JP3192400B2 - Piezoelectric dispersion type organic composite vibration damping material - Google Patents
Piezoelectric dispersion type organic composite vibration damping materialInfo
- Publication number
- JP3192400B2 JP3192400B2 JP36804497A JP36804497A JP3192400B2 JP 3192400 B2 JP3192400 B2 JP 3192400B2 JP 36804497 A JP36804497 A JP 36804497A JP 36804497 A JP36804497 A JP 36804497A JP 3192400 B2 JP3192400 B2 JP 3192400B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- dielectric
- vibration damping
- damping material
- type organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 68
- 238000013016 damping Methods 0.000 title claims description 32
- 239000006185 dispersion Substances 0.000 title claims description 18
- 239000002131 composite material Substances 0.000 title claims description 9
- 239000011159 matrix material Substances 0.000 claims description 28
- 229920000642 polymer Polymers 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 31
- 239000000919 ceramic Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920003043 Cellulose fiber Polymers 0.000 description 5
- -1 Polyethylene chloride Polymers 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000571 Nylon 11 Polymers 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920000508 Vectran Polymers 0.000 description 1
- 239000004979 Vectran Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- XBMQPSNBDWCCBJ-UHFFFAOYSA-N n,n-dicyclohexylthiohydroxylamine Chemical compound C1CCCCC1N(S)C1CCCCC1 XBMQPSNBDWCCBJ-UHFFFAOYSA-N 0.000 description 1
- CMAUJSNXENPPOF-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-n-cyclohexylcyclohexanamine Chemical compound C1CCCCC1N(C1CCCCC1)SC1=NC2=CC=CC=C2S1 CMAUJSNXENPPOF-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vibration Prevention Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分子マトリック
スに分散材を分散させてなる制振材料に関するものであ
り、とくに、振動エネルギーを電気エネルギーに変換
し、消費することにより、振動を滅衰させるものに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping material obtained by dispersing a dispersing material in a polymer matrix, and more particularly, to converting vibration energy into electric energy and consuming it to reduce vibration. Regarding what makes you.
【0002】[0002]
【従来の技術】従来、高分子マトリックスに分散材を分
散させてなる制振材料には、次の(a)〜(d)が知ら
れている。 (a)高分子マトリックスに分散材としてマイカ等の鱗
片状の無機物を分散させて、振動による分散材の相互摩
擦により振動エネルギーを吸収させるもの。 (b)分散材としてフェライト等磁性材料粉末を使用し
て、前記の摩擦効果に磁気相互作用を組合わせたもの。
これらは、いずれも損失係数tan δが最大0.5前後で
ある。2. Description of the Related Art Conventionally, the following (a) to (d) are known as vibration damping materials obtained by dispersing a dispersing material in a polymer matrix. (A) A scaly inorganic substance such as mica is dispersed as a dispersing material in a polymer matrix, and vibration energy is absorbed by mutual friction of the dispersing material due to vibration. (B) A combination of the above-mentioned frictional effect and magnetic interaction using a magnetic material powder such as ferrite as a dispersant.
These have a loss coefficient tan δ of around 0.5 at the maximum.
【0003】(c)また、分散材として無機セラミクス
圧電体の粉末を使用して、振動エネルギーから電気エネ
ルギーへの変換効果を目的としたものもあるが、セラミ
クスと高分子材料の弾性率が違いすぎるため、力学エネ
ルギーの伝達効果が悪く、粉末の形状も球状のため反分
極係数が0.3と大きく、歪電気変換効果が滅少し、損
失係数tan δは0.5以下である。(C) In addition, there is an inorganic ceramics piezoelectric powder used as a dispersing material for the purpose of converting vibration energy into electric energy, but the elastic modulus of the ceramics is different from that of the polymer material. Too much, the effect of transferring mechanical energy is poor, and the powder has a spherical shape, so the antipolarization coefficient is as large as 0.3, the strain-electric conversion effect is reduced, and the loss coefficient tan δ is 0.5 or less.
【0004】(d)また、分散材として高分子のゲル状
のものを使用して、ゲルと高分子マトリックス間の摩擦
により振動エネルギーの吸収を試みたものはあるが、い
ずれも損失係数が1を越えるものはなく、特にゲルを使
用したものは柔らかく、構造材として使用することは難
しい。[0004] (d) In addition, there has been an attempt to absorb vibration energy by friction between the gel and the polymer matrix using a polymer gel as a dispersing material, but all have a loss coefficient of 1. In particular, those using gel are soft and difficult to use as structural materials.
【0005】上記いずれの制振材料も、高分子マトリッ
クスと分散材の力学相互作用を主として利用しているた
め、歪振幅依存性が大きく、振幅の大きいところでは効
果があるが、防音遮音のような歪振幅が10-7のレンジ
では、あまりその効果を発揮しなかった。[0005] Since any of the above damping materials mainly uses the mechanical interaction between the polymer matrix and the dispersing material, the strain amplitude dependency is large, and it is effective where the amplitude is large. When the distortion amplitude was in the range of 10 -7 , the effect was not so much exhibited.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来技
術の実情に鑑みてなされたものであり、その課題は、強
度材料としても使用できる硬度を有し、損失係数tan δ
が1以上と大きく、歪振幅依存性の小さな制振材料を得
ることにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances of the prior art, and has as its object to have a hardness which can be used as a strength material and a loss factor tan δ.
Is as large as 1 or more, and a vibration damping material having a small strain amplitude dependency is obtained.
【0007】圧電セラミクスにインピーダンス(L)を
接続し、セラミクスの容量(C)と共振させた場合、非
常に大きな損失係数が得られることは「 Journal of So
undand Vibration (1991)」 N.W.HAGOOD 等により明ら
かにされている。この技術を高分子圧電フィルム(PV
DF:ポリフッ化ビニリデン)及びシアノエチル化ヒド
ロキシエチルセルロースに適用すると、共振周波数付近
で大きな損失係数、遮音効果が得られることが、本発明
者により発表されている(1994 高分子学会 春期
大会 横浜)。圧電材料の電気的損失による内部損失の
効果は、数式1で示され、電気機械共振状態では、数式
1の分母がゼロに近くなるため、材料の電気機械変換常
数Kに依存しなく、非常に大きくなることが理論的に予
想される。この予想は、PVDF(K=0.1)とシア
ノエチル化ヒドロキシエチルセルロース(K=0.03
〜0.01)で実験的に正しいことを本発明者は示し
た。When an impedance (L) is connected to a piezoelectric ceramic and resonated with the capacitance (C) of the ceramic, an extremely large loss coefficient can be obtained.
undand Vibration (1991) "by NWHAGOOD and others. This technology is applied to polymer piezoelectric films (PV
DF: polyvinylidene fluoride) and cyanoethylated hydroxyethylcellulose have been reported by the present inventors to provide a large loss coefficient and a sound insulation effect near the resonance frequency (1994 Spring Meeting of the Society of Polymer Science, Yokohama). The effect of the internal loss due to the electrical loss of the piezoelectric material is shown by Equation 1, and in an electromechanical resonance state, the denominator of Equation 1 is close to zero, and thus does not depend on the electromechanical conversion constant K of the material. It is theoretically expected to grow. The expectation is that PVDF (K = 0.1) and cyanoethylated hydroxyethyl cellulose (K = 0.03)
The present inventor has shown that this is experimentally correct in the range of .about.0.01).
【数1】 ここで、 Kij:電気機械結合定数 δ:規格化共振周波数比(電気と機械) r:規格化抵抗 g:γの実数部:規格化電気周波数 γ:規格化周波数(Equation 1) Here, K ij : electromechanical coupling constant δ: normalized resonance frequency ratio (electric and mechanical) r: normalized resistance g: real part of γ: normalized electrical frequency γ: normalized frequency
【0008】この技術を建築壁に適用するには、次のよ
うな問題点が指摘された。上記圧電体の制振効果を電気
的等価回路で示すと、電池としての圧電体と、L(イン
ピーダンス),C(容量),R(抵抗)の直列等価回路
になるが、このLCRの回路網で構成される等価回路に
おいて、共振状態ではLCの効果はキャンセルされるの
で、その条件において最大電気損失を得る回路網の最適
抵抗Rは、数式2で示される条件を満たす必要がある。The following problems were pointed out when applying this technology to building walls. When the vibration damping effect of the piezoelectric body is represented by an electric equivalent circuit, a series equivalent circuit of a piezoelectric body as a battery and L (impedance), C (capacity), and R (resistance) is obtained. Since the effect of LC is canceled in the resonance state in the equivalent circuit constituted by the following equation, the optimum resistance R of the circuit network that obtains the maximum electric loss under the condition needs to satisfy the condition represented by Expression 2.
【数2】 ここで、 w:共振周波数 C:圧電材料の容量 R:圧電材料の電極抵抗を含む回路網の全抵抗 K:圧電材料の電気機械変換係数 PVDFの場合は K=0.1(Equation 2) Here, w: resonance frequency C: capacitance of the piezoelectric material R: total resistance of the circuit network including the electrode resistance of the piezoelectric material K: electromechanical conversion coefficient of the piezoelectric material K = 0.1 for PVDF
【0009】圧電材料のC(容量)は、その面積に比例
するため、厚み30μmのPVDFフィルムを使用した
場合、小型残響箱による音響測定レベルでは、フィルム
の面積は30×40cmを使用するため、最適抵抗は2
50Ωになるが、一般のドアのサイズ200×100c
mでは0.25Ωになり、実用的なAlスパッタ電極は
1Ω/cm2 であるためフィルムのどの個所から見ても
電気抵抗が上記式を満足させる回路構成は、要求される
抵抗値が小さく実現不可能である。Since the C (capacity) of the piezoelectric material is proportional to its area, when a 30 μm-thick PVDF film is used, the area of the film is 30 × 40 cm at an acoustic measurement level using a small reverberation box. The optimal resistance is 2
It becomes 50Ω, but the size of general door is 200 × 100c
m is 0.25 Ω and the practical Al sputter electrode is 1 Ω / cm 2 , so the circuit configuration in which the electrical resistance satisfies the above equation from any point of the film can be realized with a small required resistance value. Impossible.
【0010】逆に圧電材料を小さくし分散させた場合、
40×2mmサイズでは最適抵抗は106 Ωと大きくな
り、もしミクロンサイズで圧電性を有する物体を非圧電
体に分散できれば、最適抵抗値は1013〜1016Ωと非
常に大きくなる。通常の高分子材料の固有抵抗はこの領
域に入る。こうして、本発明者は、圧電材料として高分
子材料を用いれば、特別の回路構成、例えば電極,リー
ド線が不要になるとの考えに到達した。また、本発明者
は、圧電材料における圧電マトリックスと材料の機械運
動方程式により、この等価インダクタンス(L)成分が
数式3で示されることを高分子学会誌1997 46巻
にて明らかにした。Conversely, when the piezoelectric material is made smaller and dispersed,
In the case of the 40 × 2 mm size, the optimum resistance is as large as 10 6 Ω. If the object having the micron size and having the piezoelectricity can be dispersed in the non-piezoelectric material, the optimum resistance value is as extremely large as 10 13 to 10 16 Ω. The resistivity of ordinary polymer materials falls in this region. Thus, the present inventor has come to the idea that the use of a polymer material as the piezoelectric material eliminates the need for a special circuit configuration, for example, electrodes and lead wires. Further, the present inventor has clarified in the Journal of the Society of Polymer Science, Vol. 1997, Vol. 46, that the equivalent inductance (L) component is expressed by Expression 3 based on a mechanical motion equation of the piezoelectric matrix and the material in the piezoelectric material.
【数3】 ここで、 M:圧電体質量 Y:ヤング率 D:圧電d定数(圧電ひずみ定数) w:圧電体の幅 すなわち、圧電材料の幅が小さくなり、有機誘電体(ヤ
ング率がセラミックに比較して2桁小さい)にすれば、
大きなインダクタンス成分が得られ、HAGOODの式
で示される外部付加インダクタンスが不要になることが
期待される。すなわち、有機高分子マトリクスに無機圧
電体粉末を分散させた従来型の圧電制振材で制振効率を
上げるためにはL成分を付加しなければならないという
問題が解決される。(Equation 3) Here, M: mass of the piezoelectric material Y: Young's modulus D: piezoelectric d constant (piezoelectric strain constant) w: width of the piezoelectric material That is, the width of the piezoelectric material is reduced, and the organic dielectric (the Young's modulus is smaller than that of the ceramic) Two digits smaller)
It is expected that a large inductance component is obtained, and the external additional inductance represented by the HAGOOD equation becomes unnecessary. That is, the problem that the L component must be added in order to increase the damping efficiency with a conventional piezoelectric damping material in which an inorganic piezoelectric powder is dispersed in an organic polymer matrix is solved.
【0011】さらに、この圧電材料が細く針状に分散で
きれば、磁性材料における形状異方性の効果の類推よ
り、圧電d定数の小さな誘電体でも大きな圧電定数を持
つ圧電材料として使用できることが予測できる。Furthermore, if the piezoelectric material can be dispersed in a fine needle shape, it can be predicted from a analogy of the effect of the shape anisotropy of the magnetic material that a dielectric material having a small piezoelectric d constant can be used as a piezoelectric material having a large piezoelectric constant. .
【0012】[0012]
【課題を解決するための手段】本発明は、このような思
想に基づいてなされたものであり、上記課題を解決する
ため、請求項1の発明による圧電分散型有機系複合制振
材料は、有機系の誘電体又は強誘電体を非圧電性高分子
マトリックスに分散させてなることを特徴としている。
すなわち、高分子マトリックス中に分散された有機系の
誘電体又は強誘電体の歪電気変換効果を利用して振動エ
ネルギーを吸収するようにしたものである。ここで、誘
電体又は強誘電体とは、静電場を加えたとき又は電場を
加えない状態で自発的に電気分極を生ずるが直流電流を
生じない物質をいい、一般に言われる誘電体でなくて
も、針状になると誘電体と同様の物性を示す物質も含ま
れる。SUMMARY OF THE INVENTION The present invention has been made based on such an idea. To solve the above problems, a piezoelectric dispersion type organic composite vibration damping material according to the first aspect of the present invention comprises: It is characterized in that an organic dielectric or ferroelectric is dispersed in a non-piezoelectric polymer matrix.
That is, vibration energy is absorbed by utilizing the strain-electric conversion effect of an organic dielectric or ferroelectric dispersed in a polymer matrix. Here, a dielectric or a ferroelectric refers to a substance that spontaneously generates electric polarization when an electrostatic field is applied or when no electric field is applied, but does not generate a direct current, and is not a dielectric generally referred to. Also, a substance which shows the same physical properties as a dielectric when in the form of a needle is included.
【0013】[0013]
【作用及び効果】上記制振材料においては、外から印加
される振動エネルギーが、非圧電性高分子マトリックス
中に分散された有機系の誘電体又は強誘電体に伝達され
る。誘電体又は強誘電体の歪電気変換作用により、振動
エネルギーは電気エネルギーに変換され、その電気エネ
ルギーは抵抗によりジュール熱(熱エネルギー)として
消費される。その結果、振動が減衰される。In the vibration damping material, the vibration energy applied from the outside is transmitted to the organic dielectric or ferroelectric dispersed in the non-piezoelectric polymer matrix. Vibration energy is converted into electric energy by the strain-electric conversion action of the dielectric or ferroelectric, and the electric energy is consumed as Joule heat (thermal energy) by resistance. As a result, the vibration is damped.
【0014】続いて、上記基本的発明の効果と、その効
果の増進を図った他の発明について説明する。 1)力学的振動エネルギーの伝達効率の向上 請求項1の発明は、有機系の誘電体又は強誘電体を非圧
電性高分子マトリックスに分散させてなるので、振動エ
ネルギーの誘電体への伝達効率が高められるため、損失
係数tan δが1以上と大きく、歪振幅依存性の小さな制
振材料を得ることが可能である。有機系の誘電体又は強
誘電体には、高分子マトリックスの弾性率に近いものを
使用することが望ましい。これにより、振動エネルギー
の誘電体への伝達効率がさらに高められる。 2)振動エネルギーの電気エネルギーへの変換効率の向
上 請求項3の発明は、分散材である誘電体又は強誘電体の
形状を針状としたことを特徴としている。これにより反
分極係数が小さくなり、歪みにより発生する電荷に基づ
く反電界の影響が下がり、振動エネルギーから電気エネ
ルギーへの変換効率が高められた。特に針状比を5以上
に保つことにより、反分極係数は0.04以下になり、
この効果は大きくなる。請求項4の発明は、この針状分
散材が円柱ならば直径、角柱ならばその断面の2辺のう
ち短い方の径を20μm以下とすることを特徴としてい
る。これにより、抗電力が増え、ヒステリシス面積が増
え、エネルギー損失が増える。さらに、請求項5の発明
は、分散された誘電体又は強誘電体のマトリックスに対
する体積比率を0.3〜0.7に選択したことを特徴と
している。これにより、分散材の干渉による相互作用に
基づく抗電力の減少と誘電体の充填率の増加による電荷
の効果がバランスし、制振材料の滅衰能が増した。以上
のように、本発明は、有機誘電体の形状異方性に基づく
歪電気効果を利用したため、振動エネルギーの吸収効果
が大きく、通常の圧電高分子膜の応用と異なり、分極処
理、電極付着工程が不要であるので、経済効果が大き
い。特に歪率の小さな領域で効果を発揮するので、音響
制振材料として、顕著な効果が期待される。Next, the effects of the above-described basic invention and other inventions for improving the effects will be described. 1) Improvement of transmission efficiency of mechanical vibration energy According to the invention of claim 1, since an organic dielectric or ferroelectric is dispersed in a non-piezoelectric polymer matrix, the transmission efficiency of vibration energy to the dielectric is improved. Is increased, the loss coefficient tan δ is as large as 1 or more, and it is possible to obtain a vibration damping material having small strain amplitude dependency. It is desirable to use an organic dielectric or ferroelectric that is close to the elastic modulus of the polymer matrix. Thereby, the transmission efficiency of the vibration energy to the dielectric is further increased. 2) Improvement of conversion efficiency of vibration energy to electric energy The invention of claim 3 is characterized in that the shape of the dielectric or ferroelectric which is a dispersing material is made acicular. As a result, the anti-polarization coefficient was reduced, the effect of the anti-electric field based on the charge generated by the strain was reduced, and the conversion efficiency from vibration energy to electric energy was increased. In particular, by keeping the acicular ratio at 5 or more, the depolarization coefficient becomes 0.04 or less,
This effect is greater. The invention according to claim 4 is characterized in that if the needle-shaped dispersion material is a cylinder, the diameter is set, and if the needle-shaped dispersion material is a prism, the shorter one of the two sides of the cross section is set to 20 μm or less. This increases the coercive power, increases the hysteresis area, and increases energy loss. Further, the invention of claim 5 is characterized in that the volume ratio of the dispersed dielectric or ferroelectric to the matrix is selected to be 0.3 to 0.7. As a result, the reduction of the coercive power based on the interaction due to the interference of the dispersing material and the effect of the electric charge due to the increase in the filling factor of the dielectric material were balanced, and the decay ability of the damping material was increased. As described above, since the present invention utilizes the strain electric effect based on the shape anisotropy of the organic dielectric, the effect of absorbing the vibration energy is large, and unlike the application of the ordinary piezoelectric polymer film, the polarization treatment and the electrode attachment are performed. Since no process is required, the economic effect is large. Particularly, since the effect is exhibited in a region where the distortion rate is small, a remarkable effect is expected as an acoustic damping material.
【0015】以上のようなメカニズムを高分子複合材に
適用して、1ないし15の高損失係数tan δを有する制
振材料を製造する方法の一例を以下に説明する。第一番
目のエネルギー伝達効率に関しては、PZTのようなセ
ラミクスはその弾性率、比重がマトリックスの高分子材
料に比べて大きいため、相互の音響インピーダンスが異
なり、マトリックスの歪みがセラミクス圧電体に伝えら
れにくいので、伝達効率の点で有機誘電体−高分子分散
型が優れていることは明らかである。第二番目の分散材
の形状効果については、針状誘電体を磁性体とみなし
て、針状磁性体のカーリングモデルで示される抗磁力の
式An example of a method for producing a vibration damping material having a high loss factor tan δ of 1 to 15 by applying the above mechanism to a polymer composite material will be described below. Regarding the first energy transfer efficiency, ceramics such as PZT have a larger elastic modulus and specific gravity than the polymer material of the matrix, so their mutual acoustic impedances are different, and distortion of the matrix is transmitted to the ceramic piezoelectric material. It is obvious that the organic dielectric-polymer dispersion type is superior in terms of transmission efficiency because it is difficult. Regarding the shape effect of the second dispersing material, the coercive force formula shown by the curling model of the needle-shaped magnetic material is regarded as the needle-shaped dielectric material as a magnetic material.
【数4】 ここで、 I:磁化率 R:粒子径 R0 :交換積分で決定される径 に従うと、針状の分散材が細くなればなるほど、常磁性
体にならない範囲(Fe100オングストローム)で抗
磁力は大きくなる。磁性体の場合、電子スピンはある程
度の集合にならないと、その方位の維持はできないが、
誘電体の場合は、この制約が分子サイズまで小さくなる
と考えられる。磁性体理論を誘電体に適用することに関
しては、現象として類似点が多いので、妥当であると思
われる。これと同様の現象で誘電体が細くなると抗電力
が大きくなり、ヒステリシス面積が増してエネルギー損
失が増す。この効果は分散材が粒状であっても全体とし
てつながっていれば、針状分散材と同様な取扱いができ
る。また、針状比が5を超して細長くなれば、反分極係
数が小さくなり、自発分極による反電界の影響が小さく
なるため、針状誘電体はその電荷に比例した電界を周り
の誘電体に及ぼすことができて、歪みにより発生した電
荷に基づく損失を大きくできる。誘電体の分極モーメン
トの損失効果に及ぼす影響は、前記式で磁化率に比例し
て抗磁力が増していることから、同様の効果が期待でき
ることは明らかである。さらに、分散された誘電体を機
械電気共振周波数付近で使用すれば、損失効果が著しく
大きくなることは、圧電体の理論式より導かれる。誘電
体の体積効果については、針状磁性体の充填率と抗磁力
の関係に適用されるNeelの式 Hc(P)=(1−P)*Hc(0) I(P)=P*I ここで、 Hc:抗磁力 I:磁化率 P:充填率 を適用すると、充填率の最適値は50%付近にあり、誘
電体の体積比が0.7を超すと、針状誘電体の相互作用
の結果、その抗電力が落ちてくる。また、体積比が0.
3を下回ると、個々の誘電体の抗電力は大きいが、その
絶対量が少なくなるため、結果としてエネルギー損失が
減ってくる。誘電体分散型制振材料の以上のような現象
は、水銀中でのメッキにより作成された針状磁性体を非
磁性化マトリックスに分散させることにより得られる磁
石材料(GE社商品名LODOX)にて取扱われている
現象と同じであるといえる。(Equation 4) Here, according to I: magnetic susceptibility R: particle diameter R 0 : diameter determined by exchange integration, the thinner the acicular dispersion material, the larger the coercive force in the range where it does not become a paramagnetic material (Fe 100 Å). Become. In the case of a magnetic material, the direction cannot be maintained unless the electron spins are aggregated to some extent,
In the case of a dielectric, it is considered that this restriction is reduced to the molecular size. Regarding the application of the magnetic body theory to the dielectric, it seems appropriate because there are many similarities as phenomena. When the dielectric becomes thinner due to the same phenomenon, the coercive force increases, the hysteresis area increases, and the energy loss increases. This effect can be handled in the same manner as a needle-shaped dispersion material as long as the dispersion material is connected as a whole even if the dispersion material is granular. When the acicular ratio exceeds 5 and becomes elongated, the anti-polarization coefficient decreases, and the effect of the anti-electric field due to spontaneous polarization decreases. Therefore, the acicular dielectric has an electric field proportional to its electric charge. And the loss due to the charges generated by the distortion can be increased. It is obvious that the same effect can be expected from the influence of the dielectric polarization moment on the loss effect because the coercive force increases in proportion to the magnetic susceptibility in the above equation. Furthermore, it is derived from the theoretical formula of the piezoelectric body that the loss effect is significantly increased when the dispersed dielectric is used near the mechanical electric resonance frequency. Regarding the volume effect of the dielectric, the Neel equation applied to the relationship between the filling factor of the needle-shaped magnetic material and the coercive force Hc (P) = (1−P) * Hc (0) I (P) = P * I Here, when Hc: coercive force I: magnetic susceptibility P: filling rate is applied, the optimum value of the filling rate is around 50%, and when the volume ratio of the dielectric exceeds 0.7, mutual interaction of the needle-like dielectrics occurs. As a result, the coercive power drops. Further, when the volume ratio is 0.
Below 3, the coercive power of the individual dielectrics is large, but the absolute amount is small, resulting in a reduction in energy loss. The above phenomenon of the dielectric dispersion type vibration damping material is caused by dispersing a needle-like magnetic material formed by plating in mercury into a non-magnetized matrix (a magnet material, LODOX). It can be said that this is the same phenomenon that is handled.
【0016】[0016]
【発明の実施の形態】次に、実施例について説明する。 [実施例1] 試料の作成 マトリックスとしての塩化ポリエチレン(分子量 (50,0
00〜350,000))及び誘電分散材としてN,N−ジシクロ
ヘキシル−2−ベンゾチアジルスルフェンアミドを所定
量計測し、120〜160℃の温度で10分間加熱混合
し、100〜200kg・cm2 の圧力でプレス成形
し、厚み0.1〜0.3mmのシートを作成した。試料
の成型性を増し、針状体の形状、分散を整えるため、必
要に応じてジオクチルフタレート等の第二の可塑剤を少
量添加した。シートを80〜100℃で30分間アニー
ルして、配合比及び混合条件の異なる各種のサンプルを
試作した。サンプルサイズは40ないし10×2×0.
1mmである。N,N−ジシクロヘキシル−2−ベンゾ
チアジルスルフェンアミドの融点は80℃付近にあるた
め、析出再結晶の過程で針状に分散する。N,N−ジシ
クロヘキシル−2−ベンゾチアゾルスルフェンアミドと
塩化ポリエチレンの場合には、セルロースファイバー、
ポリエステルウィスカー等の表面に誘電体を吸着させて
使用することにより、耐久性の向上が見られる。誘電体
が繊維状に加工できるナイロン11、液晶ポリマー(商
標ベクトラン)のような場合には、細い繊維状に加工
後、所定の寸法比に切断して分散させても良い。この場
合、繊維径、寸法比の関係で、高分子マトリックスの電
気伝導度が不足する場合は、炭素粉末、繊維で電気伝導
度を補うのも有効である。また、分散される誘電体が比
較的低分子量の化合物で、融点が低く、高分子マトリッ
クスよりにじみ出やすい場合には、必要に応じて無機又
は有機材料のフィラーの表面に結合させて使用するか、
又はフィラーの間に分散させて所定の形状を保てばよ
い。 [実施例2] 高分子マトリックスに塩化ポリエチレンを用い、これに
誘電体として25μmφ、針状比5以上のナイロン11
の繊維を体積比10%、上記実施例1の場合と同一の温
度条件で混合し、同一圧力条件でプレスしてシートを作
成した。 [実施例3] マトリックスとして高分子セルロースファイバーを、分
散材として木材パルプファイバー100phr(No.
1),液晶ポリマー繊維(商標ペクトラン)30ミクロ
ンφ 100phr(No.2),No.2とカーボン
粉末10%wtNの混合物をそれぞれ用い、実施例1と
同一の条件で制振シートを作成した。損失係数tan δは
バイブロン2型(東洋ボールドウィン株式会社製測定
器)にて測定した。充填率及び針状比の測定はEDX
(エネルギー分散形X線分析器)付SEM(走査形電子
顕微鏡)で行った。Next, examples will be described. Example 1 Preparation of Sample Polyethylene chloride as a matrix (molecular weight (50,0
100 to 350,000)) and a predetermined amount of N, N-dicyclohexyl-2-benzothiazylsulfenamide as a dielectric dispersing material was measured, and heated and mixed at a temperature of 120 to 160 ° C. for 10 minutes to obtain 100 to 200 kg · cm 2 . Press molding was performed under pressure to prepare a sheet having a thickness of 0.1 to 0.3 mm. A small amount of a second plasticizer such as dioctyl phthalate was added as needed in order to increase the moldability of the sample and adjust the shape and dispersion of the needles. The sheet was annealed at 80 to 100 ° C. for 30 minutes to produce various samples having different mixing ratios and mixing conditions. Sample size is 40 to 10 × 2 × 0.
1 mm. Since the melting point of N, N-dicyclohexyl-2-benzothiazylsulfenamide is around 80 ° C., it is dispersed in the form of needles during the process of precipitation and recrystallization. In the case of N, N-dicyclohexyl-2-benzothiazolsulfenamide and polyethylene chloride, cellulose fiber;
By adsorbing the dielectric on the surface of polyester whiskers or the like, the durability can be improved. In the case where the dielectric is made of nylon 11 or a liquid crystal polymer (trademark: Vectran) which can be processed into a fibrous form, it may be processed into a fine fibrous form and then cut to a predetermined dimensional ratio and dispersed. In this case, if the electric conductivity of the polymer matrix is insufficient due to the relationship between the fiber diameter and the dimensional ratio, it is also effective to supplement the electric conductivity with carbon powder and fibers. In addition, when the dielectric material to be dispersed is a compound having a relatively low molecular weight and a low melting point, and easily oozes out of the polymer matrix, it may be used by binding to the surface of an inorganic or organic material filler as necessary.
Alternatively, a predetermined shape may be maintained by dispersing between fillers. [Example 2] Polyethylene chloride was used for a polymer matrix, and nylon 11 having a diameter of 25 µmφ and a needle ratio of 5 or more was used as a dielectric.
Were mixed under the same temperature conditions as in Example 1 and pressed under the same pressure conditions to form a sheet. Example 3 A polymer cellulose fiber was used as a matrix, and wood pulp fiber 100 phr (No.
1), liquid crystal polymer fiber (Pectran®) 30 microns φ 100 phr (No. 2); 2 and a mixture of carbon powder 10% wtN, respectively, to prepare a vibration damping sheet under the same conditions as in Example 1. The loss coefficient tan δ was measured with a vibron type 2 (a measuring device manufactured by Toyo Baldwin Co., Ltd.). EDX measurement of filling ratio and needle ratio
(Energy dispersive X-ray analyzer) with SEM (scanning electron microscope).
【0017】針状比による損失係数依存性 針状比は、加熱混合の温度、ロールによる圧下率を変え
ることにより、各種のサンプルを試作し、35−110
Hzにて損失係数を測定した。110Hzの損失係数測
定データを図1に、また、針状比測定のSEM写真を図
5、図7及び図8に示す。図7は誘電体が細かく、損失
係数tan δが大きい例であり、図8は誘電体が太く、損
失係数tan δが小さい例である。このデータより、針状
比5以上,断面径が20ミクロン以下のものが、損失係
数が大きいことがわかる。Dependency of Loss Coefficient by Needle Ratio The needle ratio is determined by changing the temperature of the heating and mixing and the rolling reduction by a roll to produce various samples.
The loss factor was measured in Hz. The loss coefficient measurement data at 110 Hz is shown in FIG. 1, and SEM photographs of the needle ratio measurement are shown in FIGS. 7 shows an example in which the dielectric is fine and the loss coefficient tan δ is large, and FIG. 8 shows an example in which the dielectric is thick and the loss coefficient tan δ is small. From this data, it is understood that those having a needle ratio of 5 or more and a cross-sectional diameter of 20 microns or less have a large loss coefficient.
【0018】誘電体分散比率による損失係数依存性 構成材料の配合比率を変えることにより、サンプルを作
成し、EDXにより所定の個所の硫黄、及び塩素量を測
定して分散量を確認した。サンプルの針状比は約30、
径は10ミクロンである。損失係数は前記測定器にて3
5−110Hzにて測定した。110Hzの測定データ
を図2に示す。分散比率50%を中心として前後20%
のものが特性の良いことがわかる。Dependency of Loss Coefficient Due to Dielectric Dispersion Ratio Samples were prepared by changing the mixing ratio of the constituent materials, and the amounts of sulfur and chlorine at predetermined locations were measured by EDX to confirm the amount of dispersion. The needle ratio of the sample is about 30,
The diameter is 10 microns. The loss factor is 3
It was measured at 5-110 Hz. FIG. 2 shows the measurement data at 110 Hz. 20% before and after 50% dispersion ratio
It can be seen that those having good characteristics.
【0019】損失係数の歪振幅依存性 分散材としてゲルを使用した内部摩擦型の商品名ゲルナ
ック(株式会社日本オートメーション)と比較した損失
係数の振幅依存性を図3に示す。本発明品は振幅の小さ
なところで損失係数の劣化がなく、振動エネルギー吸収
のメカニズムが通常と異なることを示しており、音響振
動の制御に優れていることを示す。Dependence of Loss Factor on Strain Amplitude FIG. 3 shows the amplitude dependence of the loss factor as compared with the internal friction type Gelnac (Nippon Automation Co., Ltd.) using gel as a dispersing material. The product of the present invention has no loss factor degradation at a small amplitude, and shows that the mechanism of vibration energy absorption is different from normal, indicating that it is excellent in controlling acoustic vibration.
【0020】損失係数の温度依存性 図4に誘電体体積比率50%、塩化ポリエチレン(CP
E)及びスルフェンアミン系添加剤(DZ)の配合比率
1対1の混合物に15%のジオクチルフタレート(DO
P)を加え、160℃で加熱成型した針状比30以上、
最大径16ミクロンの複合制振材料の110Hzにおけ
る損失係数の温度依存性を示す。このサンプルは100
℃付近で共振し、損失係数は3000以上の大きな値を
示す。共振点温度及び周波数は、有機誘電体とマトリッ
クス高分子材料の選択により変化できる。このような大
きな損失係数は、従来、液体でしか観測されなかった現
象であり、ヤング率106 dyn・cm2 の固体制振材
料では得られていなかった。Temperature Dependence of Loss Coefficient FIG. 4 shows a dielectric volume ratio of 50% and polyethylene chloride (CP).
E) and a sulfenamine-based additive (DZ) in a 1: 1 mixture ratio of 15% dioctyl phthalate (DO)
P) was added, and the needle ratio was 30 or more formed by heating at 160 ° C.,
4 shows the temperature dependence of the loss coefficient at 110 Hz of a composite vibration damping material having a maximum diameter of 16 microns. This sample is 100
It resonates around ℃ and shows a large loss coefficient of 3000 or more. The resonance point temperature and frequency can be changed by selecting the organic dielectric and the matrix polymer material. Such a large loss coefficient is a phenomenon that has been conventionally observed only in a liquid, and has not been obtained with a solid vibration damping material having a Young's modulus of 10 6 dyn · cm 2 .
【0021】以上の効果は、有機誘電体及びマトリック
ス高分子として前記材料を用いた場合に得られる効果
で、材料の組合わせにより使用条件に合わせた選択が可
能であることは自明のことである。The above effects are obtained when the above materials are used as the organic dielectric material and the matrix polymer, and it is obvious that the selection according to the use conditions can be made by combining the materials. .
【0022】垂直入射吸音率 実施例2により得られた制振シートを試験方法JISA
1405により垂直入射吸音率を測定した。図9に示す
ように、周波数100〜230Hzの範囲において良好
な結果を得た。Normal incidence sound absorption coefficient The vibration damping sheet obtained in Example 2 was tested according to the test method JISA.
According to 1405, the normal incidence sound absorption coefficient was measured. As shown in FIG. 9, good results were obtained in the frequency range of 100 to 230 Hz.
【0023】内部損失増加率 実施例3により得られた制振シートの高分子セルロース
ファイバーを基準としたときの内部損失増加率は、図1
0に示す通りであった。Internal Loss Increasing Rate The internal loss increasing rate based on the polymer cellulose fiber of the vibration damping sheet obtained in Example 3 is shown in FIG.
0.
【0024】劣化率テスト 上記実施例により得られた制振材料について、それぞれ
60日後の劣化率を測定したところ、図11に示される
ような結果を得た。図11において、No.4は塩化ポ
リエチレン+N,Nジシクロヘキシルスルヘンアミド
100:100、No.5はNo.4にプラズマ処理セ
ルロースファイバー10%wtを加えたもの、No.6
は高分子セルロース+液晶ポリマー繊維50である。Deterioration rate test The damping rate of each of the vibration damping materials obtained in the above examples after 60 days was measured. The results shown in FIG. 11 were obtained. In FIG. 4 is polyethylene chloride + N, N dicyclohexylsulfenamide
100: 100; No. 5 is No. No. 4 to which 10% wt of plasma-treated cellulose fiber was added. 6
Is a polymer cellulose + liquid crystal polymer fiber 50.
【0025】以上のように、本発明は誘電体をモノドメ
イン構造に高分子マトリックスに分散させて、その圧電
効果により制振効果を得るものであり、製造方法には依
存しない。特に誘電体が液晶材料に使用される直鎖構造
の化合物である場合は、分子レベルで分散しても、制振
効果が得られる。As described above, in the present invention, a dielectric substance is dispersed in a polymer matrix in a monodomain structure to obtain a damping effect by its piezoelectric effect, and does not depend on a manufacturing method. In particular, when the dielectric is a compound having a linear structure used for a liquid crystal material, a vibration damping effect can be obtained even when dispersed at the molecular level.
【図1】誘電体の直径又は断面径及び針状比率による損
失係数の依存性を示すグラフである。FIG. 1 is a graph showing the dependence of the loss coefficient on the diameter or cross-sectional diameter of a dielectric and the acicular ratio.
【図2】誘電体の分数比率による損失係数依存性を示す
グラフである。FIG. 2 is a graph showing a loss coefficient dependency by a fractional ratio of a dielectric.
【図3】分散型圧電制振材料及び内部摩擦型制振材料の
歪振幅依存性を示すグラフである。FIG. 3 is a graph showing the strain amplitude dependence of a distributed piezoelectric damping material and an internal friction damping material.
【図4】損失係数の共振特性を示すグラフである。FIG. 4 is a graph showing a resonance characteristic of a loss coefficient.
【図5】成分分析個所の一例を示すSEM写真である。FIG. 5 is an SEM photograph showing an example of a component analysis location.
【図6】SEM写真のC及びS部の成分分析の結果を示
すグラフである。FIG. 6 is a graph showing the results of component analysis of parts C and S of the SEM photograph.
【図7】成分分析針状比の例を示すSEM写真である。FIG. 7 is an SEM photograph showing an example of a component analysis needle ratio.
【図8】成分分析針状比の他の例を示すSEM写真であ
る。FIG. 8 is an SEM photograph showing another example of the component analysis needle ratio.
【図9】誘電体が繊維の場合の垂直入射吸音率の測定結
果を示すグラフである。FIG. 9 is a graph showing a measurement result of a normal incidence sound absorption coefficient when a dielectric is a fiber.
【図10】マトリックスに高分子セルロースファイバー
を用いた場合の内部損失増加率を例示するグラフであ
る。FIG. 10 is a graph illustrating an internal loss increase rate when a polymer cellulose fiber is used as a matrix.
【図11】各種制振材料の劣化率のテスト結果を示すグ
ラフである。FIG. 11 is a graph showing test results of a deterioration rate of various damping materials.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G10K 11/178 G10K 11/16 H (31)優先権主張番号 特願平9−169423 (32)優先日 平成9年6月10日(1997.6.10) (33)優先権主張国 日本(JP)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI G10K 11/178 G10K 11/16 H (31) Claimed priority number Japanese Patent Application No. 9-169423 (32) Priority date June 1997 10th (June 10, 1997) (33) Countries claiming priority Japan (JP)
Claims (5)
高分子マトリックスに分散させてなる圧電分散型有機系
複合制振材料。1. A piezoelectric dispersion type organic composite vibration damping material comprising an organic dielectric or ferroelectric dispersed in a non-piezoelectric polymer matrix.
性率に近い有機系の誘電体又は強誘電体を使用したこと
を特徴とする請求項1に記載された圧電分散型有機系複
合制振材料。2. The piezoelectric dispersion type organic composite vibration damping material according to claim 1, wherein an organic dielectric or ferroelectric substance having an elastic modulus close to that of the polymer matrix is used as the dispersion material. .
ことを特徴とする請求項1記載の圧電分散型有機系複合
制振材料。3. The piezoelectric dispersion type organic composite vibration damping material according to claim 1, wherein the form of the dielectric or ferroelectric is acicular.
あり、断面積が円形の場合はその直径が、断面積が矩形
の場合はその一辺が20ミクロン以下である請求項2記
載の圧電分散型有機系複合制振材料。4. A dielectric or ferroelectric material having a needle ratio of 5 or more, having a circular cross-sectional area having a diameter and a rectangular cross-sectional area having a side of 20 μm or less. The piezoelectric dispersion-type organic composite vibration damping material according to the above.
トリックスに対する体積比が0.3ないし0.7である
請求項1,2又は3記載の圧電分散型有機系複合制振材
料。5. The piezoelectric dispersion type organic composite vibration damping material according to claim 1, wherein the volume ratio of the dielectric or ferroelectric to the non-piezoelectric polymer matrix is 0.3 to 0.7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36804497A JP3192400B2 (en) | 1997-01-10 | 1997-12-25 | Piezoelectric dispersion type organic composite vibration damping material |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP319697 | 1997-01-10 | ||
JP6919897 | 1997-03-05 | ||
JP14319797 | 1997-05-16 | ||
JP16942397 | 1997-06-10 | ||
JP9-169423 | 1997-06-10 | ||
JP9-3196 | 1997-06-10 | ||
JP9-69198 | 1997-06-10 | ||
JP9-143197 | 1997-06-10 | ||
JP36804497A JP3192400B2 (en) | 1997-01-10 | 1997-12-25 | Piezoelectric dispersion type organic composite vibration damping material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1168190A JPH1168190A (en) | 1999-03-09 |
JP3192400B2 true JP3192400B2 (en) | 2001-07-23 |
Family
ID=27518326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36804497A Expired - Fee Related JP3192400B2 (en) | 1997-01-10 | 1997-12-25 | Piezoelectric dispersion type organic composite vibration damping material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3192400B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6657567B2 (en) | 2000-04-14 | 2003-12-02 | Yasue Sakai | Compressing method and device, decompression method and device, compression/decompression system, and recorded medium |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069424A (en) | 2000-08-31 | 2002-03-08 | Masao Sumita | Organic hybrid-based vibration damping material, its manufacturing method and vibration damping improving agent used for the same |
US7029598B2 (en) | 2002-06-19 | 2006-04-18 | Fuji Photo Film Co., Ltd. | Composite material for piezoelectric transduction |
JP2006308679A (en) * | 2005-04-26 | 2006-11-09 | Tokyo Institute Of Technology | Method of controlling sound absorption frequency, and sound absorption structure |
JP6180148B2 (en) * | 2012-03-28 | 2017-08-16 | 株式会社タイテックスジャパン | Composite damping material |
TW201437002A (en) | 2013-03-27 | 2014-10-01 | Kiso Industry Co Ltd | Composite vibration-damping material |
-
1997
- 1997-12-25 JP JP36804497A patent/JP3192400B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6657567B2 (en) | 2000-04-14 | 2003-12-02 | Yasue Sakai | Compressing method and device, decompression method and device, compression/decompression system, and recorded medium |
Also Published As
Publication number | Publication date |
---|---|
JPH1168190A (en) | 1999-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO 3 and CoFe 2 O 4 nanoparticles | |
Mishra et al. | Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review | |
US5951908A (en) | Piezoelectrics and related devices from ceramics dispersed in polymers | |
Luo et al. | Energy storage properties of (1− x)(Bi 0.5 Na 0.5) TiO 3–x KNbO 3 lead-free ceramics | |
CN102031007B (en) | Polymer composite piezoelectric materials and piezoelectric device using same | |
Sharma et al. | PZT–PDMS composite for active damping of vibrations | |
RU2548604C2 (en) | Piezoelectric and/or pyroelectric composite solid material, method of obtaining thereof and thereof application | |
US4624796A (en) | Piezoelectric filler and flexible piezoelectric composites | |
Gheorghiu et al. | PVDF–ferrite composites with dual magneto-piezoelectric response for flexible electronics applications: synthesis and functional properties | |
Behera et al. | Development of multiferroic polymer nanocomposite from PVDF and (Bi 0.5 Ba 0.25 Sr 0.25)(Fe 0.5 Ti 0.5) O 3 | |
WO2011046602A1 (en) | Energy conversion materials fabricated with boron nitride nanotubes (bnnts) and bnnt polymer composites | |
Ponnamma et al. | Ceramic-based polymer nanocomposites as piezoelectric materials | |
US11968904B2 (en) | Flexible piezoceramic composites and method for fabricating thereof | |
JP3192400B2 (en) | Piezoelectric dispersion type organic composite vibration damping material | |
JP2777976B2 (en) | Piezoelectric ceramic-polymer composite material and manufacturing method thereof | |
Chen et al. | Piezoelectric energy harvesting and dissipating behaviors of polymer-based piezoelectric composites for nanogenerators and dampers | |
Zhang et al. | Enhanced energy storage performance of PVDF composite films with a small content of BaTiO 3 | |
Khade et al. | A comparative study on rigid and flexible magnetoelectric composites | |
JP2015110504A (en) | Piezoelectric ceramic, method of manufacturing the same, and piezoelectric ceramic speaker using the same | |
US6002196A (en) | Piezoelectric dispersion type organic damping composite | |
Martin et al. | Magnetoelectric coupling in PVDF/Nano NaNbO 3/NanoNi composites: Influence of Ni particles aspect ratio | |
Liu et al. | Effect of interfacial area on the dielectric properties of ceramic-polymer nanocomposites using coupling agent blended matrix | |
Mahale et al. | High power density low-lead-piezoceramic–polymer composite energy harvester | |
Xia et al. | The magnetoelectric effect of the CFO thin film by coupling a P (VDF-co-TrFE) piezoelectric layer | |
Fang et al. | Effects of pre-polarization on the dielectric and piezoelectric properties of 0–3 type PIN–PMN–PT/PVDF composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080525 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090525 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090525 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |