JP3189791U - Cascade multistage thermomagnetic engine system - Google Patents

Cascade multistage thermomagnetic engine system Download PDF

Info

Publication number
JP3189791U
JP3189791U JP2014000357U JP2014000357U JP3189791U JP 3189791 U JP3189791 U JP 3189791U JP 2014000357 U JP2014000357 U JP 2014000357U JP 2014000357 U JP2014000357 U JP 2014000357U JP 3189791 U JP3189791 U JP 3189791U
Authority
JP
Japan
Prior art keywords
thermomagnetic
engine
heating
thermomagnetic engine
engine system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2014000357U
Other languages
Japanese (ja)
Inventor
▲強▼ 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of JP3189791U publication Critical patent/JP3189791U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【議題】設置面積が小さく大きな出力と高い熱効率が得られる熱磁気エンジンのシステムを提供する。
【解決手段】熱磁気エンジン複数台を縦列で多段に配置し、ローター1を加熱するための加熱物質供給口17を上段に設け、上段の熱磁気エンジンから排出された加熱物質を下段の熱磁気エンジンの加熱物質として供給する経路18を備えたことを特徴とする縦列多段の熱磁気エンジンシステム。
【選択図】図1
[Agenda] To provide a thermomagnetic engine system with a small installation area, large output and high thermal efficiency.
SOLUTION: A plurality of thermomagnetic engines are arranged in tandem in multiple stages, a heating substance supply port 17 for heating a rotor 1 is provided in the upper stage, and the heating substance discharged from the upper thermomagnet engine is used as the lower stage thermomagnetism. A tandem multistage thermomagnetic engine system comprising a passage 18 for supplying the engine as a heating material.
[Selection] Figure 1

Description

本考案は、感温磁性材料を用いた熱磁気エンジンのシステムで、設置面積が小さくて大きな出力と高い熱効率を得ることができる縦列多段の熱磁気エンジンシステムに関するものである。  The present invention relates to a thermomagnetic engine system using a temperature-sensitive magnetic material, and relates to a tandem multistage thermomagnetic engine system having a small installation area and capable of obtaining a large output and high thermal efficiency.

従来、感温磁性材料を用いた熱磁気エンジンが考案されているが、小さい設置面積で大きな出力と高い熱効率を得ることは難しかった。  Conventionally, a thermomagnetic engine using a temperature-sensitive magnetic material has been devised, but it has been difficult to obtain a large output and high thermal efficiency with a small installation area.

特開平6−141572(磁性体エンジン)JP-A-6-141572 (magnetic material engine) 特開平9−268968(熱磁気エンジン)JP-A-9-268968 (Thermomagnetic Engine)

実用新案登録第3186831号(熱磁気エンジン)Utility Model Registration No. 318631 (Thermomagnetic Engine) 実願2013−6682(熱磁気エンジン)Actual Application 2013-6682 (Thermomagnetic Engine) 実願2013−6739(熱磁気エンジン)Actual Application 2013-6739 (Thermomagnetic Engine)

本考案は、従来の課題を解決し、設置面積が小さくて大きな出力と高い熱効率が得られる熱磁気エンジンのシステムを提供する目的からなされたものである。  The present invention has been made for the purpose of solving a conventional problem and providing a system of a thermomagnetic engine capable of obtaining a large output and high thermal efficiency with a small installation area.

熱磁気エンジン複数台を縦列に多段に配置し、熱磁気エンジンのローターを加熱するための加熱物質供給口を上段に設け、上段の熱磁気エンジンから排出された加熱物質を下段の熱磁気エンジンの加熱物質として供給する経路を備えたことを特徴とする縦列多段の熱磁気エンジンシステム。  Multiple thermomagnetic engines are arranged in multiple stages in a row, the heating material supply port for heating the rotor of the thermomagnetic engine is provided in the upper stage, and the heating material discharged from the upper thermomagnetic engine is sent to the lower thermomagnetic engine. A tandem multi-stage thermomagnetic engine system comprising a supply path for heating material.

本考案は、複数台の熱磁気エンジンを縦列に多段に配置することによって設置面積が小さくでき、上段から排出された加熱物質が自然落下で下段に導入できるので排熱の再利用がし易く、大きな出力と高い熱効率が得られるのでエネルギーと環境保全上極めて有益なものである。  The present invention can reduce the installation area by arranging multiple thermomagnetic engines in multiple stages in a row, and the heated material discharged from the upper stage can be introduced into the lower stage by natural fall, so it is easy to reuse the exhaust heat, Large output and high thermal efficiency are very useful for energy and environmental conservation.

本考案実施例の縦列多段の熱磁気エンジンシステムの構成図である。  1 is a configuration diagram of a tandem multi-stage thermomagnetic engine system according to an embodiment of the present invention.

熱磁気エンジン複数台を縦列に多段に配置して構成できる。  A plurality of thermomagnetic engines can be arranged in multiple stages in a column.

図1は本考案実施例の縦列多段の熱磁気エンジンシステムの構成図で、実願2013−6682の熱磁気エンジン複数台を縦列で多段に配置し、上段に加熱物質供給口17を設け、上段の熱磁気エンジンから排出された加熱物質をチューブ18を用いて経路を作って下段の熱磁気エンジンに供給した実施例である。  FIG. 1 is a block diagram of a tandem multi-stage thermomagnetic engine system according to an embodiment of the present invention. A plurality of thermomagnetic engines of actual application 2013-6682 are arranged in tandem in multiple stages, a heating substance supply port 17 is provided in the upper stage, and an upper stage. This is an embodiment in which a heating substance discharged from the thermomagnetic engine is supplied to the lower thermomagnetic engine by creating a path using the tube 18.

実施においては、上段の熱磁気エンジンから排出された加熱物質を自然落下させて下段の熱磁気エンジンに供給することもできる。  In implementation, the heating substance discharged from the upper thermomagnetic engine can be naturally dropped and supplied to the lower thermomagnetic engine.

供給された加熱物質と排出された加熱物質とでは温度が異なるので、各段に配置する熱磁気エンジンの感温磁性材料を選択することによって熱効率を向上させることもできる。  Since the supplied heated substance and the discharged heated substance have different temperatures, the thermal efficiency can be improved by selecting the temperature-sensitive magnetic material of the thermomagnetic engine arranged in each stage.

実施においては、より大きな出力を得るために、各段に複数台の熱磁気エンジンを配置し、複数段とすることもできる。  In the implementation, in order to obtain a larger output, a plurality of thermomagnetic engines may be arranged in each stage, so that a plurality of stages can be provided.

地熱、太陽熱をはじめ各種の排熱を利用してエネルギーを生み出すことができること以外に、熱交換器や放熱器として利用することもできる。  In addition to being able to generate energy using various exhaust heat including geothermal and solar heat, it can also be used as a heat exchanger and radiator.

1…ローター
2…磁石
3…磁石固定板
4…支持体
5…加熱物質導入口
6…加熱物質収納容器
7…加熱物質回収容器
8…加熱物質排出口
9…軸受
10…回転軸
11…冷却物質収納容器
12…加熱物質
13…冷却物質
14…冷却物質入口
15…冷却物質出口
16…台座
17…加熱物質供給口
18…チューブ
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Magnet 3 ... Magnet fixing plate 4 ... Support body 5 ... Heated substance introduction port 6 ... Heated substance storage container 7 ... Heated substance collection container 8 ... Heated substance discharge port 9 ... Bearing 10 ... Rotating shaft 11 ... Cooling substance Storage container 12 ... Heating substance 13 ... Cooling substance 14 ... Cooling substance inlet 15 ... Cooling substance outlet 16 ... Base 17 ... Heating substance supply port 18 ... Tube

Claims (1)

磁石を支持体に固定し、感温磁性材料を装着したローターあるいは感温磁性材料で形成したローターを磁場中を通した熱磁気エンジン複数台を縦列で多段に配置し、ローターを加熱するための加熱物質供給口を上段に設け、上段の熱磁気エンジンから排出された加熱物質を下段の熱磁気エンジンの加熱物質として供給する経路を備えたことを特徴とする縦列多段の熱磁気エンジンシステム。  To heat a rotor by arranging multiple thermomagnetic engines in cascade in a magnetic field, with a magnet fixed to a support and a rotor equipped with a temperature-sensitive magnetic material or a rotor formed of a temperature-sensitive magnetic material passed through a magnetic field A cascaded multi-stage thermomagnetic engine system comprising a heating substance supply port provided in the upper stage and a path for supplying the heated substance discharged from the upper thermomagnetic engine as a heating substance for the lower thermomagnetic engine.
JP2014000357U 2014-01-07 Cascade multistage thermomagnetic engine system Expired - Lifetime JP3189791U (en)

Publications (1)

Publication Number Publication Date
JP3189791U true JP3189791U (en) 2014-04-03

Family

ID=

Similar Documents

Publication Publication Date Title
Chen Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle
ES2482940A2 (en) Hybrid solar field
WO2016134385A3 (en) Distributed compressed air energy storage with heat network
JP2016502635A5 (en)
WO2015030309A8 (en) Cold storage module having mesh metal structure of unequal gap, refrigerator container having cold storage modules mounted therein, and refrigerator vehicle
WO2014072181A3 (en) Cooling system for electric generators
JP3189791U (en) Cascade multistage thermomagnetic engine system
Mangos Study of the Circulation of Heat Transfer Fluid in the Permanent Magnets Thermo-Generator
CN108474268B8 (en) Stack energy control in combined cycle power plant
RU144493U1 (en) DEVICE FOR AIR COOLING A LIQUID OR GAS
CN203180704U (en) Generator or motor with cooler
CN205156658U (en) Titanium condenser
Kwon et al. Research and development of sea water heat pump
CN203642754U (en) Parallel-series combined heater
CN203459094U (en) Constant temperature groove capable of rapidly cooling
WO2013042141A8 (en) Bladed expander
JP3191137U (en) Thermomagnetic engine
Vlahostergios et al. Efforts to improve aero engine performance through the optimal design of heat recuperation systems targeting fuel consumption and pollutant emissions reduction
Phu et al. A study of energy effectiveness in a cooling tower
Abdolhossein et al. IMPROVEMENT OF EXERGY PERFORMANCE OF COMBINED CYCLE POWER PLANT USING INLET AIR FOGGING
CN203068999U (en) Turbofan-type radiator
CN104009573A (en) Generator or motor with cooler
Ployhar et al. The ITER heat rejection challenge
CN204188016U (en) Split type high and cold high-latitude area heating boiler condenser
CN204731712U (en) Layering fan structure heat abstractor