air, and is further conducted to the material having high reflectivity with respect to the radiant heat such as the aluminum foil 3 on the outside, and the atmosphere from the outer surface of the material having high reflectivity with respect to the radiant heat such as the aluminum foil 3 As a result, heat efficiency is reduced.

タンク1を例に本考案のメカニズムを詳しく説明する。
タンク1内部の温度が外気温より高くしかも内部の物質が気体である場合は、タンク1内の熱は伝導熱、対流熱、輻射熱の形態をとってタンク1外壁に伝達される。又、タンク1内部の物質が液体の場合は、伝導熱及び対流熱の形態をとって同様タンク1外壁に伝達される。これらタンク1外壁に伝達された熱は、伝導熱の形態をとってタンク1外壁表面に移動、再び伝導熱、対流熱、輻射熱の形態をとってタンク1外壁表面より大気に伝達される。
The mechanism of the present invention will be described in detail by taking the tank 1 as an example.
When the temperature inside the tank 1 is higher than the outside air temperature and the substance inside is a gas, the heat inside the tank 1 is transferred to the outer wall of the tank 1 in the form of conduction heat, convection heat, and radiation heat. Further, when the substance inside the tank 1 is a liquid, it is transmitted to the outer wall of the tank 1 in the form of conduction heat and convection heat. The heat transferred to the outer wall of the tank 1 takes the form of conduction heat and moves to the surface of the outer wall of the tank 1, and again takes the form of conduction heat, convection heat and radiation heat and is transferred from the surface of the outer wall of the tank 1 to the atmosphere.

現在、タンク1の外側に施工されている断熱工法は、タンク1の外壁の外側にロックウールやグラスウールを巻きつけるように取り付け、更にその外側からワイヤーメッシュ等で固定している。しかし、そもそもこれら繊維系の断熱材は、内部に多くの空気を含ませることにより伝導熱を阻止するものである。従って、断熱材に含まれる空気が多ければ多いほど輻射熱はより通過しやすい事になる。又、タンク1外壁表面から放射された輻射熱がロックウールやグラスウールに照射されれば、ロックウールやグラスウールはこの輻射熱を吸収、再度輻射熱となって屋外側に放射される。従って、ロックウールやグラスウールは伝導熱に対しては効果的であるが、輻射熱に対しては殆ど阻止する事は難しいのである。一般的に、断熱材の輻射熱に対する反射率が5〜10パーセントと言われているのは正しくこの事由である。   At present, the heat insulation method applied to the outside of the tank 1 is attached so that rock wool or glass wool is wound around the outside of the outer wall of the tank 1, and is further fixed from the outside with a wire mesh or the like. However, in the first place, these fiber-based heat insulating materials prevent conduction heat by containing a large amount of air inside. Therefore, the more air contained in the heat insulating material, the more easily the radiant heat passes. If radiant heat radiated from the outer wall surface of the tank 1 is applied to rock wool or glass wool, the rock wool or glass wool absorbs this radiant heat and is radiated again to be radiated to the outdoor side. Therefore, although rock wool and glass wool are effective against conduction heat, it is difficult to almost prevent radiation heat. In general, the reason why the reflectivity of the heat insulating material with respect to radiant heat is said to be 5 to 10% is the correct reason.

本考案は、タンク1の外壁の屋外側に静止空気層も設けず密着してアルミホイル3等輻射熱に対して高反射率の素材を取り付けるものである。アルミホイル3等輻射熱に対して高反射率の素材をタンク1の外壁に密着させる事で、アルミホイル3の低放射の性能を充分引き出す事が可能である。   In the present invention, a still air layer is not provided on the outdoor side of the outer wall of the tank 1, and a material having high reflectivity with respect to radiant heat such as the aluminum foil 3 is attached. It is possible to sufficiently bring out the low radiation performance of the aluminum foil 3 by bringing a material having high reflectivity against the radiant heat such as the aluminum foil 3 into close contact with the outer wall of the tank 1.

アルミホイル3等輻射熱に対して高反射率の素材は、アルミホイル3などが一般的に使用されるが、輻射熱に対する反射率は少なくても95パーセント以上のものが好ましく、反射性能が高ければより高い性能を引き出す事が可能である。   Aluminum foil 3 etc. As a material having high reflectivity with respect to radiant heat, aluminum foil 3 or the like is generally used. However, the reflectivity with respect to radiant heat is preferably at least 95%, and if the reflectivity is high, it is more preferable. High performance can be extracted.

アルミホイル3等輻射熱に対して高反射率の素材は、アルミホイル3等の片面にポリエステルやガラス等化学繊維のシート2が接着又は溶着されている。ポリエステルやガラス等化学繊維シート2は、タンク1とアルミホイル3等輻射熱に対して高反射率の素材の間に挟まれているが、これらのシート2は繊維が幾重にも重なったもので大幅な断熱性を向上させることが出来る。
更に、伝導熱が少なくなると言う事は、対流熱も減少する事と成り、大きな保温効果を生み出す事が出来るのである。
A material having a high reflectivity with respect to radiant heat such as the aluminum foil 3 has a sheet 2 of chemical fiber such as polyester or glass bonded or welded to one side of the aluminum foil 3 or the like. The chemical fiber sheet 2 such as polyester and glass is sandwiched between the material having high reflectivity against the radiant heat such as the tank 1 and the aluminum foil 3, but these sheets 2 are greatly overlapped with fibers. Heat insulation can be improved.
Furthermore, the fact that conduction heat is reduced means that convection heat is also reduced, which can produce a large heat retention effect.

アルミホイル3の厚みは7〜15ミクロン程度、一方ポリエステルやガラス等化学繊維シート2も0.1ミリ程度に圧縮して使用する為、両方合わせても0.2ミリメートル以下となる。なお、アルミホイル3等輻射熱に対して高反射率の素材を有する遮熱材の厚みは、例えば0.1ミリメートル以下〜4.0ミリメート程度でも良いが、0.2ミリメートル以下が望ましい。   The thickness of the aluminum foil 3 is about 7 to 15 microns, while the chemical fiber sheet 2 such as polyester or glass is also used by being compressed to about 0.1 mm. The thickness of the heat shielding material having a material having a high reflectivity with respect to radiant heat, such as the aluminum foil 3, may be, for example, about 0.1 mm or less to 4.0 mm, but is preferably 0.2 mm or less.

タンク1や配管等容器や炉が金属製である場合、アルミホイル3等輻射熱に対して高反射率の素材との間に電食が起き、通常アルミホイル3等輻射熱に対して高反射率の素材に腐食が発生する事がある。しかし本考案は、タンク1や配管等容器や炉等とアルミホイル3等輻射熱に対して高反射率の素材の間にポリエステルやガラス等化学繊維シート2が使用されているためこの心配が全く無い。
上記のようにアルミホイル3等輻射熱に対して高反射率の素材とポリエステルやガラス等化学繊維シート2とを積層させた遮熱材は、タンク1などの容器、炉、管等の外壁材の外側(容器等の外壁材の外側に既に保温材による保温層が設けられている場合には、その外側)に接着剤や接着テープを用いて貼り付け固定されている。
When the tank 1 or pipe container or furnace is made of metal, galvanic corrosion occurs between the aluminum foil 3 and other materials that have high reflectivity for radiant heat, and the aluminum foil 3 and other materials that have high reflectivity for radiant heat. Corrosion may occur in the material. However, in the present invention, since the chemical fiber sheet 2 such as polyester and glass is used between the tank 1, the container such as the pipe, the furnace, and the aluminum foil 3 and the like, which has a high reflectivity against the radiant heat, there is no concern about this. .
As described above, the heat shielding material in which the material having high reflectivity with respect to radiant heat such as the aluminum foil 3 and the chemical fiber sheet 2 such as polyester or glass is laminated is a container of the tank 1 or the like, an outer wall material such as a furnace or a pipe. It is affixed by using an adhesive or an adhesive tape on the outside (in the case where a heat insulation layer is already provided on the outside of the outer wall material such as a container, on the outside).

又、タンク1、配管或いは乾燥炉等容器や炉の外側に取り付けられたアルミホイル3等輻射熱に対して高反射率の素材が、外部の金属と接触する場合も電食の恐れがある。この場合、アルミホイル3等輻射熱に対して高反射率の素材の表面に、高分子ポリマー系の高透過樹脂フィルム等を取り付け、これに対処する事が必要である。   In addition, when a material having high reflectivity against radiant heat such as a tank 1, a pipe or a container such as a drying furnace or an aluminum foil 3 attached to the outside of the furnace is in contact with an external metal, there is a risk of electrolytic corrosion. In this case, it is necessary to cope with this by attaching a high polymer polymer type highly transparent resin film or the like to the surface of the material having high reflectivity with respect to radiant heat such as the aluminum foil 3.

この高分子ポリ系高透過樹脂フィルムは、アルカリ性等化学物質からの腐食も防止することが可能である。   This polymer poly-based high-permeability resin film can also prevent corrosion from chemical substances such as alkaline.

タンク1、配管等で、内部の温度が外気温より低い場合、熱流は屋外側からタンク1、或いは配管内部に向かう。この場合も、屋外からの輻射熱を反射する事ができ大きな保温効果を得る事ができる。   When the internal temperature of the tank 1 or piping is lower than the outside air temperature, the heat flow goes from the outdoor side to the tank 1 or the inside of the piping. Also in this case, radiant heat from the outdoors can be reflected, and a large heat retaining effect can be obtained.

[遮熱試験1]
沸騰した湯の入ったやかん10リットルの外表面の一部に、厚さ0.1ミリメートルの遮熱材(THB−CX)を10センチ角位の大きさに切り貼り付け、サーモグラフィーで温度を測定した。
[Thermal insulation test 1]
A heat shield material (THB-CX) with a thickness of 0.1 mm was cut and pasted to a part of the outer surface of a 10 liter kettle containing boiling water, and the temperature was measured by thermography. .

[結果1]
遮熱未施工部分のやかんの外壁温度は95.3℃なのに、厚さ0.1ミリメートルの遮熱材(THB−CX)を貼った表面温度は28.2℃であった。
[Result 1]
Although the outer wall temperature of the kettle in the non-heat-shielded part was 95.3 ° C., the surface temperature of the 0.1 mm-thick heat shield (THB-CX) was 28.2 ° C.

[考察1]
僅か、0.1ミリメートルの遮熱施工と未施工部分の温度差が67.1℃にもなり、大きな保温効果があるのがはっきり確認できる。勿論、指で遮熱施工表面を押すとやかん内部の温度を拾ってしまうので熱さを感じるが、やかんから1センチ程手を離すと体感的にも全く熱さを感じなかった。
[Discussion 1]
The temperature difference between the heat shielding construction of 0.1 mm and the untreated part is as high as 67.1 ° C., and it can be clearly confirmed that there is a large heat retention effect. Of course, pressing the surface of the heat shield with your finger picks up the temperature inside the kettle, so you feel the heat, but when you take your hand away from the kettle about a centimeter, you feel no heat at all.

[遮熱試験2]
氷を入れた10リットルのやかんの外表面の一部に、厚さ0.1ミリメートルの遮熱材(THB−CX)を10センチ角位の大きさに切り貼り付け、サーモグラフィーで温度を測定した。
[Thermal insulation test 2]
A heat shielding material (THB-CX) having a thickness of 0.1 mm was cut and pasted on a part of the outer surface of a 10 liter kettle containing ice, and the temperature was measured by thermography.

[結果2]
遮熱未施工部分のやかんの外壁温度は47.9℃なのに、厚さ0.1ミリメートルの遮熱材(THB−CX)を貼った表面温度は24.8℃であった。
[Result 2]
Although the outer wall temperature of the kettle in the heat shield unapplied portion was 47.9 ° C., the surface temperature on which the 0.1 mm-thick heat shield (THB-CX) was pasted was 24.8 ° C.

[考察2]
遮熱施工と未施工部分のやかん表面温度差が23.1℃にもなり、大きな保温効果があるのがはっきり確認できる。
[Discussion 2]
The kettle surface temperature difference between the heat shield construction and the untreated part is as high as 23.1 ° C, and it can be clearly confirmed that there is a large heat retention effect.

[遮熱試験3]
塗装部品乾燥炉の屋外側に、1メートル角の大きさに切断した厚さ0.1ミリメートルの遮熱材(THB−CX)を貼り、サーモグラフィーで表面温度を測定した。
[Thermal insulation test 3]
A heat shielding material (THB-CX) having a thickness of 0.1 millimeter cut to a size of 1 meter square was attached to the outdoor side of the paint component drying furnace, and the surface temperature was measured by thermography.

[結果3]
建屋内部の温度が20℃であった。遮熱未施工の乾燥炉の表面温度は45.1℃に対し、遮熱施工表面は24.5℃であった。
[Result 3]
The temperature inside the building was 20 ° C. The surface temperature of the non-heat-shielded drying furnace was 45.1 ° C, while the surface of the heat-shielded construction was 24.5 ° C.

[考察3]
タンクの温度測定同様、遮熱施工部と未施工部の温度差は20.6℃と大きな保温効果がある事が解かった。
[Discussion 3]
As with the temperature measurement of the tank, it was found that the temperature difference between the heat shielding construction part and the non-working part is 20.6 ° C., which has a large heat retention effect.

[遮熱試験4]
乾燥炉等の炉体に遮熱材(THB−FX、THB−X、THB−CX)を直貼りし、遮熱材の厚みや種類による遮熱性能を検証する。
[Heat insulation test 4]
A heat shielding material (THB-FX, THB-X, THB-CX) is directly attached to a furnace body such as a drying furnace, and the heat shielding performance depending on the thickness and type of the heat shielding material is verified.

図2は、遮熱試験4による温度測定方法を示す説明図である。ヒーター11は、例えば定格1000Wの遠赤外線ヒーターである。炉体に見立てる鉄板Aは、サイズが300×300×0.8ミリメートルのガルバニウム鋼板(表面黒色)である。鉄板Aはヒーター11から適当に離間して固定設置されている。ヒーター11の背後側となる鉄板A表面には、遮熱材B,C,Dが直貼りされている。即ち、室内側(炉体外側面)に各遮熱材B,C,Dを貼り付けた状態を疑似的に生じさせている。遮熱材Bは厚さが0.2ミリメートルのTHB−FX、遮熱材Cは厚さが0.2ミリメートルのTHB−X、遮熱材Dは厚さが0.1ミリメートルのTHB−CXである。なお、各遮熱材B,C,Dは、耐熱性を備えた両面テープ等を用いて鉄板Aに貼り付けられている。   FIG. 2 is an explanatory view showing a temperature measuring method by the heat shielding test 4. The heater 11 is a far-infrared heater with a rating of 1000 W, for example. The iron plate A that looks like a furnace body is a galvanium steel plate (surface black) having a size of 300 × 300 × 0.8 mm. The iron plate A is fixedly installed at an appropriate distance from the heater 11. Heat shielding materials B, C, and D are directly attached to the surface of the iron plate A on the back side of the heater 11. That is, a state in which the heat shielding materials B, C, and D are pasted on the indoor side (outer surface of the furnace body) is artificially generated. The thermal insulation material B is THB-FX having a thickness of 0.2 millimeters, the thermal insulation material C is THB-X having a thickness of 0.2 millimeters, and the thermal insulation material D is THB-CX having a thickness of 0.1 millimeters. It is. In addition, each heat shield material B, C, D is affixed on the iron plate A using the double-sided tape etc. with heat resistance.

温度センサ12は、複数個所の測定温度を記録するサーモレコーダ等に配線接続されている。遮熱材B,C,Dはそれぞれ外側表面(屋外面)にアルミホイルを備えている。遮熱材Bは、外側のアルミホイルB1を剥離し、遮熱材B本体に温度センサ12を取り付け、当該温度センサ12をアルミホイルB1で覆った状態で温度測定を行った。遮熱材Cは、外側のアルミホイルC1を剥離し、遮熱材C本体に温度センサ12を取り付け、当該温度センサ12をアルミホイルC1で覆った状態で温度測定を行った。遮熱材Dは、外側のアルミホイルは構造上剥離が困難であるため、この遮熱材Dのアルミホイル表面に温度センサ12を取り付け、温度センサ12を取り付けた遮熱材D表面をアルミホイルD1で覆った状態で温度測定を行った。また、鉄板Aの適当な箇所に温度センサ12(図示省略)を取り付け、鉄板Aのヒーター11側温度測定を行った。なお、室内温度21.0℃、湿度41%の環境で試験を実施した。   The temperature sensor 12 is wired to a thermo recorder or the like that records measured temperatures at a plurality of locations. Each of the heat shielding materials B, C, and D has an aluminum foil on the outer surface (outdoor surface). The heat shield B was peeled off the outer aluminum foil B1, the temperature sensor 12 was attached to the main body of the heat shield B, and the temperature was measured with the temperature sensor 12 covered with the aluminum foil B1. For the heat shield C, the outer aluminum foil C1 was peeled off, the temperature sensor 12 was attached to the main body of the heat shield C, and the temperature was measured with the temperature sensor 12 covered with the aluminum foil C1. Since the outer aluminum foil is difficult to peel because of the structure of the heat shield D, the temperature sensor 12 is attached to the aluminum foil surface of the heat shield D, and the surface of the heat shield D to which the temperature sensor 12 is attached is aluminum foil. The temperature was measured while covered with D1. Moreover, the temperature sensor 12 (illustration omitted) was attached to the suitable location of the iron plate A, and the heater 11 side temperature measurement of the iron plate A was performed. The test was conducted in an environment where the room temperature was 21.0 ° C. and the humidity was 41%.

[結果4]
図3は、遮熱試験4による測定温度の経時変化を示す説明図である。図中、縦軸は測定温度(℃)、横軸は経過時間(分)である。
ヒーター11によって鉄板Aを加熱したときの、温度センサ12による各部の測定温度を下記の表1に示す。なお、表1の各数値単位は[℃]である。
[Result 4]
FIG. 3 is an explanatory view showing the change over time of the measured temperature in the heat shielding test 4. FIG. In the figure, the vertical axis represents the measurement temperature (° C.), and the horizontal axis represents the elapsed time (minutes).
Table 1 below shows the temperature measured at each part by the temperature sensor 12 when the iron plate A is heated by the heater 11. Each numerical unit in Table 1 is [° C.].

Figure 0003196720
Figure 0003196720

サーモグラフィーにより測定した鉄板A、遮熱材B、遮熱材C、遮熱材Dの各温度を下記に示す。下記(1)〜(5)の「鉄板A」は、遮熱材B,C,Dを取り付けた鉄板A表面の温度である。また、下記の「遮熱材B」は、温度センサ12を覆っているアルミホイルB1の外側表面の温度である。また、下記の「遮熱材C」は、温度センサ12を覆っているアルミホイルC1の外側表面の温度である。また、下記の「遮熱材D」は、温度センサ12を覆っているアルミホイルD1の外側表面の温度である。
(1)鉄板A:30.0℃時
遮熱材B:19.2℃ 遮熱材C:21.5℃ 遮熱材D:19.7℃
(2)鉄板A:50.0℃時
遮熱材B:21.2℃ 遮熱材C:22.3℃ 遮熱材D:20.4℃
(3)鉄板A:70.0℃時
遮熱材B:21.4℃ 遮熱材C:23.0℃ 遮熱材D:22.8℃
(4)鉄板A:90.0℃時
遮熱材B:22.4℃ 遮熱材C:23.9℃ 遮熱材D:23.2℃
(5)鉄板A:110.0℃時
遮熱材B:23.4℃ 遮熱材C:24.7℃ 遮熱材D:24.0℃
Each temperature of the iron plate A, the heat shield B, the heat shield C, and the heat shield D measured by thermography is shown below. “Iron plate A” in the following (1) to (5) is the temperature of the surface of the iron plate A to which the heat shielding materials B, C, D are attached. In addition, the following “heat shielding material B” is the temperature of the outer surface of the aluminum foil B 1 covering the temperature sensor 12. In addition, the following “heat shielding material C” is the temperature of the outer surface of the aluminum foil C 1 covering the temperature sensor 12. Moreover, the following “heat shielding material D” is the temperature of the outer surface of the aluminum foil D 1 covering the temperature sensor 12.
(1) Iron plate A: At 30.0 ° C
Heat shield material B: 19.2 ° C. Heat shield material C: 21.5 ° C. Heat shield material D: 19.7 ° C.
(2) Iron plate A: at 50.0 ° C
Heat shield material B: 21.2 ° C. Heat shield material C: 22.3 ° C. Heat shield material D: 20.4 ° C.
(3) Iron plate A: at 70.0 ° C
Heat shield material B: 21.4 ° C. Heat shield material C: 23.0 ° C. Heat shield material D: 22.8 ° C.
(4) Iron plate A: At 90.0 ° C
Heat shield material B: 22.4 ° C. Heat shield material C: 23.9 ° C. Heat shield material D: 23.2 ° C.
(5) Iron plate A: At 110.0 ° C
Heat shield material B: 23.4 ° C. Heat shield material C: 24.7 ° C. Heat shield material D: 24.0 ° C.

[考察4]
温度センサ12による測定において、鉄板A即ち熱源側温度が100.1℃の時、遮熱材B,C,Dの温度は85.1〜88.2℃となり、11.9〜15.0℃の温度差が生じる。いずれの遮熱材温度も、炉体(鉄板A)の温度上昇に比例しており、熱源側温度は各遮熱材のアルミホイル表面まで移動する事が解かる。
また、温度センサ12によって測定した各遮熱材の外側アルミホイルの内側温度は、遮熱材C(THB−X)と遮熱材D(THB−CX)は殆ど同じ温度であるが、遮熱材B(THB−FX)はそれより若干低い事が解かる。この測定結果から、前述の遮熱試験1〜3において、遮熱材としてTHB−FX、THB−Xを用いた場合でも、概ね同様な結果となることが解かる。
また、温度センサ12ならびにサーモグラフィーによる測定結果から、炉体(鉄板A)の温度、即ち熱源側温度が18.9℃から108.9℃まで90℃上昇した場合でも、各遮熱材の外側表面温度は3〜4℃程度の上昇となり、遮熱材B,C,Dの高い断熱性が解かる。
[Discussion 4]
In the measurement by the temperature sensor 12, when the temperature of the iron plate A, that is, the heat source side is 100.1 ° C., the temperature of the heat shielding materials B, C, D becomes 85.1-88.2 ° C., and 11.9-15.0 ° C. Temperature difference occurs. It can be seen that any heat shield temperature is proportional to the temperature rise of the furnace body (iron plate A), and the heat source side temperature moves to the aluminum foil surface of each heat shield.
Further, the inner temperature of the outer aluminum foil of each heat shielding material measured by the temperature sensor 12 is almost the same temperature as that of the heat shielding material C (THB-X) and the heat shielding material D (THB-CX). It can be seen that material B (THB-FX) is slightly lower. From this measurement result, it can be seen that, in the above-described heat shielding tests 1 to 3, even when THB-FX and THB-X are used as the heat shielding material, substantially the same results are obtained.
Moreover, even if the temperature of the furnace body (iron plate A), that is, the temperature on the heat source side is increased by 90 ° C. from 18.9 ° C. to 108.9 ° C. from the measurement results by the temperature sensor 12 and the thermography, The temperature rises to about 3 to 4 ° C., and the high heat insulating properties of the heat shielding materials B, C, and D are solved.

[保温試験]
炉体表面温度が150℃以上の状態で、保温性能を確保できるかを検証する。
[Insulation test]
It is verified whether or not the heat insulation performance can be ensured when the furnace body surface temperature is 150 ° C. or higher.

図4は、保温試験による温度測定方法を示す説明図である。図中、ヒーター11および鉄板Aは、遮熱試験4において使用したものと同一であり、また同様に設置固定されている。図4の鉄板Aは、ヒーター11の背後側表面に、アルミホイルE,Fが適当に離間して貼り付けられている。アルミホイルE,Fは例えば厚さ7ミクロンであり、アルミホイルEは、例えば自身の外周囲部分のみを鉄板A表面に接着しており、アルミホイルFは、一方の表面全体を鉄板A表面に接着している。即ち、アルミホイルEは空気層を設けて鉄板Aに接着されており、アルミホイルFは片面全体を鉄板A表面に直貼りされている。これらアルミホイルE,Fならびに鉄板Aの温度を、放射温度計とサーモグラフィーによって測定した。なお、室内温度23.5℃、湿度33%の環境で試験を実施した。また、ここで使用したサーモグラフィーは、最高150℃まで測定可能なものである。   FIG. 4 is an explanatory diagram showing a temperature measurement method by a heat retention test. In the figure, the heater 11 and the iron plate A are the same as those used in the thermal insulation test 4, and are similarly installed and fixed. In the iron plate A of FIG. 4, aluminum foils E and F are attached to the rear surface of the heater 11 with appropriate separation. The aluminum foils E and F are, for example, 7 microns thick, and the aluminum foil E has, for example, only its outer peripheral part adhered to the surface of the iron plate A, and the aluminum foil F has one surface entirely on the surface of the iron plate A. Glued. That is, the aluminum foil E is provided with an air layer and bonded to the iron plate A, and the aluminum foil F is directly bonded to the surface of the iron plate A on one side. The temperatures of these aluminum foils E and F and the iron plate A were measured by a radiation thermometer and thermography. The test was conducted in an environment where the room temperature was 23.5 ° C. and the humidity was 33%. The thermography used here can measure up to 150 ° C.

[結果]
ヒーター11によって鉄板Aを加熱したときの測定点a,b,cの各温度を下記の表2に示す。なお、表2の各数値単位は[℃]である。
[result]
Table 2 below shows the temperatures of the measurement points a, b, and c when the iron plate A is heated by the heater 11. Each numerical unit in Table 2 is [° C.].

Figure 0003196720
Figure 0003196720

[考察]
放射温度計による測定において、鉄板Aの温度が171℃の時、アルミホイルE,Fの表面温度は39.4〜32.2℃で、アルミホイルの高い保温性能が解かる。また、サーモグラフィーによる測定でも、放射温度計を用いたときに比べて3〜4℃の差はあるものの、保温性能は同様の傾向であることが解かる。
この試験では、空気層を設けたアルミホイルEよりも鉄板Aに完全密着させたアルミホイルFの方が5〜7℃低い温度を示した。
[Discussion]
In the measurement with the radiation thermometer, when the temperature of the iron plate A is 171 ° C., the surface temperature of the aluminum foils E and F is 39.4 to 32.2 ° C., and the high heat retention performance of the aluminum foil is found. Also, it can be seen that the thermal insulation performance has the same tendency even in the measurement by thermography, although there is a difference of 3 to 4 ° C. compared with the case of using the radiation thermometer.
In this test, the temperature of the aluminum foil F that was completely adhered to the iron plate A was lower by 5 to 7 ° C. than the aluminum foil E provided with an air layer.

図1に示した本実施例の遮熱保温構造は、遮熱材を炉体等に密着させたものであるが、保温試験の結果から解かるように、アルミホイル等の素材を炉体に密着させた場合でも一定の保温効果が得られる。さらに高い保温効果を得る必要がある場合には、例えば遮熱材の外側表面のアルミホイル等輻射熱に対して高反射率の素材と、これに積層されたポリエステルやガラス等化学繊維シートとの間に、空気層などの空間を設けるように構成するとよい。なお、前述の遮熱試験1〜4は、いずれもアルミホイル等輻射熱に対して高反射率の素材とポリエステルやガラス等化学繊維シートとを密着させた遮熱材によって試験を行ったものである。   The heat insulation and heat insulation structure of the present embodiment shown in FIG. 1 is a structure in which a heat insulation material is brought into close contact with a furnace body, etc. As can be understood from the results of the heat insulation test, a material such as aluminum foil is used in the furnace body. A constant heat retention effect can be obtained even when they are in close contact. When it is necessary to obtain a higher heat retention effect, for example, between the material having high reflectivity against radiant heat such as aluminum foil on the outer surface of the heat shield, and a synthetic fiber sheet such as polyester or glass laminated on the material. Further, it is preferable to provide a space such as an air layer. In addition, as for the above-mentioned thermal-insulation tests 1-4, all tested by the thermal-insulation material which made the material of high reflectance with respect to radiant heat, such as aluminum foil, and chemical fiber sheets, such as polyester and glass, stuck. .

1タンク
2シート
3アルミホイル
11ヒーター
12温度センサ
1 tank 2 sheets 3 aluminum foil 11 heater 12 temperature sensor

Claims (2)

タンク、乾燥炉等の容器または炉等の容体外壁表面に、
ポリエステルやガラス等化学繊維シートと、前記ポリエステルやガラス等化学繊維シートの外側に積層した輻射熱に対して高反射率の素材と、
を有する遮熱材を密着させた遮熱保温構造であって、
前記遮熱材は、
前記容体外壁表面と前記輻射熱に対して高反射率の素材との間に、静止空気層が生じないように前記輻射熱に対して高反射率の素材に前記ポリエステルやガラス等化学繊維シートが接着または溶着されており、
厚さ7〜15ミクロンの前記輻射熱に対して高反射率の素材、及び、前記ポリエステルやガラス等化学繊維シートを含む全体の厚さは0.2ミリメートル以下に形成されている、
ことを特徴とする遮熱保温構造。
On the outer wall surface of a container such as a tank or a drying furnace or a furnace,
Chemical fiber sheets such as polyester and glass, and a material having a high reflectivity with respect to radiant heat laminated on the outside of the chemical fiber sheets such as polyester and glass,
A heat insulation and heat insulation structure in which a heat insulation material having
The heat shield is
The polyester or glass or other chemical fiber sheet is bonded to the material having high reflectivity with respect to the radiant heat so that a static air layer is not formed between the outer wall surface of the container and the material having high reflectivity with respect to the radiant heat. Has been welded,
A material having a high reflectivity with respect to the radiant heat having a thickness of 7 to 15 microns and a total thickness including the chemical fiber sheet such as polyester and glass are formed to be 0.2 mm or less.
Thermal insulation structure characterized by that.
前記輻射熱に対して高反射率の素材の表面に、電食を防ぐ高分子ポリマー系の高透過樹脂フィルム等を取り付けたことを特徴とする請求項1に記載の遮熱保温構造。   2. The heat insulating and heat insulating structure according to claim 1, wherein a high polymer resin-based high-permeability resin film or the like for preventing electric corrosion is attached to a surface of a material having a high reflectivity with respect to the radiant heat.
JP2014006132U 2013-02-06 2014-11-18 Thermal insulation structure Expired - Lifetime JP3196720U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014006132U JP3196720U (en) 2013-02-06 2014-11-18 Thermal insulation structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013035131 2013-02-06
JP2013035131 2013-02-06
JP2014006132U JP3196720U (en) 2013-02-06 2014-11-18 Thermal insulation structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014019957A Continuation JP2014169786A (en) 2013-02-06 2014-02-05 Heat shielding and heat insulating structure

Publications (2)

Publication Number Publication Date
JP3196720U true JP3196720U (en) 2015-04-02
JP3196720U7 JP3196720U7 (en) 2024-04-02

Family

ID=51692297

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014019957A Pending JP2014169786A (en) 2013-02-06 2014-02-05 Heat shielding and heat insulating structure
JP2014006132U Expired - Lifetime JP3196720U (en) 2013-02-06 2014-11-18 Thermal insulation structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014019957A Pending JP2014169786A (en) 2013-02-06 2014-02-05 Heat shielding and heat insulating structure

Country Status (1)

Country Link
JP (2) JP2014169786A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674566B (en) * 2016-02-05 2018-11-16 马鞍山市博浪热能科技有限公司 A kind of processing method of insulated water tank contracting bubble
CN116146833A (en) * 2017-12-29 2023-05-23 欧文斯科宁知识产权资产有限公司 Pipe insulation and method and system for manufacturing pipe insulation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241793Y2 (en) * 1980-04-16 1987-10-26
JPH0765875B2 (en) * 1991-05-08 1995-07-19 昭和アルミニウム株式会社 Anti-corrosion device for aluminum pipes for connecting heat-resistant hoses in heat exchangers
JPH09134714A (en) * 1995-11-07 1997-05-20 Wako Denshi Kk Coned disc spring for safety device
JPH1026292A (en) * 1996-07-09 1998-01-27 Yamato Kogyo Kk Adhesive coating sheet for elbow cover

Also Published As

Publication number Publication date
JP2014169786A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5827097B2 (en) Thermal conductivity measurement method
Kumar Estimation of design parameters for thermal performance evaluation of box-type solar cooker
Shen et al. Investigation on the thermal performance of the novel phase change materials wall with radiative cooling
Fantucci et al. Dynamic insulation systems: experimental analysis on a parietodynamic wall
JP3196720U (en) Thermal insulation structure
Fantucci et al. Thermal energy storage with super insulating materials: a parametrical analysis
Anand et al. Comparative thermal analysis of different cool roof materials for minimizing building energy consumption
De Masi et al. Environmentally friendly opaque ventilated façade for wall retrofit: One year of in-field analysis in Mediterranean climate
JP2014122843A (en) Heat conductivity measuring apparatus and measuring method
CN103175618A (en) Mounting structure and mounting method of surface temperature sensor for high-temperature reaction device
Mavromatidis et al. Guidelines to study numerically and experimentally reflective insulation systems as applied to buildings
JP5445808B1 (en) Heat shield structure of uneven material
Kato et al. Method of in-situ measurement of thermal insulation performance of building elements using infrared camera
CN201928461U (en) Heating pipe
JP6186631B1 (en) Thermal insulation structure for box-type electrical equipment
JP2015042935A (en) Solar heat collector, solar heat collecting multilayer sheet, and solar heat heater
CN102367691A (en) Insulation and decoration integrated plate with metal frame enclosed structure at periphery
JP6804826B2 (en) Roof structure
JP2014124432A (en) Bath heat insulation structure
JP3177570U (en) Building insulation board and building structure using building insulation board
JP3196720U7 (en)
CN207181005U (en) A kind of acoustics high/low temperature test box is laterally eliminated the noise heat-proof device
CN201114807Y (en) An electrical heating furnace disk for micro crystal panel
JP2009097596A (en) Heat containment structure
CN205487367U (en) Nuclear power station intelligence metal heated board

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3196720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20231207

EXPY Cancellation because of completion of term
R231 Written correction (descriptions, etc.)

Free format text: JAPANESE INTERMEDIATE CODE: R231

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20240404