JP3196382B2 - Method for electrolysis of sodium sulfate solution - Google Patents

Method for electrolysis of sodium sulfate solution

Info

Publication number
JP3196382B2
JP3196382B2 JP33616092A JP33616092A JP3196382B2 JP 3196382 B2 JP3196382 B2 JP 3196382B2 JP 33616092 A JP33616092 A JP 33616092A JP 33616092 A JP33616092 A JP 33616092A JP 3196382 B2 JP3196382 B2 JP 3196382B2
Authority
JP
Japan
Prior art keywords
sodium sulfate
aqueous solution
sulfuric acid
solution
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33616092A
Other languages
Japanese (ja)
Other versions
JPH06184781A (en
Inventor
光久 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP33616092A priority Critical patent/JP3196382B2/en
Publication of JPH06184781A publication Critical patent/JPH06184781A/en
Application granted granted Critical
Publication of JP3196382B2 publication Critical patent/JP3196382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイオン交換膜法により芒
硝水溶液を電気分解して苛性ソーダを製造する方法に関
するものである。更に詳しくは本発明は,ソーダ灰およ
び/または重炭酸ソーダを原料とし,芒硝水溶液を効率
よくかつ安定的に電気分解して苛性ソーダを製造する方
法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing caustic soda by electrolyzing an aqueous sodium sulfate solution by an ion exchange membrane method. More specifically, the present invention provides a method for producing caustic soda by efficiently and stably electrolyzing an aqueous sodium sulfate solution from soda ash and / or sodium bicarbonate as a raw material.

【0002】[0002]

【従来技術】従来,イオン交換膜法により食塩水を電気
分解して苛性ソーダと塩素を製造する方法が工業的に広
く実施されており,高い生産効率と安定した操業が確立
されている。
2. Description of the Related Art Hitherto, a method for producing caustic soda and chlorine by electrolyzing a saline solution by an ion exchange membrane method has been widely practiced industrially, and high production efficiency and stable operation have been established.

【0003】一方,食塩水の代わりに芒硝水溶液を電気
分解して苛性ソーダを製造する方法が知られている。
On the other hand, there is known a method for producing caustic soda by electrolyzing an aqueous solution of sodium sulfate instead of saline.

【0004】芒硝水溶液の電解反応では,(1) 式で示さ
れるように苛性ソーダと硫酸が生成するが,生成した硫
酸を(2) 式で示されるようにソーダ灰および/または重
炭酸ソーダと反応させて再び芒硝水溶液とし,これを電
気分解すれば硫酸がリサイクルされ,全体として(3) 式
で示されるようにソーダ灰および/または重炭酸ソーダ
から苛性ソーダと炭酸ガスを製造するプロセスとなる。
[0004] In the electrolytic reaction of the aqueous solution of sodium sulfate, caustic soda and sulfuric acid are generated as shown in equation (1), and the generated sulfuric acid is reacted with soda ash and / or sodium bicarbonate as shown in equation (2). The aqueous sodium sulfate solution is again converted to an aqueous solution of sodium sulfate, and the sulfuric acid is recycled if electrolyzed. As a whole, a process for producing caustic soda and carbon dioxide gas from soda ash and / or sodium bicarbonate as shown in equation (3).

【0005】 (電解) Na2SO4 + 2H2O → 2NaOH+H2SO4 (1) Na2CO3+H2SO4 → Na2SO4+H2O+CO2↑ (2) Na2CO3 + H2O → 2NaOH + CO2↑ (3) 又,従来の電解方法では(4) 式に示すように水分子が電
気分解され,陽極で酸素ガス、陰極で水素ガスが発生す
る。このため,余分の電力が消費されることになる。
(Electrolysis) Na 2 SO 4 + 2H 2 O → 2NaOH + H 2 SO 4 (1) Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + H 2 O + CO 2 (2) Na 2 CO 3 + H 2 O → 2NaOH + CO 2 ↑ (3) In addition, in the conventional electrolysis method, water molecules are electrolyzed as shown in equation (4), and oxygen gas is generated at the anode and hydrogen gas is generated at the cathode. Therefore, extra power is consumed.

【0006】 SO4 2-+H2O → H2SO4 + 1/2O2+ 2e- (4) これに対し,陽極に水素ガス拡散電極を使用し,電極部
に水素ガスを供給しながら電気分解すると陽極部での酸
素ガスの発生がなくなり,消費電力が大幅に低減され
る。
SO 4 2− + H 2 O → H 2 SO 4 + 1 / 2O 2 + 2e (4) On the other hand, a hydrogen gas diffusion electrode is used for the anode, and while supplying hydrogen gas to the electrode section, electricity is supplied. When decomposed, the generation of oxygen gas at the anode is stopped, and the power consumption is greatly reduced.

【0007】 SO4 2-+H2 → H2SO4 + 2e- (5) 以上のように芒硝電解法は,塩素を副生しない点および
消費電力が大幅に低減できる点などに於いて工業的に大
きな利点を有している。しかしながら,ガス拡散電極を
使用する方法については初期電解電圧の低減は可能であ
るものの,長期に亘り安定した電解効率を達成するには
至っていないのが現状である。
SO 4 2− + H 2 → H 2 SO 4 + 2e (5) As described above, the Glauber's salt electrolysis method is industrially advantageous in that chlorine is not produced as a by-product and power consumption can be significantly reduced. It has great advantages. However, in the method using a gas diffusion electrode, although the initial electrolysis voltage can be reduced, stable electrolysis efficiency has not yet been achieved over a long period of time.

【0008】電解質水溶液の電解に於いては一般に,希
薄な水溶液を電気分解する事は電解工程の生産効率が低
下するために好ましくない。更に,芒硝水溶液の電解の
場合には,低濃度の芒硝水溶液を電気分解すると生成す
る硫酸水溶液の濃度が希薄となり,硫酸水溶液をリサイ
クル使用する場合,あるいは高濃度の硫酸水溶液を得る
場合には濃縮を必要とし,エネルギー多消費となり好ま
しくない。
[0008] In the electrolysis of an aqueous electrolyte solution, it is generally not preferable to electrolyze a dilute aqueous solution because the production efficiency of the electrolysis step is reduced. Furthermore, in the case of electrolysis of an aqueous sodium sulfate solution, the concentration of the aqueous sulfuric acid solution produced by electrolysis of a low-concentration aqueous solution of sodium sulfate becomes diluted. When the aqueous sulfuric acid solution is recycled or a high-concentration aqueous sulfuric acid solution is obtained, it is concentrated. And energy consumption is high, which is not preferable.

【0009】したがって,(2) 式のソーダ灰および/ま
たは重炭酸ソーダと硫酸との反応により芒硝水溶液を得
る工程に於いては,濃厚な芒硝水溶液を得ることが重要
である。
Therefore, in the step of obtaining the aqueous solution of sodium sulfate by reacting soda ash and / or sodium bicarbonate with sulfuric acid in the formula (2), it is important to obtain a concentrated aqueous solution of sodium sulfate.

【0010】従来,芒硝水溶液を得る方法としてはソー
ダ灰および/または重炭酸ソーダ水溶液と硫酸水溶液と
を混合する方法が知られているが,この方法ではソーダ
灰および/または重炭酸ソーダの水への溶解度が低いた
めに20重量%以上の濃厚な芒硝水溶液を得る事が困難
である。すなわち,ソーダ灰の水への溶解度は50℃で
約32重量%,80℃で約30重量%であり,約30重
量%のソーダ灰水溶液と約20重量%の硫酸水溶液とを
反応させた場合,得られる芒硝水溶液の濃度は約18重
量%となる。又,これを電気分解して得られる硫酸水溶
液の濃度は約13重量%となり,硫酸水溶液をリサイク
ルするためには濃縮が必要となる。
Conventionally, as a method of obtaining an aqueous solution of sodium sulfate, a method of mixing an aqueous solution of soda ash and / or sodium bicarbonate with an aqueous solution of sulfuric acid is known. However, in this method, the solubility of soda ash and / or sodium bicarbonate in water is low. Therefore, it is difficult to obtain a concentrated aqueous sodium sulfate solution of 20% by weight or more. That is, the solubility of soda ash in water is about 32% by weight at 50 ° C. and about 30% by weight at 80 ° C. When a soda ash aqueous solution of about 30% by weight and a sulfuric acid aqueous solution of about 20% by weight are reacted. The concentration of the obtained sodium sulfate solution is about 18% by weight. Further, the concentration of the aqueous sulfuric acid solution obtained by electrolysis thereof becomes about 13% by weight, and concentration is required to recycle the aqueous sulfuric acid solution.

【0011】又,重炭酸ソーダの水への溶解度は30℃
付近で約10重量%にすぎず,重炭酸ソーダ水溶液に硫
酸水溶液を反応させて得られる芒硝水溶液の濃度は希薄
なものとなる。
The solubility of sodium bicarbonate in water is 30 ° C.
The concentration is only about 10% by weight in the vicinity, and the concentration of the aqueous sodium sulfate solution obtained by reacting the aqueous solution of sodium bicarbonate with the aqueous solution of sulfuric acid is diluted.

【0012】ソーダ灰および/または重炭酸ソーダと約
20重量%の硫酸水溶液とを反応させて20重量%以上
の濃厚な芒硝水溶液を得るためには,固体のソーダ灰お
よび/または重炭酸ソーダと硫酸水溶液とを直接反応さ
せる必要がある。
In order to react soda ash and / or sodium bicarbonate with an aqueous solution of about 20% by weight of sulfuric acid to obtain a concentrated aqueous sodium sulfate solution of 20% by weight or more, solid soda ash and / or bicarbonate and an aqueous solution of sulfuric acid are used. It must be reacted directly.

【0013】すなわち,固体のソーダ灰と約20重量%
の硫酸水溶液とを反応させると,約25重量%の芒硝水
溶液が得られ,これを電気分解して得られる硫酸水溶液
の濃度も約20重量%となって,殆ど濃縮なしにリサイ
クルする事が可能となる。又,固体の重炭酸ソーダと約
20重量%の硫酸水溶液とを反応させると,この場合も
約25重量%の芒硝水溶液が得られ,これを電気分解し
て得られる硫酸水溶液の濃度も約20重量%となって,
同様に殆ど濃縮なしに硫酸水溶液のリサイクルが可能と
なる。
That is, about 20% by weight of solid soda ash
About 25% by weight of aqueous sodium sulfate solution is obtained, and the concentration of sulfuric acid aqueous solution obtained by electrolysis is about 20% by weight, so that it can be recycled almost without concentration. Becomes When solid sodium bicarbonate is reacted with an aqueous solution of about 20% by weight of sulfuric acid, an aqueous solution of about 25% by weight of sodium sulfate is obtained in this case, and the concentration of the aqueous solution of sulfuric acid obtained by electrolysis is also about 20% by weight. Becomes
Similarly, the sulfuric acid aqueous solution can be recycled with almost no concentration.

【0014】しかしながら,この方法に於いては芒硝水
溶液中に過剰のソーダ灰および/または重炭酸ソーダが
含まれてくるために,電槽内あるいは配管中にこれらの
固形物が堆積したり,ソーダ灰と芒硝とが固溶体を形成
してスケーリングし,トラブルの原因となるという問題
があった。更に,水素ガス拡散電極を使用して電気分解
する場合に,陽極室でCO2ガスが発生し該ガス拡散電
極での水素ガスの拡散を阻害するために電解効率が低下
するといった問題があった。
However, in this method, since an excess of soda ash and / or sodium bicarbonate is contained in the aqueous solution of sodium sulfate, these solids accumulate in the battery case or in the piping, and the soda ash is removed. There was a problem that the sodium sulfate forms a solid solution and scales, causing trouble. Furthermore, when electrolysis is carried out using a hydrogen gas diffusion electrode, there is a problem that CO 2 gas is generated in the anode chamber and the diffusion of hydrogen gas at the gas diffusion electrode is inhibited, so that the electrolysis efficiency is reduced. .

【0015】又,ソーダ灰および/または重炭酸ソーダ
と硫酸とを当量混合して中和反応を行う方法は,連続的
に溶解させる事が困難であり,得られる芒硝水溶液のp
Hが安定せず,過剰のソーダ灰および/または重炭酸ソ
ーダが含まれる場合などに於いて上記トラブルが発生し
安定した操業が困難であった。
In the method of neutralizing the reaction by mixing soda ash and / or sodium bicarbonate and sulfuric acid in an equivalent amount, it is difficult to continuously dissolve the resulting solution.
When the H was not stable and contained excessive soda ash and / or sodium bicarbonate, the above-mentioned trouble occurred, and stable operation was difficult.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、ソー
ダ灰および/または重炭酸ソーダと硫酸水溶液から芒硝
水溶液を調製し,高効率でかつ安定的に電解する方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an aqueous sodium sulfate solution from soda ash and / or sodium bicarbonate and an aqueous sulfuric acid solution, and performing highly efficient and stable electrolysis.

【0017】[0017]

【課題を解決するための手段】本発明者らは上記課題を
解決する為、鋭意検討した結果、30℃以上の温度で固
体のソーダ灰および/または重炭酸ソーダと硫酸水溶液
とを接触させ,pH7以上のアルカリ性の濃厚芒硝水溶
液を得た後,これに硫酸を添加してpHを6以下の酸性
とし,50℃以上の温度で電気分解する事により上記の
問題が解決する事を見出し本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, the solid soda ash and / or sodium bicarbonate was brought into contact with a sulfuric acid aqueous solution at a temperature of 30 ° C. or more, and the pH was adjusted to 7 or more. After obtaining an alkaline concentrated sodium sulfate solution, sulfuric acid was added to the aqueous solution to adjust the pH to 6 or less, and the above problem was solved by electrolysis at a temperature of 50 ° C. or more, and the present invention was completed. did.

【0018】固体のソーダ灰および/または重炭酸ソー
ダと硫酸水溶液とを反応させるには,反応塔に固体のソ
ーダ灰および/または重炭酸ソーダを充填し,これに硫
酸水溶液を流通させながらバブリング等の方法によりこ
れらを十分に接触させる方法などにより行う事ができ
る。反応は30℃以上の温度で行い,硫酸を完全に芒硝
に転化させる。
In order to react solid soda ash and / or sodium bicarbonate with a sulfuric acid aqueous solution, a reaction tower is filled with solid soda ash and / or sodium bicarbonate and the sulfuric acid aqueous solution is allowed to flow through the reaction tower by bubbling or the like. Can be carried out by, for example, a method of bringing the particles into sufficient contact. The reaction is carried out at a temperature of 30 ° C. or higher to completely convert sulfuric acid to sodium sulfate.

【0019】出発原料となるソーダ灰および/または重
炭酸ソーダは合成品のみならず天然品ないしその精製品
も使用可能であり,それぞれの単独,あるいはその混合
品のいずれもが使用可能である。
As the starting material, soda ash and / or sodium bicarbonate can be used not only synthetic products but also natural products or purified products thereof, and each of them can be used alone or in combination.

【0020】固体のソーダ灰および/または重炭酸ソー
ダと接触させる硫酸水溶液の濃度は,高濃度の芒硝水溶
液を得るために,約10重量%以上である事が好まし
く,より好ましくは約15重量%〜約30重量%の範囲
が望ましい。又,上記硫酸水溶液中には,芒硝が含まれ
ていてもなんら差し支えない。すなわち,本発明の方法
で使用する硫酸水溶液としては,電解後の電解槽からの
リターン液を使用するのが好適である。
The concentration of the aqueous sulfuric acid solution to be brought into contact with solid soda ash and / or sodium bicarbonate is preferably about 10% by weight or more, more preferably about 15% by weight to about A range of 30% by weight is desirable. Further, the sulfuric acid aqueous solution may contain Glauber's salt at all. That is, as the aqueous sulfuric acid solution used in the method of the present invention, it is preferable to use a return liquid from the electrolytic cell after electrolysis.

【0021】上記反応は,硫酸に対しソーダ灰および/
または重炭酸ソーダが過剰に存在する条件下で行い,得
られる芒硝水溶液がアルカリ性となる事が必要である。
得られる芒硝水溶液のpHとしては7以上である事が必
要であり,より好ましくは8以上である事が望ましい。
In the above reaction, sulfuric acid is reacted with soda ash and / or
Alternatively, it is necessary to carry out the reaction under the condition where sodium bicarbonate is present in excess, and to make the obtained sodium sulfate aqueous solution alkaline.
The pH of the obtained sodium sulfate solution needs to be 7 or more, more preferably 8 or more.

【0022】このようにしてpH7以上の濃厚芒硝水溶
液を得た後,硫酸を添加して過剰のソーダ灰および/ま
たは重炭酸ソーダを中和し,更にpHを6以下の酸性溶
液とする。この溶液のpHとしては,6以下である事が
必要であり,より好ましくは3〜5の範囲が好適であ
る。
After obtaining a concentrated aqueous sodium sulfate solution having a pH of 7 or more in this way, sulfuric acid is added to neutralize excess soda ash and / or sodium bicarbonate, and further, to obtain an acidic solution having a pH of 6 or less. The pH of this solution needs to be 6 or less, and more preferably in the range of 3 to 5.

【0023】この事により,水溶液中に溶解した大部分
の炭酸イオンがCO2ガスとして放散され除去される。
添加する硫酸としては濃硫酸あるいは希硫酸水溶液のい
ずれでもよく,電解後の電解槽からのリターン液を使用
する事も可能である。又,電解液としてフィードする前
に,フィルター等により芒硝水溶液中に残存する固形分
等を除去する事が望ましい。
As a result, most of the carbonate ions dissolved in the aqueous solution are diffused and removed as CO 2 gas.
Sulfuric acid to be added may be either concentrated sulfuric acid or dilute sulfuric acid aqueous solution, and it is also possible to use a return liquid from the electrolytic cell after electrolysis. In addition, it is desirable to remove solids and the like remaining in the aqueous solution of sodium sulfate by a filter or the like before feeding as an electrolytic solution.

【0024】芒硝の水への溶解度は,30℃付近で最大
値をとり約32重量%である。又,50℃〜90℃の範
囲では約30重量%である。本発明の方法に於いて,電
解液の芒硝の濃度は本発明の効果を得る上で約20重量
%以上である事が望ましい。本発明の方法に於いて好適
な電解条件としては,安定性および電解効率の点から,
50℃以上の温度である事が好ましく,より好ましい条
件としては60℃〜90℃の範囲が好適である。又,電
解で得られる硫酸水溶液をリサイクル使用する場合に
は,電解反応で芒硝をすべて硫酸に転化する必要はな
く,芒硝を約2〜10重量%残留させてリサイクル使用
するのが好ましい。
The solubility of sodium sulfate in water reaches a maximum at about 30 ° C. and is about 32% by weight. In the range of 50 ° C to 90 ° C, the content is about 30% by weight. In the method of the present invention, the concentration of sodium sulfate in the electrolytic solution is preferably about 20% by weight or more in order to obtain the effects of the present invention. In the method of the present invention, preferred electrolysis conditions include stability and electrolysis efficiency.
The temperature is preferably 50 ° C. or more, more preferably 60 ° C. to 90 ° C. When the aqueous sulfuric acid solution obtained by the electrolysis is recycled, it is not necessary to convert all the sodium sulfate into sulfuric acid by the electrolytic reaction, and it is preferable that about 2 to 10% by weight of the sodium sulfate remains and recycled.

【0025】本発明の方法により,芒硝水溶液を電気分
解して苛性ソーダを製造するには,従来公知のイオン交
換膜法により実施する事ができる。隔膜として使用する
イオン交換膜としてはデュポン社製ナフィオン膜に代表
される含フッ素イオン交換膜の他,炭化水素系イオン交
換膜,あるいは変性バイポーラ膜などが挙げられる。
又,本発明の方法はガス拡散電極を使用する芒硝電解法
に於いてより大きな効果が得られ,低電力原単位で安定
した苛性ソーダの製造が可能である。陽極に水素ガス拡
散電極を使用し,陽極部に水素ガスを供給しながら電解
する場合について例示すると,図1のような電解槽の構
成となる。
The production of caustic soda by electrolyzing an aqueous solution of sodium sulfate by the method of the present invention can be carried out by a conventionally known ion exchange membrane method. Examples of the ion exchange membrane used as the membrane include a fluorinated ion exchange membrane represented by Nafion membrane manufactured by DuPont, a hydrocarbon ion exchange membrane, and a modified bipolar membrane.
Further, the method of the present invention has a greater effect in the Glauber's salt electrolysis method using a gas diffusion electrode, and enables stable production of caustic soda at a low power consumption rate. For example, when a hydrogen gas diffusion electrode is used for the anode and the electrolysis is performed while supplying hydrogen gas to the anode, the configuration of the electrolytic cell is as shown in FIG.

【0026】すなわち,陽イオン交換膜1を隔膜とし陽
極室2と陰極室3とを仕切る。該陽極室2には水素ガス
拡散電極4,該陰極室3には金属陰極5を設ける。更
に,該水素ガス拡散電極へ水素ガスを供給するための水
素室10を設ける。6は被電解液である芒硝水溶液の入
口,7は生成硫酸水溶液の出口である。又,8は陰極室
への希薄苛性ソーダ水溶液の入口であり,9は生成した
濃厚苛性ソーダ水溶液および水素ガスの出口である。1
1および12はそれぞれ水素ガスの入口及び出口であ
る。本発明の方法は又,上記例示の2室構造の電解槽だ
けでなく,3室構造あるいは4室構造の電解槽を用いる
芒硝電解においても適用が可能である。
That is, the anode chamber 2 and the cathode chamber 3 are partitioned by using the cation exchange membrane 1 as a diaphragm. A hydrogen gas diffusion electrode 4 is provided in the anode chamber 2 and a metal cathode 5 is provided in the cathode chamber 3. Further, a hydrogen chamber 10 for supplying hydrogen gas to the hydrogen gas diffusion electrode is provided. Reference numeral 6 denotes an inlet for an aqueous solution of sodium sulfate, which is a liquid to be electrolyzed. Reference numeral 8 denotes an inlet for the diluted caustic soda aqueous solution into the cathode chamber, and reference numeral 9 denotes an outlet for the produced concentrated caustic soda aqueous solution and hydrogen gas. 1
1 and 12 are an inlet and an outlet of hydrogen gas, respectively. The method of the present invention can be applied not only to the above-exemplified two-chamber electrolytic cell but also to sodium sulfate electrolysis using a three-chamber or four-chamber electrolytic cell.

【0027】ガス拡散電極としては,炭素質の導電性多
孔質体を基材とし,これに電極反応を促進する白金等の
金属触媒成分を分散担持させシート状にしたものなどが
使用される。本発明の方法は水素ガス拡散電極のみなら
ず,陰極に酸素電極を使用し酸素ガスを吹き込みながら
電解する方法にも適用可能である。又,イオン交換膜と
電極間の距離は特に限定されず,電極をイオン交換膜に
接して設ける方法やイオン交換膜−電極接合体などの使
用も可能である。
As the gas diffusion electrode, a sheet made of a carbonaceous conductive porous body as a base material and a metal catalyst component such as platinum for promoting an electrode reaction dispersedly supported thereon is used. The method of the present invention can be applied not only to a hydrogen gas diffusion electrode but also to a method of using an oxygen electrode as a cathode and performing electrolysis while blowing oxygen gas. Further, the distance between the ion exchange membrane and the electrode is not particularly limited, and a method of providing the electrode in contact with the ion exchange membrane, an ion exchange membrane-electrode assembly, or the like can be used.

【0028】[0028]

【実施例】以下,本発明による芒硝水溶液の調製ならび
にこれを電気分解する事による苛性ソーダの製造方法に
ついて実施例を挙げて説明するが,本発明はこれらに限
定されるものではない。
EXAMPLES Hereinafter, the preparation of the aqueous sodium sulfate solution according to the present invention and the method for producing caustic soda by electrolysis thereof will be described with reference to examples, but the present invention is not limited thereto.

【0029】実施例1 反応塔に固体のソーダ灰粉末を充填し,温度を約50℃
に保持しながら20重量%の硫酸水溶液を流通させて接
触させた。ソーダ灰を過剰に存在させた状態で液を抜き
だし,フィルターで固形分を濾過分離した。得られた芒
硝水溶液の濃度は25.0重量%,pHは8.7であっ
た。
Example 1 A reaction tower was filled with solid soda ash powder, and the temperature was set to about 50 ° C.
And a 20% by weight aqueous solution of sulfuric acid was allowed to flow and contacted. The liquid was drained in a state where excess soda ash was present, and the solid content was separated by filtration with a filter. The concentration of the obtained aqueous sodium sulfate solution was 25.0% by weight, and the pH was 8.7.

【0030】ついで,この芒硝水溶液に濃硫酸を添加し
pHを5.0とした。
Then, concentrated sulfuric acid was added to the aqueous sodium sulfate solution to adjust the pH to 5.0.

【0031】上記のようにして得られた酸性芒硝水溶液
を,図1に示す電解槽に供給して電解を行った。陽極は
白金を担持した多孔質膜からなり,陰極にはニッケル製
のエクスパンドメタルを使用した。隔膜に含フッ素イオ
ン交換膜であるデュポン社製ナフィオンN−902を使
用し,膜面積は約30cm2である。
The acidic sodium sulfate solution obtained as described above was supplied to the electrolytic cell shown in FIG. 1 for electrolysis. The anode consisted of a porous film carrying platinum, and the cathode was made of nickel expanded metal. The membrane used is Nafion N-902 manufactured by DuPont, which is a fluorine-containing ion exchange membrane, and the membrane area is about 30 cm 2 .

【0032】陽極側の水素ガス供給室に水素ガスを1リ
ットル/分の速度で供給しながら,電流密度30A/d
2,温度80℃,陰極室苛性ソーダの濃度30重量%
で電解を行った。
While supplying hydrogen gas at a rate of 1 liter / minute to the hydrogen gas supply chamber on the anode side, the current density was 30 A / d.
m 2 , temperature 80 ° C, cathode chamber caustic soda concentration 30% by weight
Electrolysis was performed.

【0033】初期の電解電圧は2.36Vであり,20
00時間経過後、電解電圧は0.04Vしか上昇しなか
った。
The initial electrolysis voltage is 2.36 V,
After the lapse of 00 hours, the electrolysis voltage increased only by 0.04 V.

【0034】比較例1 固体のソーダ灰に20重量%の硫酸水溶液を接触させて
得られる芒硝水溶液に,濃硫酸を添加しない外は実施例
1と同様にして芒硝水溶液を調製した。この芒硝水溶液
の濃度は25.0重量%,pHは8.7であった。この
芒硝水溶液を実施例1と同様の水素ガス拡散電極法で電
気分解した。電流密度30A/dm2,温度80℃,陰
極室苛性ソーダの濃度30重量%で電解を行った。
Comparative Example 1 An aqueous solution of sodium sulfate was prepared in the same manner as in Example 1 except that concentrated sulfuric acid was not added to an aqueous solution of sodium sulfate obtained by bringing a 20% by weight aqueous solution of sulfuric acid into contact with solid soda ash. The concentration of the aqueous sodium sulfate solution was 25.0% by weight, and the pH was 8.7. This aqueous sodium sulfate solution was electrolyzed by the same hydrogen gas diffusion electrode method as in Example 1. Electrolysis was performed at a current density of 30 A / dm 2 , a temperature of 80 ° C., and a concentration of caustic soda in the cathode chamber of 30% by weight.

【0035】その結果,初期の電解電圧は2.56Vで
あり,400時間経過後に電解電圧が約0.30V上昇
した。
As a result, the initial electrolysis voltage was 2.56 V, and after 400 hours, the electrolysis voltage increased by about 0.30 V.

【0036】実施例2 反応塔に固体重炭酸ソーダ粉末を充填し,温度を約60
℃に保ちながら20重量%の硫酸水溶液を接触させた。
重炭酸ソーダを過剰に存在させながら生成液を抜きだ
し,芒硝水溶液を得た。
Example 2 A reaction tower was charged with solid sodium bicarbonate powder,
While maintaining the temperature at 0 ° C, a 20% by weight aqueous solution of sulfuric acid was brought into contact.
The product liquid was extracted while excess sodium bicarbonate was present to obtain an aqueous sodium sulfate solution.

【0037】芒硝の濃度は24.2重量%であり,液の
pHは8.5であった。ついで,この芒硝水溶液に濃硫
酸を添加しpHを4.5とした。
The concentration of sodium sulfate was 24.2% by weight, and the pH of the solution was 8.5. Then, concentrated sulfuric acid was added to the aqueous sodium sulfate solution to adjust the pH to 4.5.

【0038】上記のようにして得られた酸性芒硝水溶液
を電解槽に供給し,実施例1と同様の方法で電解を行っ
た。電流密度30A/dm2,温度80℃,陰極室苛性
ソーダの濃度30重量%で電解を行った結果,初期の電
解電圧は2.40Vであり,2000時間経過後で電解
電圧の上昇は0.04Vであった。
The aqueous solution of acidic sodium sulfate obtained as described above was supplied to an electrolytic cell, and electrolysis was performed in the same manner as in Example 1. As a result of electrolysis at a current density of 30 A / dm 2 , a temperature of 80 ° C., and a concentration of caustic soda in the cathode chamber of 30% by weight, the initial electrolysis voltage was 2.40 V, and after 2000 hours, the electrolysis voltage increased by 0.04 V. Met.

【0039】[0039]

【効果】本発明の方法により,ソーダ灰および/または
重炭酸ソーダと硫酸水溶液から,濃厚かつ安定した組成
の芒硝水溶液が得られ,これを電気分解する事により高
い生産効率が得られると共に,固形物の堆積やスケーリ
ングなどによる電槽や配管の閉塞等のトラブルがなく,
ガス拡散電極を使用する電解等に於いて特に電槽内での
CO2ガスの発生による阻害がなく,高い電解効率と共
に、電解電圧が殆ど上昇せず、安定した操業が達成され
る。
According to the method of the present invention, a concentrated and stable aqueous solution of sodium sulfate is obtained from soda ash and / or sodium bicarbonate and an aqueous solution of sulfuric acid, and a high production efficiency is obtained by electrolyzing the aqueous solution. No troubles such as clogging of battery case and piping due to deposition and scaling
In electrolysis or the like using a gas diffusion electrode, there is no hindrance due to generation of CO 2 gas in a battery case, and a stable operation is achieved with high electrolysis efficiency and almost no increase in electrolysis voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で使用した電解槽の断面図で
ある。
FIG. 1 is a sectional view of an electrolytic cell used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 陽イオン交換膜1 2 陽極室 3 陰極室 4 水素ガス拡散電極 5 金属陰極 6 芒硝水溶液の入口 7 生成硫酸水溶液の出口 8 陰極室への希薄苛性ソーダ水溶液の入口 9 生成した濃厚苛性ソーダ水溶液および水素ガスの出
口 10 水素室 11 水素ガスの入口 12 水素ガスの出口
DESCRIPTION OF SYMBOLS 1 Cation exchange membrane 1 2 Anode chamber 3 Cathode chamber 4 Hydrogen gas diffusion electrode 5 Metal cathode 6 Inlet of sodium sulfate aqueous solution 7 Outlet of generated sulfuric acid aqueous solution 8 Inlet of diluted caustic soda aqueous solution to cathode chamber 9 Generated concentrated caustic soda aqueous solution and hydrogen gas Outlet 10 hydrogen chamber 11 hydrogen gas inlet 12 hydrogen gas outlet

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イオン交換膜法により芒硝水溶液を電気分
解して苛性ソーダを製造する方法に於いて,30℃以上
の温度で,固体のソーダ灰および/または重炭酸ソーダ
に硫酸水溶液を接触させ,pH7以上の芒硝水溶液を得
た後,該水溶液に硫酸を添加してpH6以下の酸性と
し,50℃以上の温度で電気分解する事を特徴とする芒
硝水溶液の電解方法。
In a method for producing caustic soda by electrolyzing an aqueous solution of sodium sulfate by an ion exchange membrane method, a sulfuric acid aqueous solution is brought into contact with solid soda ash and / or sodium bicarbonate at a temperature of 30 ° C. or more, and a pH of 7 or more. A method for electrolyzing an aqueous solution of sodium sulfate, comprising obtaining sulfuric acid solution of sodium sulfate by adding sulfuric acid to the aqueous solution to make the solution acidic to pH 6 or less, and electrolyzing at a temperature of 50 ° C. or more.
【請求項2】芒硝水溶液の濃度が20重量%以上である
特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the concentration of the aqueous solution of sodium sulfate is 20% by weight or more.
【請求項3】陽極に水素ガス拡散電極を使用する特許請
求の範囲第1項および第2項記載の方法。
3. The method according to claim 1, wherein a hydrogen gas diffusion electrode is used as an anode.
JP33616092A 1992-12-16 1992-12-16 Method for electrolysis of sodium sulfate solution Expired - Fee Related JP3196382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33616092A JP3196382B2 (en) 1992-12-16 1992-12-16 Method for electrolysis of sodium sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33616092A JP3196382B2 (en) 1992-12-16 1992-12-16 Method for electrolysis of sodium sulfate solution

Publications (2)

Publication Number Publication Date
JPH06184781A JPH06184781A (en) 1994-07-05
JP3196382B2 true JP3196382B2 (en) 2001-08-06

Family

ID=18296301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33616092A Expired - Fee Related JP3196382B2 (en) 1992-12-16 1992-12-16 Method for electrolysis of sodium sulfate solution

Country Status (1)

Country Link
JP (1) JP3196382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013399A1 (en) * 2018-07-11 2020-01-16 주식회사 포스코 Method for treating sintering flue gas desulfurization by-product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060834B (en) * 2011-10-20 2016-08-24 厦门紫金矿冶技术有限公司 A kind of technological process of electrolytic sulfite
CN102899679B (en) * 2012-10-24 2015-08-19 四川大学 Utilize gypsum mineralising CO 2the method of co-producing sulfuric acid
CN110578178A (en) * 2019-10-11 2019-12-17 振德医疗用品股份有限公司 device and method for washing polyvinyl alcohol fibers at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013399A1 (en) * 2018-07-11 2020-01-16 주식회사 포스코 Method for treating sintering flue gas desulfurization by-product

Also Published As

Publication number Publication date
JPH06184781A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
US5246551A (en) Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
CN110616438B (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
AU2013318500B2 (en) Integrated process for producing carboxylic acids from carbon dioxide
CN110117794B (en) Electro-reduction of CO2Three-chamber type electrolytic cell device for preparing formate and electrolytic method thereof
US4435257A (en) Process for the electrochemical production of sodium ferrate [Fe(VI)]
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
JPH03111587A (en) Electrolytic bath for reduction of carbon dioxide
CN114000172B (en) Method for trapping and reducing carbon dioxide and co-producing oxygen or chlorine
JPS5930641B2 (en) Kasankasisonoseizohou
US20240084462A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
KR910001138B1 (en) Combined process for production of clorine dioxine and sodium hydroxide
EP3470389B1 (en) Formic acid preparation method
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
JP3196382B2 (en) Method for electrolysis of sodium sulfate solution
CN114402095B (en) Cross-flow water electrolysis
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
US4726887A (en) Process for preparing olefin oxides in an electrochemical cell
US4454012A (en) Process for the preparation of methionine
CA2194609C (en) Process for production of chlorine dioxide
CN111315685A (en) By CO2Combined electrolysis of chloride to produce and separate phosgene
US4303487A (en) Production of alkali metal silicate having a high silica to alkali metal oxide ratio
CN114059086A (en) Device and method for two-step electrolytic hydrogen production based on acidic electrolyte
JP3073968B2 (en) Salt water electrolysis method
JPH0153201B2 (en)
CN109055966A (en) A kind of chemical combined method for preparing chlorine dioxide of electrochemistry-

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees