JP3192071B2 - Method for producing water-repellent composite particles and water-repellent material using the same - Google Patents

Method for producing water-repellent composite particles and water-repellent material using the same

Info

Publication number
JP3192071B2
JP3192071B2 JP29706095A JP29706095A JP3192071B2 JP 3192071 B2 JP3192071 B2 JP 3192071B2 JP 29706095 A JP29706095 A JP 29706095A JP 29706095 A JP29706095 A JP 29706095A JP 3192071 B2 JP3192071 B2 JP 3192071B2
Authority
JP
Japan
Prior art keywords
water
repellent
particles
composite particles
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29706095A
Other languages
Japanese (ja)
Other versions
JPH09136979A (en
Inventor
満也 大橋
博美 杉本
隆 末永
敬三 児島
康 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP29706095A priority Critical patent/JP3192071B2/en
Publication of JPH09136979A publication Critical patent/JPH09136979A/en
Application granted granted Critical
Publication of JP3192071B2 publication Critical patent/JP3192071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、撥水性複合粒子と
これを用いて基材表面に撥水層を形成した撥水性材料に
関するものである。
TECHNICAL FIELD The present invention relates to a water-repellent composite particle and a water-repellent material using the same to form a water-repellent layer on a substrate surface.

【0002】[0002]

【従来技術】フッ素系樹脂は優れた撥水性を有し防水、
防汚等を目的として多くの分野で実用化されている。し
かしながら、フッ素系樹脂の中で最も撥水性の高いPT
FEでさえ、表面に付着する水滴を完全に防止するほど
の撥水効果はなく、その表面に水滴を残し、そこに付着
するダスト等により表面が汚染されてその撥水効果が著
しく低減されるような問題点がある。
PRIOR ART Fluorine resin has excellent water repellency and waterproof,
It has been put to practical use in many fields for antifouling and the like. However, the most water-repellent PT among fluororesins
Even FE does not have a water-repellent effect enough to completely prevent water droplets from adhering to the surface, leaving water droplets on the surface and contaminating the surface with dust and the like adhering to the surface, thereby significantly reducing the water-repellent effect. There is such a problem.

【0003】また、フッ素系樹脂は、撥水性が高いもの
ほど他の材料との接着性が悪くなるため、基材表面をコ
ートすることが非常に困難であり、たとえコートしても
摩擦などに対する耐久性が低いものとなる。従来はPT
FE等のシートの片面を金属ナトリウムにより処理して
表面を活性化して接着強度を上げる方法やグロー放電等
によりPTFEシート表面を粗面化して、アンカー効果
により接着強度を上げる方法が用いられてきた。しかし
ながら、このような方法では処理が複雑である上に、P
TFEシートでは複雑な形状のものに対応することが困
難である。
[0003] In addition, since the higher the water repellency of the fluororesin, the lower the adhesiveness to other materials, it is very difficult to coat the surface of the base material. The durability is low. Conventionally PT
A method has been used in which one surface of a sheet such as FE is treated with metallic sodium to activate the surface and increase the adhesive strength, or a method in which the PTFE sheet surface is roughened by glow discharge or the like to increase the adhesive strength by an anchor effect. . However, in such a method, the processing is complicated, and P
It is difficult to handle a TFE sheet having a complicated shape.

【0004】[0004]

【問題点を解決するための具体的手段】本発明者らは、
かかる従来技術の問題点を解決するために、低分子量P
TFEが該低分子量PTFEより機械的強度の大きい粒
子上に被覆されてなる撥水性複合粒子で、低分子量PT
FEよりも機械的強度が大きい一次粒子上に、低分子量
PTFEを被覆した後に解砕および粉砕することを特徴
とする撥水性複合粒子の製造法、および、基材表面に接
着層を介して、低分子量PTFEが、該低分子量PTF
Eより機械的強度の大きい粒子上に被覆されてなる撥水
性複合粒子よりなる粗面が形成されていることを特徴と
する撥水性材料を先に提案した(特開平7−25106
0号)。また、PTFEよりも機械的強度が大きい粒子
上にPTFEを被覆した撥水性複合粒子の製造法は、特
開昭53−147541号、特開平4−358087
号、特開平7−90691号等で開示されている。しか
しながら、これらの方法は、全て機械的に粒子同士を混
合することによって、静電気力あるいは粒子表面の凹凸
によるアンカー効果によって被覆がおこなわれており、
これらを撥水性材料として用いる場合には、粒子と被覆
されたPTFEとの密着性が重要となる。一般に、被膜
の基質への密着性は被膜の膜厚が薄いほど良く、上記の
ような撥水性粒子の製造法では膜厚の制御が困難で、密
着性の良い撥水性粒子を得ることは難しい。
[Specific means for solving the problem]
In order to solve the problems of the prior art, low molecular weight P
Water-repellent composite particles in which TFE is coated on particles having higher mechanical strength than the low-molecular-weight PTFE.
On a primary particle having a higher mechanical strength than FE, a method for producing water-repellent composite particles characterized by being crushed and pulverized after coating with low-molecular-weight PTFE, and an adhesive layer on the surface of the base material, The low-molecular-weight PTFE is
A water-repellent material characterized by having a roughened surface made of water-repellent composite particles coated on particles having a higher mechanical strength than E has been previously proposed (JP-A-7-25106).
No. 0). A method for producing water-repellent composite particles in which PTFE is coated on particles having higher mechanical strength than PTFE is disclosed in JP-A-53-147541 and JP-A-4-358087.
And JP-A-7-90691. However, in all of these methods, the coating is performed by an electrostatic effect or an anchor effect due to unevenness of the particle surface, by mechanically mixing the particles with each other,
When these are used as a water-repellent material, the adhesion between the particles and the coated PTFE is important. In general, the adhesiveness of a coating to a substrate is better as the thickness of the coating is thinner, and it is difficult to control the thickness in the method for producing water-repellent particles as described above, and it is difficult to obtain water-repellent particles having good adhesion. .

【0005】本発明者らは、かかる問題点に鑑み鋭意検
討の結果、本発明に到達したものである。すなわち本発
明は、低分子量PTFEより機械的強度の大きい一次粒
子上に、蒸着可能な低分子量PTFEを蒸着することを
特徴とする撥水性複合粒子の製造方法、および、基材表
面に接着層を介して、該撥水性複合粒子よりなる粗面が
形成されていることを特徴とする撥水性材料をそれぞれ
提供するものである。
[0005] The present inventors have made intensive studies in view of the above problems, and have reached the present invention. That is, the present invention provides a method for producing water-repellent composite particles, which comprises vapor-depositing low molecular weight PTFE capable of being vapor-deposited on primary particles having higher mechanical strength than low molecular weight PTFE, and forming an adhesive layer on the substrate surface. The present invention provides a water-repellent material having a rough surface formed of the water-repellent composite particles.

【0006】本発明による撥水性複合粒子を施した基材
表面は、表面の粗面化の効果により、水滴と表面との接
触面積が小さくなり、ベースの低分子量PTFE単独よ
りも撥水性が著しく高くなり、水滴の付着をほぼ完全に
防止できる。また、PTFEよりも機械的強度が大きい
粒子を複合しているため、摩擦等の外的な力に対する耐
久性も著しく向上する。さらに、比較的均一な薄膜が容
易に得られる蒸着法によって粒子を被覆しているため、
密着性の高い撥水性粒子が得られ、撥水性材料を作製す
る時の混合、攪拌等で被膜が剥がれるような心配はな
い。
[0006] The surface of the substrate provided with the water-repellent composite particles according to the present invention has a small contact area between water droplets and the surface due to the effect of surface roughening. As a result, the adhesion of water droplets can be almost completely prevented. In addition, since particles having mechanical strength larger than that of PTFE are compounded, durability against external forces such as friction is significantly improved. Furthermore, since the particles are coated by a vapor deposition method that can easily obtain a relatively uniform thin film,
Water-repellent particles having high adhesiveness can be obtained, and there is no fear that the coating is peeled off by mixing, stirring, or the like when producing the water-repellent material.

【0007】さらに強力な撥水性を発現させるため、ま
たは、撥水性材料に透明性を付与する場合には、撥水性
粒子の粒径を1μm以下まで小さくすることが必要とな
るが、PTFE粒子自体は柔らかいために一般の粉砕方
法では、粒子間で融着が起こるなどの理由から1μm以
下の粒子を得ることは困難である。本発明によると、1
μm以下の微粒子に本発明における複合化を施すことに
より、容易に1μm以下の撥水性微粒子を得ることが可
能である。
In order to exhibit stronger water repellency or to impart transparency to the water repellent material, it is necessary to reduce the particle size of the water repellent particles to 1 μm or less. Is soft, and it is difficult to obtain particles of 1 μm or less by a general pulverization method because, for example, fusion occurs between particles. According to the present invention, 1
It is possible to easily obtain water-repellent fine particles of 1 μm or less by subjecting the fine particles of μm or less to the compounding in the present invention.

【0008】また、撥水性複合粒子を用いる場合、接着
層が完全に硬化する前に撥水性複合粒子の表面エネルギ
ーの低さゆえに、組成物表面に粒子が浮上してくるた
め、この段階で圧力を加えることにより、粒子が接着層
に食い込み、十分な接着性が得られる。ここでPTFE
単独の粒子の場合、粒子に強度が無いため表面の粗面を
維持できない上に食い込みも不十分であるため、接着性
が得られないうえに耐久性も不十分である。
When the water-repellent composite particles are used, the particles float on the surface of the composition before the adhesive layer is completely cured due to the low surface energy of the water-repellent composite particles. By adding the particles, the particles penetrate into the adhesive layer, and sufficient adhesiveness can be obtained. Where PTFE
In the case of a single particle, since the particle has no strength, a rough surface cannot be maintained and the bite is insufficient, so that adhesion is not obtained and durability is also insufficient.

【0009】本発明において、使用する低分子量PTF
Eとしては、本出願人が、すでに提案した製造方法(特
公平1−49404号)で得られる平均分子量が500
〜15000、好ましくは500〜5000のものを使
用する。平均分子量が15000を越えるものは蒸気圧
が低く、本発明の特徴である粒子への蒸着が困難である
ため好ましくない。
The low molecular weight PTF used in the present invention
As E, the average molecular weight obtained by the manufacturing method proposed by the present applicant (Japanese Patent Publication No. 1-49404) is 500.
の も の 15000, preferably 500-5000. Those having an average molecular weight of more than 15,000 are not preferred because the vapor pressure is low and it is difficult to deposit on particles, which is a feature of the present invention.

【0010】本発明において、高強度撥水性複合粒子を
形成するために用いる粒子としては、PTFEよりも強
度の大きいものであればよい。例えば、SiO2 、Al
2 3 等のセラミック系材料やFe、Ni等の金属材
料、エポキシ樹脂、ポリカーボネート等のポリマー材
料、そのほか塗料原料用顔料やカーボン材料、CaF2
等の無機化合物が挙げられる。ただし、表面の凹凸が大
きい粒子や多孔質粒子のほうがより強いアンカー効果が
期待でき、密着性も強くなるため好ましい。これらの粒
子の粒径については0.01μm以上、1mm以下が好
ましく、1mm以上の粒径では,複合粒子を基材の表面
に被覆した場合、撥水効果により水は球状になるもの
の、粒子間に水滴が入り込み表面より落下しにくくなる
こともあるため好ましくない。
In the present invention, the high-strength water-repellent composite particles are
Particles used for forming are stronger than PTFE
Anything with a high degree may be used. For example, SiOTwo, Al
TwoO ThreeAnd other metallic materials such as Fe and Ni
Materials such as fillers, epoxy resins, and polycarbonate
Pigments, pigments and carbon materials for coating materials, CaFTwo
And the like. However, surface irregularities are large.
Threshold particles and porous particles have a stronger anchor effect
This is preferable because it can be expected and the adhesion becomes stronger. These grains
The particle size of the particles is preferably 0.01 μm or more and 1 mm or less.
In the case of a particle size of 1 mm or more, the composite particles are coated on the surface of the substrate.
When coated, water becomes spherical due to the water repellent effect
Water droplets between the particles make it difficult to fall from the surface
It is not preferable because it may occur.

【0011】本発明において、粒子に低分子量PTFE
を蒸着する方法としては、種々考えられるが、均一な蒸
着膜を得る上で重要な因子となる粒子の温度、蒸気密度
分布が比較的簡単にかつ均一に制御できる流動層装置を
用いて低分子量PTFE蒸気を窒素等のキャリアーガス
とともに吹き込む方法が好ましい。
In the present invention, low molecular weight PTFE is added to the particles.
There are various methods for vapor deposition, but the temperature and vapor density distribution of the particles, which are important factors in obtaining a uniform vapor-deposited film, can be relatively easily and uniformly controlled using a fluidized bed apparatus with a low molecular weight. A method of blowing PTFE vapor together with a carrier gas such as nitrogen is preferable.

【0012】本発明において使用される流動層装置は、
図1に示されるような装置が好ましく、低分子量PTF
Eを気化させるための下部ヒーター3、流動層部の温度
を制御する管壁ヒーター2、流動層の線速を変化させる
ための循環ポンプ5、及び蒸着時間をそれぞれ制御する
ことによって蒸着膜の膜厚や成膜状態を制御することが
できる。下部ヒーター温度は、低分子量PTFEの気化
速度に関連しており、100℃〜500℃の温度範囲で
設定することが好ましい。これより低温の場合には、低
分子量PTFEの蒸気圧が低すぎるため蒸着が困難で、
また高温の場合には、低分子量PTFEの分解等が起こ
るため好ましくない。管壁ヒーター温度は、低分子量P
TFEの成膜状態に関連しており、50℃〜350℃の
温度範囲で設定することが好ましい。これより低温の場
合には、低分子量PTFEの管壁への析出や粉化が激し
くなり、また高温の場合には、蒸着した低分子量PTF
Eが融解するため好ましくない。下部ヒーター温度、管
壁ヒーター温度の最適設定値は、低分子量PTFEの分
子量によって左右されるため、使用する低分子量PTF
Eの分子量に合わせて上記の観点から適宜選択すれば良
い。
The fluidized bed apparatus used in the present invention comprises:
A device such as that shown in FIG.
A lower heater 3 for vaporizing E, a tube wall heater 2 for controlling the temperature of the fluidized bed, a circulating pump 5 for changing the linear velocity of the fluidized bed, and a deposition film by controlling the deposition time. The thickness and the film formation state can be controlled. The lower heater temperature is related to the vaporization rate of the low molecular weight PTFE, and is preferably set in a temperature range of 100 ° C to 500 ° C. If the temperature is lower than this, the vapor pressure of the low molecular weight PTFE is too low, so that the vapor deposition is difficult,
On the other hand, when the temperature is high, decomposition of low molecular weight PTFE and the like occur, which is not preferable. Tube wall heater temperature is low molecular weight P
This is related to the film formation state of TFE, and is preferably set in a temperature range of 50 ° C. to 350 ° C. If the temperature is lower than this, low molecular weight PTFE will precipitate and powder on the tube wall intensely.
It is not preferable because E melts. Since the optimum set values of the lower heater temperature and the tube wall heater temperature depend on the molecular weight of the low molecular weight PTFE, the low molecular weight PTFE used
What is necessary is just to select suitably from said viewpoint according to the molecular weight of E.

【0013】循環ポンプ流量は、流動層の流動状態に関
連しており、任意に選べば良いが、均一に蒸着するため
には安定な流動状態が得られるような流量、すなわち流
動層の線速が流動開始速度より大きく、かつ高速流動層
に移行しないような線速となるような流量が好ましい。
循環ポンプ流量の最適設定値は、流動層に用いる粒子の
種類、径によって左右されるため、使用する粒子に合わ
せて上記の観点から適宜選択すれば良い。
The flow rate of the circulating pump is related to the flow state of the fluidized bed, and may be arbitrarily selected. However, for uniform deposition, the flow rate at which a stable flow state is obtained, that is, the linear velocity of the fluidized bed, Is preferably higher than the flow start speed and at a linear velocity that does not cause the transition to the high-speed fluidized bed.
The optimum set value of the circulating pump flow rate depends on the type and diameter of the particles used in the fluidized bed, and may be appropriately selected from the above viewpoints according to the particles used.

【0014】本発明の撥水性複合粒子により、被覆され
る基材の材質や形状は特に限定はなく、一般に塗装が可
能なものであればどのようなものにでも使用できる。ま
た、接着層についてはエポキシ樹脂、ウレタン樹脂等の
一般の接着や塗装に用いられるものでよい。その接着層
の厚みは使用する複合粒子の半径以上であることが好ま
しく、それ以下であると十分な接着強度が得られない。
The material and shape of the substrate to be coated with the water-repellent composite particles of the present invention are not particularly limited, and any material that can be generally coated can be used. Further, the adhesive layer may be an epoxy resin, a urethane resin or the like used for general bonding or painting. The thickness of the adhesive layer is preferably not less than the radius of the composite particles to be used, and if it is less than that, sufficient adhesive strength cannot be obtained.

【0015】以上のようにして得られた撥水性複合粒子
を用いて基材上に撥水層を形成した撥水性材料は従来の
ものよりも著しく高い撥水性を示し、水滴の付着をほぼ
完全に防止できる。しかも、基材との接着性にも優れて
いる。
The water-repellent material obtained by forming a water-repellent layer on a substrate using the water-repellent composite particles obtained as described above exhibits remarkably higher water repellency than conventional ones, and almost completely prevents the attachment of water droplets. Can be prevented. Moreover, the adhesiveness to the substrate is excellent.

【0016】[0016]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はかかる実施例により限定されるものでは
ない。
The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0017】実施例1〜16、比較例1〜3 表1において実施例1〜7に示した撥水性複合粒子は、
以下のように調製した。図1に示すような撥水性複合粒
子製造装置の流動層蒸着装置1(φ25×500、SU
S製)に、分子量3000の低分子量PTFE6を5g
と低分子量PTFEより機械的強度の高い粒子7(以
下、複合化材と呼ぶ)を50gとをそれぞれ仕込み、管
壁ヒーター2を200℃、下部ヒーター3を350℃に
それぞれ設定、加熱した。循環ポンプ5にて、複合化材
7が流動化する線速として30分間蒸着を行い撥水性複
合粒子を得た。複合化材のうち微細なものや、膜となら
ずに粉状で析出した低分子量PTFEは、サイクロン4
にて捕集される。
Examples 1 to 16 and Comparative Examples 1 to 3 The water-repellent composite particles shown in Examples 1 to 7 in Table 1
It was prepared as follows. Fluid bed deposition apparatus 1 (φ25 × 500, SU
S), 5 g of low molecular weight PTFE6 having a molecular weight of 3000
And 50 g of particles 7 (hereinafter, referred to as a composite material) having higher mechanical strength than low molecular weight PTFE, and the tube wall heater 2 was set to 200 ° C. and the lower heater 3 was set to 350 ° C. and heated. Vapor deposition was performed for 30 minutes at a linear speed at which the composite material 7 was fluidized by the circulation pump 5 to obtain water-repellent composite particles. Among the composite materials, fine materials and low-molecular-weight PTFE precipitated in a powder form without being formed into a film are produced by cyclone 4
Collected at.

【0018】次に基板(実施例1はガラス基板、実施例
2〜5はAl基板、実施例6、7はNi基板)上に一液
性エポキシ樹脂(チバガイギー製:XNR3501)を
コートし、その上に上記の方法で得られた撥水性複合粒
子を表面が完全に覆われるように、過剰量を均一に散布
した。樹脂層が硬化する前にこの表面にガラス板を重ね
て圧力を加えた後に150℃にて樹脂層を完全に硬化さ
せ、表面の余分な撥水性粒子を除去することにより、撥
水性材料(塗膜)を得た。この撥水性材料の撥水性の評
価を直径2mmの水滴に対する接触角、水滴の落下しや
すさを表す転落角の測定により、また、耐久性の評価を
粘着テープによる剥離テストにより実施した。
Next, a one-component epoxy resin (XNR3501 manufactured by Ciba-Geigy) is coated on a substrate (a glass substrate in Example 1, an Al substrate in Examples 2 to 5, and a Ni substrate in Examples 6 and 7). An excess amount of the water-repellent composite particles obtained by the above-mentioned method was uniformly sprayed so that the surface was completely covered. Before the resin layer is cured, a glass plate is overlaid on the surface, pressure is applied thereto, and the resin layer is completely cured at 150 ° C., and excess water-repellent particles on the surface are removed. Film). The water repellency of this water repellent material was evaluated by measuring a contact angle with respect to a water drop having a diameter of 2 mm and a falling angle representing the ease of dropping the water drop, and the durability was evaluated by a peel test using an adhesive tape.

【0019】表1の比較例1は、粒径1μmの純粋な低
分子量PTFE粒子のみで、実施例1〜7と同様に撥水
性材料を形成し、それを評価したものである。実施例1
〜7と、比較例1を比較すると、接触角はどの材料も1
60゜と大きいが、転落角と剥離試験後の接触角で差が
みられ、比較例1は転落角が大きく、剥離試験により簡
単に劣化することがわかる。すなわち、実施例1〜7の
ほうが撥水性および耐久性が優れていることが分かる。
In Comparative Example 1 in Table 1, a water-repellent material was formed in the same manner as in Examples 1 to 7 using only pure low-molecular-weight PTFE particles having a particle size of 1 μm and evaluated. Example 1
7 and Comparative Example 1, the contact angle was 1 for all materials.
Although it is as large as 60 °, there is a difference between the falling angle and the contact angle after the peeling test. It can be seen that Comparative Example 1 has a large falling angle and is easily deteriorated by the peeling test. That is, it is understood that Examples 1 to 7 are more excellent in water repellency and durability.

【0020】[0020]

【表1】 [Table 1]

【0021】表2に示した実施例8〜15は、以下のよ
うに実施した。まず、実施例1〜7と同様の方法によ
り、撥水性複合粒子を調整した。この撥水性複合粒子を
有機溶媒(酢酸ブチル)と1:1の割合で混合する。こ
れに一液性エポキシ樹脂(チバガイギー製:XNR35
01)を添加し十分に混合して撥水性樹脂とした。
Examples 8 to 15 shown in Table 2 were carried out as follows. First, water-repellent composite particles were prepared in the same manner as in Examples 1 to 7. The water-repellent composite particles are mixed with an organic solvent (butyl acetate) at a ratio of 1: 1. Add one-part epoxy resin (Ciba Geigy: XNR35)
01) was added and mixed well to obtain a water-repellent resin.

【0022】次に、作成した撥水性樹脂をガラス基板上
に塗布し、塗板は150℃で乾燥させ樹脂層を完全に硬
化させる。次に、このようにして得た撥水性材料(塗
膜)の直径2mmの水滴に対する接触角の測定を行い、
また、この撥水性材料表面の機械的な耐久性試験は、図
2に示したような機械的耐久性試験装置を用い、作成し
た基板8を台秤10の上に設置し、柄を切った歯ブラシ
9を用いて、材料表面上約500gの負荷で攪拌機11
により1万回回転させた後、再び直径2mmの水滴に対
する接触角を測定して、試験前の接触角と比較した。
Next, the prepared water-repellent resin is applied on a glass substrate, and the coated plate is dried at 150 ° C. to completely cure the resin layer. Next, the contact angle of the water-repellent material (coating film) thus obtained with respect to a water droplet having a diameter of 2 mm was measured.
The mechanical durability test of the surface of the water-repellent material was carried out by using a mechanical durability test apparatus as shown in FIG. 9 with a stirrer 11 at a load of about 500 g on the surface of the material.
After rotating 10,000 times, the contact angle with respect to a water drop having a diameter of 2 mm was measured again and compared with the contact angle before the test.

【0023】表2において比較例2は、低分子量PTF
Eのみ、比較例3は、低分子量PTFEとゼオライトの
単純な混合物をそれぞれ、実施例8〜15と同様の方法
により、撥水性材料(塗膜)とし、評価したものであ
る。
In Table 2, Comparative Example 2 shows a low molecular weight PTF
Only E, Comparative Example 3 evaluated a simple mixture of low molecular weight PTFE and zeolite as a water-repellent material (coating film) in the same manner as in Examples 8 to 15, respectively.

【0024】表2中の各実施例、比較例を比較すると、
明らかに本発明の撥水性複合粒子が機械的な耐久性にお
いて優位性を有することがわかる。表2において実施例
16は、実施例1で得た供試体を実施例8〜15と同様
の機械的耐久性試験により、評価したものである。
When the respective examples and comparative examples in Table 2 are compared,
It is apparent that the water-repellent composite particles of the present invention have superior mechanical durability. In Table 2, Example 16 is an evaluation of the test piece obtained in Example 1 by the same mechanical durability test as in Examples 8 to 15.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によれば、前述したように低分子
量PTFEが該低分子量PTFEより機械的強度の大き
い粒子上に被覆されてなる撥水性複合粒子用いることに
より、容易に撥水性および耐久性に優れた撥水性材料を
得ることができる。
According to the present invention, as described above, by using the water-repellent composite particles obtained by coating low-molecular-weight PTFE on particles having higher mechanical strength than the low-molecular-weight PTFE, water repellency and durability can be easily achieved. A water-repellent material having excellent properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の撥水性複合粒子の製造に使用した蒸着
装置の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a vapor deposition apparatus used for producing the water-repellent composite particles of the present invention.

【図2】歯ブラシによる機械的強度試験装置の概略図で
ある。
FIG. 2 is a schematic view of a mechanical strength test device using a toothbrush.

【符号の説明】[Explanation of symbols]

1.流動層蒸着装置 2.管壁ヒーター 3.下部ヒーター 4.サイクロン 5.循環ポンプ 6.低分子量PTFE 7.複合化材 8.基板 9.ブラシ 10.台秤 11.攪拌機 1. Fluidized bed deposition equipment 2. Tube wall heater 3. Lower heater 4. Cyclone 5. Circulation pump 6. 6. Low molecular weight PTFE Composite material 8. Substrate 9. Brush 10. Platform scale 11. Stirrer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児島 敬三 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (72)発明者 喜田 康 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (56)参考文献 特開 平7−251060(JP,A) 特開 平5−171410(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C08J 3/00 - 3/28 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Keizo Kojima 5253 Oki Obe, Oji, Ube City, Yamaguchi Prefecture Inside the Chemical Research Laboratory (72) Inventor Yasushi Yasushi 5253 Oki Ube, Oji Ube City, Yamaguchi Prefecture, Central Glass (56) References JP-A-7-251060 (JP, A) JP-A-5-171410 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14 / 00-14/58 C08J 3/00-3/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子量が500〜15000の低分子量
PTFEより機械的強度の大きい、平均粒径0.01μ
m〜1mmの一次粒子上に、該低分子量PTFEを蒸着
させるに際し、該一次粒子を流動状態とさせて該低分子
量PTFEを蒸着させることを特徴とする撥水性複合粒
子の製造方法。
1. An average particle size of 0.01 μm having a higher mechanical strength than a low molecular weight PTFE having a molecular weight of 500 to 15,000.
A method for producing water-repellent composite particles, comprising, when depositing the low-molecular-weight PTFE on primary particles of m to 1 mm, causing the primary particles to be in a fluid state and depositing the low-molecular-weight PTFE.
【請求項2】 基材表面に接着層を介して、請求項1に
記載の方法で製造した撥水性複合粒子よりなる粗面が形
成されていることを特徴とする撥水性材料。
2. A water-repellent material, wherein a rough surface made of the water-repellent composite particles produced by the method according to claim 1 is formed on the surface of a base material via an adhesive layer.
JP29706095A 1995-11-15 1995-11-15 Method for producing water-repellent composite particles and water-repellent material using the same Expired - Fee Related JP3192071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29706095A JP3192071B2 (en) 1995-11-15 1995-11-15 Method for producing water-repellent composite particles and water-repellent material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29706095A JP3192071B2 (en) 1995-11-15 1995-11-15 Method for producing water-repellent composite particles and water-repellent material using the same

Publications (2)

Publication Number Publication Date
JPH09136979A JPH09136979A (en) 1997-05-27
JP3192071B2 true JP3192071B2 (en) 2001-07-23

Family

ID=17841704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29706095A Expired - Fee Related JP3192071B2 (en) 1995-11-15 1995-11-15 Method for producing water-repellent composite particles and water-repellent material using the same

Country Status (1)

Country Link
JP (1) JP3192071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878453B1 (en) * 2004-11-30 2007-03-16 Centre Nat Rech Scient Cnrse DEVICE FOR SUPPLYING VAPORS FROM A SOLID PRECURSOR TO A PROCESSING APPARATUS

Also Published As

Publication number Publication date
JPH09136979A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
Siperko et al. Chemical and physical modification of fluoropolymer surfaces for adhesion enhancement: A review
CA1056093A (en) Compositions of 3,3,3-trifluoro-2-trifluoromethyl propene/vinylidene fluoride copolymer and polytetrafluoroethylene
US4112179A (en) Method of coating with ablative heat shield materials
JP2002347159A (en) Self-cleaning surface, its manufacturing method and use thereof
JP2005288440A (en) Coating of permeation-resistant etfe composition
JP3192071B2 (en) Method for producing water-repellent composite particles and water-repellent material using the same
EP3362505B1 (en) Method for producing a composite conductive material and composite material obtained in this way
FR2560887A1 (en) ANTISTATIC RESIN COMPOSITION, ANTISTATIC LAMINATE, AND METHOD FOR THE PRODUCTION THEREOF
EP0459115B1 (en) Powder of plastic and treated mineral
JP3487888B2 (en) Solid having water-repellent surface and method for producing the same
US4107356A (en) Method of powder lining
US3810780A (en) Carbonaceous coating for carbon foam
JP2911378B2 (en) Manufacturing method of water-repellent composite particles
JP3224865B2 (en) Agricultural coating film and method for producing the same
JP2005334714A (en) Compound gradient coating film, self-gradient coating liquid and application of the liquid
US4379188A (en) Surface hydrolyzed olefin-vinyl ester container coatings
JPS5966463A (en) Fluorine-containing coating composition
US5942287A (en) Extended wear developer sleeve with coupling agent
US5863608A (en) Method of preparing adherent/coherent amorphous fluorocarbon coatings
JP2756575B2 (en) Metal product having double anticorrosion coating and method for producing the same
JPS58501993A (en) Method of applying a metal oxide film on the surface of a heated glass substrate
JP2002275284A (en) Organic-inorganic gradient composite membrane, its production method and its use
WO1991015610A1 (en) Method of preparing amorphous fluorocarbon coatings
JPH0569870B2 (en)
JPS6383177A (en) Primer composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees