JP3196417B2 - Glassy carbon electrode for metal-halogen batteries - Google Patents

Glassy carbon electrode for metal-halogen batteries

Info

Publication number
JP3196417B2
JP3196417B2 JP11252693A JP11252693A JP3196417B2 JP 3196417 B2 JP3196417 B2 JP 3196417B2 JP 11252693 A JP11252693 A JP 11252693A JP 11252693 A JP11252693 A JP 11252693A JP 3196417 B2 JP3196417 B2 JP 3196417B2
Authority
JP
Japan
Prior art keywords
electrode
carbon
glassy carbon
metal
glassy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11252693A
Other languages
Japanese (ja)
Other versions
JPH06325770A (en
Inventor
明彦 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP11252693A priority Critical patent/JP3196417B2/en
Publication of JPH06325770A publication Critical patent/JPH06325770A/en
Application granted granted Critical
Publication of JP3196417B2 publication Critical patent/JP3196417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属−ハロゲン電池、特
に電力貯蔵用としての電解液循環型積層二次電池である
亜鉛−臭素電池の正極電極として使用されるガラス状カ
ーボン電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glassy carbon electrode used as a positive electrode of a metal-halogen battery, particularly a zinc-bromine battery which is a laminated electrolyte secondary battery for storing electric power. .

【0002】[0002]

【従来の技術】金属−ハロゲン電極としての亜鉛−臭素
電池は、正極活物質に臭素、負極活物質に亜鉛を用いた
二次電池であり、この電池は例えば電力の昼と夜のアン
バランスを解決させるために、電力需要が少ない夜間に
電力を貯蔵して、昼間に放出させるため等に使用され
る。
2. Description of the Related Art A zinc-bromine battery as a metal-halogen electrode is a secondary battery in which bromine is used as a positive electrode active material and zinc is used as a negative electrode active material. In order to solve the problem, it is used for storing electric power at night when power demand is small and releasing it during the day.

【0003】充電時に正極電極側で発生した臭素は、電
解液に添加した臭素錯化剤と反応し、オイル状の沈殿物
となって正極側貯蔵槽へ戻され、放電時はポンプで単電
池内へ送り込まれ還元される。電解液の成分はZnBr
2水溶液と、抵抗を下げるためのNH4Cl等の塩と、負
極亜鉛側のデンドライトを防止し、均一な電着を促進さ
せるためのPb,Sn,4級アンモニウム塩類と、臭素
錯化剤とである。正極電極と負極電極の間にはセパレー
タを介挿してあり、正極電極で発生した臭素が負極電極
へ拡散して亜鉛と反応することによる自己放電を防止し
ている。
[0003] The bromine generated on the positive electrode side during charging reacts with the bromine complexing agent added to the electrolytic solution and is returned to the positive electrode side storage tank as an oily precipitate. It is sent inside and reduced. The component of the electrolyte is ZnBr
(2) an aqueous solution, a salt such as NH 4 Cl for lowering resistance, Pb, Sn, and quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition, and a bromine complexing agent. It is. A separator is interposed between the positive electrode and the negative electrode to prevent self-discharge caused by bromine generated at the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】この亜鉛−臭素電池は、主に電極をバイポ
ーラ型とし、複数個の単電池(単セル)を電気的に直列
に積層した電池本体と、電解液貯蔵槽と、これらの間に
電解液を循環させるポンプおよび配管系とで構成されて
いる。
This zinc-bromine battery mainly has a bipolar type electrode, a battery body in which a plurality of unit cells (single cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution between these. It is composed of a pump and a piping system for circulating the liquid.

【0005】図3は上記亜鉛−臭素電池を構成する電池
本体の一例を示す分解斜視図であり、矩形平板状のバイ
ポーラ型中間電極1の電極部1aの外周に絶縁性の枠体
1bが配置され、同様に矩形平板状のセパレータ板2
は、セパレータ3の外周に枠体2aが形成されている。
そして上記中間電極1にセパレータ板2及び必要に応じ
てパッキン4,スペーサメッシュ5を重ねて単セルを構
成し、この単セルを複数個積層して電池本体が構成され
ている。
FIG. 3 is an exploded perspective view showing an example of a battery main body constituting the zinc-bromine battery. An insulating frame 1b is arranged on the outer periphery of an electrode portion 1a of a bipolar intermediate electrode 1 having a rectangular flat plate shape. Similarly, the rectangular flat separator plate 2
Has a frame 2 a formed on the outer periphery of the separator 3.
The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are laminated to form a battery body.

【0006】積層された電池本体の両端部には、集電メ
ッシュ6を有する集電電極7と、一対の締付端板8と、
その内側に位置する押さえ用の積層端板9とが配置され
ている。そして両締付端板8,8間に図外の締付用のボ
ルトを通して、このボルトを締め付けることにより、一
体的に積層固定された電池本体が構成される。
[0006] At both ends of the stacked battery body, a collecting electrode 7 having a collecting mesh 6, a pair of fastening end plates 8,
A holding laminated end plate 9 located on the inside thereof is arranged. Then, a bolt (not shown) for tightening is passed between the two tightening end plates 8 and 8, and the bolts are tightened to form a battery body integrally laminated and fixed.

【0007】上記のように構成された電池本体の各単セ
ル内には、各中間電極1及びセパレータ板2の枠体2a
の上下2箇所の隅角部に形成した正極マニホールド10
と、負極マニホールド11より、セパレータ板2の枠体
2aに設けられたチャンネル12及びマイクロチャンネ
ル13を介して電解液が夫々流入排出する。
In each unit cell of the battery body configured as described above, each intermediate electrode 1 and the frame 2a of the separator plate 2 are provided.
Positive electrode manifold 10 formed at the upper and lower two corners of
Then, the electrolyte flows in and out of the negative electrode manifold 11 through the channel 12 and the micro channel 13 provided in the frame 2a of the separator plate 2, respectively.

【0008】上記亜鉛−臭素電池の電極材料として、耐
臭素性に優れているとともに導電性が良いガラス状カー
ボンが用いられている。このガラス状カーボンとは、例
えばフェノール系合成樹脂にグラファイトを均一に混合
して板状に成形した後、非酸化性雰囲気中で徐々に加熱
昇温し、1000℃以上で炭化させた後に徐冷したもの
である。しかしこのガラス状カーボンだけでは電極表面
の活性化過電圧が大きく、反応性に問題があることか
ら、このままでは電極として利用することができない。
As an electrode material for the zinc-bromine battery, glassy carbon having excellent bromine resistance and good conductivity is used. This glassy carbon is, for example, after uniformly mixing graphite with a phenolic synthetic resin, forming it into a plate shape, gradually heating and raising the temperature in a non-oxidizing atmosphere, carbonizing at 1000 ° C. or more, and then gradually cooling. It was done. However, this glassy carbon alone has a large activation overvoltage on the electrode surface and has a problem in reactivity, so that it cannot be used as an electrode as it is.

【0009】そこでガラス状カーボンに電極としての活
性を付与するため、緻密質のガラス状カーボンの表面に
カーボン系接着剤を介して炭素繊維でなるシートを積層
した後、焼成した複合電極を板状体に形成したものが上
記電極材料として用いられている。炭素繊維として多孔
質のものを用いることにより電極表面の活性度を高める
ことができる。
Therefore, in order to impart the activity of the electrode to the glassy carbon, a sheet made of carbon fibers is laminated on the surface of the dense glassy carbon via a carbon-based adhesive, and the fired composite electrode is formed into a plate-like shape. The material formed on the body is used as the electrode material. By using a porous carbon fiber, the activity of the electrode surface can be increased.

【0010】上記に関して、本出願人の提案にかかる特
願昭60−267412号には、図4に示したように電
極基板としてのガラス状カーボン15に接着剤としての
機能を持つ導電性カーボンペースト16を介してシート
状炭素繊維17を接着した複合電極構造が開示されてい
る。
Regarding the above, Japanese Patent Application No. 60-267412 proposed by the present applicant discloses a conductive carbon paste having a function as an adhesive on a glassy carbon 15 as an electrode substrate as shown in FIG. A composite electrode structure in which a sheet-like carbon fiber 17 is adhered via a support 16 is disclosed.

【0011】このような複合電極によれば、臭素に対す
る耐性と不透過性に加えて炭素繊維による電気化学的な
活性作用が加わるので、ガラス状カーボン15を用いた
電極特性が高められる。
According to such a composite electrode, in addition to the resistance and impermeability to bromine, the electrochemical activity of the carbon fiber is added, so that the electrode characteristics using the glassy carbon 15 are enhanced.

【0012】[0012]

【発明が解決しようとする課題】しかしながらこのよう
なガラス状カーボンを用いた複合電極では、ガラス状カ
ーボンにシート状炭素繊維を接着するための接着剤の量
が多い場合には、この接着剤が正極活性層内に浸透して
反応面積が減少して電極特性が低下するという問題点が
あり、逆に接着剤の量が少ない場合には、シート状炭素
繊維の接合強度が低下してしまい、電解液の停滞によっ
て該シート状炭素繊維の腐食が進行して接触抵抗が増大
し、電池特性が劣化してしまうという問題点があった。
However, in such a composite electrode using glassy carbon, when the amount of the adhesive for bonding the sheet-like carbon fiber to the glassy carbon is large, this adhesive is used. There is a problem that the electrode area deteriorates due to permeation into the positive electrode active layer to reduce the reaction area, and conversely, when the amount of the adhesive is small, the bonding strength of the sheet-like carbon fiber decreases, There is a problem that the stagnation of the electrolytic solution causes the corrosion of the sheet-like carbon fibers to proceed, thereby increasing the contact resistance and deteriorating the battery characteristics.

【0013】本発明は上記の問題点に鑑みてなされたも
のであり、上記接着剤に起因する電極特性の低下を防止
し、且つ接合強度を高めて接触抵抗の低減と導電性の向
上をはかったガラス状カーボン電極を得ることを目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is intended to prevent a decrease in electrode characteristics due to the above-mentioned adhesive and to increase the bonding strength to reduce contact resistance and improve conductivity. It is intended to obtain a vitreous carbon electrode.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために、緻密質に形成したガラス状カーボンを電極
基板とし、この電極基板に、活性炭を分散したセルロー
ス繊維に液状のフェノール樹脂を含浸させた接合層を用
いて、多孔質でなるシート状炭素繊維を積層固定したガ
ラス状カーボン電極の構成にしてある。
According to the present invention, in order to achieve the above object, a densely formed glassy carbon is used as an electrode substrate, and a liquid phenol resin is added to cellulose fibers in which activated carbon is dispersed. A glassy carbon electrode is formed by laminating and fixing porous sheet-like carbon fibers using the impregnated bonding layer.

【0015】更に請求項2により、ガラス状カーボンと
多孔質でなるシート状炭素繊維との間に前記接合層を挟
んで、適宜な条件下で焼成した金属−ハロゲン電池のガ
ラス状カーボン電極を提供する。
According to a second aspect of the present invention, there is provided a glassy carbon electrode of a metal-halogen battery fired under appropriate conditions with the bonding layer interposed between glassy carbon and a porous sheet carbon fiber. I do.

【0016】[0016]

【作用】かかるガラス状カーボン電極によれば、焼成過
程でセルロース繊維が炭化されて炭素繊維化し、この炭
素繊維が活性炭と密着してフェノール樹脂のバインダー
として作用し、これによってガラス状カーボンとシート
状炭素繊維が強力に接着して全体として強固な接合構造
を持つ電極が得られる。そして接合強度の向上に伴って
ガラス状カーボンと炭素繊維との接着界面の電気抵抗が
減少して導電性が高められ、且つ積層固定された多孔質
のシート状炭素繊維により、電気化学的反応性に富んだ
ガラス状カーボン電極が提供される。
According to this glassy carbon electrode, the cellulose fibers are carbonized in the firing process to form carbon fibers, and the carbon fibers adhere to the activated carbon and act as a binder for the phenolic resin, thereby forming the glassy carbon into a sheet. An electrode having a strong bonding structure as a whole can be obtained by strongly bonding the carbon fibers. With the improvement of bonding strength, the electrical resistance at the bonding interface between glassy carbon and carbon fiber decreases, the conductivity increases, and the porous sheet-like carbon fiber laminated and fixed provides electrochemical reactivity. The present invention provides a glassy carbon electrode rich in carbon.

【0017】[0017]

【実施例】以下図面を参照しながら、本発明にかかる金
属−ハロゲン電池のガラス状カーボン電極の一実施例
を、前記従来の構成部分と同一の構成部分に同一の符号
を付して詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of a glass-like carbon electrode of a metal-halogen battery according to the present invention will be described in detail by assigning the same reference numerals to the same components as the conventional components. I do.

【0018】図1は本実施例にかかる電極構造を示す要
部断面図であり、15は電極基板として緻密質に形成し
たガラス状カーボン、20は本実施例を適用した接合
層、17はシート状炭素繊維である。上記接合層20
は、従来の導電性カーボンペーストに代えて、活性炭を
セルロース繊維に分散したものに液状のフェノール樹脂
を含浸させたものを用いている。上記電極の製作に際し
ては、ガラス状カーボン15と多孔質で成るシート状炭
素繊維17との間に接合層20を挟み、後述する条件下
で焼成する。
FIG. 1 is a cross-sectional view of an essential part showing an electrode structure according to the present embodiment, wherein 15 is a glassy carbon formed densely as an electrode substrate, 20 is a bonding layer to which the present embodiment is applied, and 17 is a sheet. Carbon fiber. The bonding layer 20
Uses a material obtained by impregnating a liquid phenol resin into a material obtained by dispersing activated carbon in cellulose fibers, instead of a conventional conductive carbon paste. In manufacturing the electrode, the bonding layer 20 is sandwiched between the glassy carbon 15 and the porous sheet-like carbon fiber 17 and fired under the conditions described later.

【0019】すると焼成過程でセルロース繊維が炭化さ
れて炭素繊維化し、この炭素繊維が活性炭と良く密着し
てフェノール樹脂のバインダーとして作用し、ガラス状
カーボン15とシート状炭素繊維に対して強力に接着し
て両者の接合効果が高められ、全体として強固な接合構
造を持つ電極が得られる。
In the firing process, the cellulose fibers are carbonized into carbon fibers. The carbon fibers adhere well to the activated carbon and act as a binder for the phenol resin, and strongly adhere to the glassy carbon 15 and the sheet-like carbon fibers. As a result, the bonding effect between the two is enhanced, and an electrode having a strong bonding structure as a whole can be obtained.

【0020】以下に本発明の具体的な実施例を説明す
る。前記接合層20を構成する活性炭とセルロース繊維
の組成比を、活性炭/セルロース繊維=30/70(重
量%)とし、両者を十分に混合した後、これに液状フェ
ノール樹脂を含浸する。
Hereinafter, specific embodiments of the present invention will be described. The composition ratio of activated carbon and cellulose fibers constituting the bonding layer 20 is activated carbon / cellulose fibers = 30/70 (% by weight). After sufficiently mixing both, the mixture is impregnated with a liquid phenol resin.

【0021】このような接合層20を用いた電極特性を
検証するため、上記接合層20の構成体をガラス状カー
ボン15と多孔質のシート状炭素繊維17との間に挟
み、適当に荷重をかけた状態で電気炉内で昇温速度10
0℃/Hrで最大1000℃,1500℃,3000℃
の3条件を選択して焼成し、これを降温速度300℃/
Hrで徐冷して複合電極とした。
In order to verify the electrode characteristics using the bonding layer 20, the structure of the bonding layer 20 is sandwiched between the glassy carbon 15 and the porous sheet-like carbon fiber 17, and an appropriate load is applied. Heating rate 10 in the electric furnace
1000 ° C, 1500 ° C, 3000 ° C at 0 ° C / Hr
Baking is performed under the following three conditions, and the temperature is lowered at a rate of 300 ° C. /
The composite electrode was gradually cooled with Hr.

【0022】そして得られた3種類の複合電極と従来の
複合電極(図4参照)の電極特性を比較するため、Zn
Br2(3mol/l)+Br2(0.3mol/l)の
電解液を用いて充放電を行い、過電圧を測定した。その
結果を図2に示す。図2中のは昇温速度100℃/H
rで最大1000℃で焼成した場合を,は同じく15
00℃で焼成した場合を,は同じく3000℃で焼成
した場合を各々示し、は従来の複合電極の場合を示し
ている。図中の縦軸は過電圧(mv)、横軸は電流密度
(mA/cm2)である。
In order to compare the electrode characteristics of the obtained three types of composite electrodes and the conventional composite electrode (see FIG. 4), Zn
Charging / discharging was performed using an electrolyte of Br 2 (3 mol / l) + Br 2 (0.3 mol / l), and the overvoltage was measured. The result is shown in FIG. FIG. 2 shows a heating rate of 100 ° C./H.
When firing at 1000 ° C at maximum,
The case of baking at 00 ° C. indicates the case of baking at 3000 ° C., and the case of a conventional composite electrode. The vertical axis in the figure is the overvoltage (mv), and the horizontal axis is the current density (mA / cm 2 ).

【0023】本実施例にかかる複合電極は、焼成
過程における最大焼成温度が各々相違しているため、黒
鉛化の程度が異なり、電極特性としての過電圧に差が生
じているが、何れの場合も従来の複合電極であるに比
して同一の電流密度に対する過電圧は小さくなってお
り、電極特性が高められていることが確認された。
In the composite electrode according to the present embodiment, the maximum firing temperatures in the firing process are different from each other, so that the degree of graphitization is different and the overvoltage as an electrode characteristic is different. The overvoltage for the same current density was smaller than that of the conventional composite electrode, and it was confirmed that the electrode characteristics were improved.

【0024】又、得られた電極の接合強度が向上された
ことに伴い、接着界面の電気抵抗は減少して導電性が高
められ、更に接着された多孔質のシート状炭素繊維17
により、電気化学的反応性に富むという作用が得られ
る。
Further, as the bonding strength of the obtained electrode is improved, the electric resistance at the bonding interface is reduced, the conductivity is increased, and the bonded porous sheet-like carbon fiber 17 is further improved.
As a result, an effect of rich electrochemical reactivity is obtained.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明にか
かる金属−ハロゲン電池のガラス状カーボン電極によれ
ば、ガラス状カーボンと多孔質で成るシート状炭素繊維
との強固な接合構造を持つ電極を得ることが可能とな
り、特に両者間に接合層を挟んで焼成したことにより、
焼成過程でセルロース繊維が炭化されて炭素繊維化し、
この炭素繊維が活性炭と良く密着してフェノール樹脂の
バインダーとして作用し、ガラス状カーボンとシート状
炭素繊維を強力に接着することが出来る。
As described in detail above, the glassy carbon electrode of the metal-halogen battery according to the present invention has a strong bonding structure between the glassy carbon and the porous sheet carbon fiber. It is possible to obtain an electrode, especially by firing with a bonding layer between them,
During the firing process, the cellulose fibers are carbonized into carbon fibers,
This carbon fiber adheres well to the activated carbon and acts as a binder for the phenolic resin, so that the glassy carbon and the sheet-like carbon fiber can be strongly bonded.

【0026】そして接着剤の量の多寡に起因する接着剤
の浸透現象とか接合強度の低下現象が防止され、且つ電
解液の停滞とシート状炭素繊維の腐食進行に伴う接触抵
抗の増大がなくなる上、電極の接合強度が向上されたこ
とに伴って接着界面の電気抵抗が減少して導電性が高め
られるという効果を発揮する。
In addition, a phenomenon of adhesive penetration or a decrease in bonding strength due to the amount of the adhesive is prevented, and an increase in contact resistance due to stagnation of the electrolyte and progress of corrosion of the sheet-like carbon fiber is eliminated. In addition, the effect that the electrical resistance of the bonding interface is reduced and the conductivity is increased with the improvement in the bonding strength of the electrodes is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例にかかる電極構造を示す要部断面図。FIG. 1 is a sectional view of a main part showing an electrode structure according to an embodiment.

【図2】本実施例によって得られた複合電極と従来の複
合電極の電極特性を比較するグラフ。
FIG. 2 is a graph comparing the electrode characteristics of a composite electrode obtained according to the present embodiment and a conventional composite electrode.

【図3】亜鉛−臭素電池の構造を示す分解斜視図。FIG. 3 is an exploded perspective view showing the structure of a zinc-bromine battery.

【図4】従来の複合電極の一例を示す要部断面図。FIG. 4 is a sectional view of a main part showing an example of a conventional composite electrode.

【符号の説明】[Explanation of symbols]

1…中間電極 1b…枠体 2…セパレータ板 3…セパレータ 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 15…ガラス状カーボン 17…シート状炭素繊維 20…接合層 DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 1b ... Frame 2 ... Separator plate 3 ... Separator 8 ... Tightened end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Microchannel 15 ... Glassy carbon 17 ... Sheet-like Carbon fiber 20: bonding layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 緻密質に形成したガラス状カーボンを電
極基板とし、この電極基板に、活性炭を分散したセルロ
ース繊維に液状のフェノール樹脂を含浸させた接合層を
用いて、多孔質でなるシート状炭素繊維を積層固定した
ことを特徴とする金属−ハロゲン電池のガラス状カーボ
ン電極。
1. A porous sheet-like material formed by using a densely formed glassy carbon as an electrode substrate, and using a bonding layer obtained by impregnating a cellulose fiber in which activated carbon is dispersed with a liquid phenol resin on the electrode substrate. A glassy carbon electrode for a metal-halogen battery, wherein carbon fibers are laminated and fixed.
【請求項2】 ガラス状カーボンと多孔質でなるシート
状炭素繊維との間に前記接合層を挟んで、適宜な条件下
で焼成した請求項1記載の金属−ハロゲン電池のガラス
状カーボン電極。
2. The glass-like carbon electrode of a metal-halogen battery according to claim 1, wherein said bonding layer is sandwiched between glass-like carbon and porous sheet-like carbon fibers and fired under appropriate conditions.
JP11252693A 1993-05-14 1993-05-14 Glassy carbon electrode for metal-halogen batteries Expired - Fee Related JP3196417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11252693A JP3196417B2 (en) 1993-05-14 1993-05-14 Glassy carbon electrode for metal-halogen batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11252693A JP3196417B2 (en) 1993-05-14 1993-05-14 Glassy carbon electrode for metal-halogen batteries

Publications (2)

Publication Number Publication Date
JPH06325770A JPH06325770A (en) 1994-11-25
JP3196417B2 true JP3196417B2 (en) 2001-08-06

Family

ID=14588858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11252693A Expired - Fee Related JP3196417B2 (en) 1993-05-14 1993-05-14 Glassy carbon electrode for metal-halogen batteries

Country Status (1)

Country Link
JP (1) JP3196417B2 (en)

Also Published As

Publication number Publication date
JPH06325770A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US4510219A (en) Battery plate containing filler with conductive coating
US4547443A (en) Unitary plate electrode
US4275130A (en) Bipolar battery construction
US5348817A (en) Bipolar lead-acid battery
US20090053601A1 (en) Modular Bipolar Battery
US5705259A (en) Method of using a bipolar electrochemical storage device
KR101061971B1 (en) Composite materials and battery current collector
US8399134B2 (en) Lead acid battery including a two-layer carbon foam current collector
US4625395A (en) Battery plate containing filler with conductive coating
US20090081541A1 (en) Bipolar Battery Having Carbon Foam Current Collectors
JP4364460B2 (en) Negative electrode for lead acid battery
JPWO2008114738A1 (en) Lead-acid battery and battery pack
WO2005096418B1 (en) Battery including carbon foam current collectors
JP3196417B2 (en) Glassy carbon electrode for metal-halogen batteries
US10290846B2 (en) Separator for an electrochemical storage system, method for the production of an electrode material and electrochemical energy storage system
JPS61270268A (en) Composite carbon material and manufacture
EP0262961B1 (en) Fuel cell with electrolyte matrix assembly
JPS6319982B2 (en)
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JPS6151775A (en) Method of producing storage battery
Rowlette et al. Unitary plate electrode
JP2616061B2 (en) Phosphoric acid fuel cell
US20100035156A1 (en) Battery electrode plate having even thermal distribution
JPH0619983B2 (en) Sealed lead acid battery
JPS6321903Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees