JP3188924B2 - New microorganism - Google Patents

New microorganism

Info

Publication number
JP3188924B2
JP3188924B2 JP2000008255A JP2000008255A JP3188924B2 JP 3188924 B2 JP3188924 B2 JP 3188924B2 JP 2000008255 A JP2000008255 A JP 2000008255A JP 2000008255 A JP2000008255 A JP 2000008255A JP 3188924 B2 JP3188924 B2 JP 3188924B2
Authority
JP
Japan
Prior art keywords
manganese
gsj
asho
water
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000008255A
Other languages
Japanese (ja)
Other versions
JP2000245441A (en
Inventor
直樹 三田
義重 加藤
明彦 丸山
孝規 東原
豊 金井
朗 臼井
裕行 三浦
孝 伊藤
英俊 田代
Original Assignee
経済産業省産業技術総合研究所長
直樹 三田
義重 加藤
豊 金井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 経済産業省産業技術総合研究所長, 直樹 三田, 義重 加藤, 豊 金井 filed Critical 経済産業省産業技術総合研究所長
Priority to JP2000008255A priority Critical patent/JP3188924B2/en
Publication of JP2000245441A publication Critical patent/JP2000245441A/en
Application granted granted Critical
Publication of JP3188924B2 publication Critical patent/JP3188924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の属する技術分野】本発明は、マンガン酸化能
力を有する新規微生物、セデセア属(Cedecea)
GSJ/MITA24A/ASHO−RO/1、及びセ
デセア属(Cedecea)GSJ/MITA24A/
ASHO−RO/1、アエロモナス属(Aeromon
as)GSJ/MITA24B/ASHO−RO/2、
シュワネラ属(Shewanella)GSJ/MIT
A24C/ASHO−RO/3のいずれかの1種若しく
は2種以上と藻類とからなる微生物共生体、この共生体
をKester人工海水の希釈水溶液を用いて培養する方法、
及びこの共生体を用いてマンガン含有水からマンガンを
除去する方法及び該マンガンを利用する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel microorganism having the ability to oxidize manganese, the genus Cedesea.
GSJ / MITA24A / ASHO-RO / 1, and Cedesea GSJ / MITA24A /
ASHO-RO / 1, the genus Aeromonas (Aeromon
as) GSJ / MITA24B / ASHO-RO / 2,
Shewanella GSJ / MIT
A microbial symbiosis comprising one or more of A24C / ASHO-RO / 3 and an algae, a method of culturing the symbiosis using a diluted aqueous solution of Kester artificial seawater,
The present invention also relates to a method for removing manganese from manganese-containing water using this symbiotic organism and a method for using the manganese.

【0002】[0002]

【従来技術】従来、水中から重金属とくにマンガンを除
去する方法としては、種々の方法が知られているが、化
学的処理ではマンガンイオンを含む水をpH10以上の強ア
ルカリ性にすることで二酸化マンガンの沈澱を作って水
系から分離除去した後にその水を中和してから排出して
おり、また、微生物による除去方法は栄養源となる多量
の有機物を添加する必要があるだけでなく、通常はマン
ガン除去能力を示す微生物だけを分離純化して利用する
ことが多く、それら微生物を継代培養して保存している
間にマンガン除去能力を失うこともあるなど、いずれも
除去性能やコスト的に未だ満足し得るものはなく、安価
で効率の良くマンガンを除去するマンガンを含む水の処
理方法の開発が望まれている。
2. Description of the Related Art Conventionally, various methods have been known for removing heavy metals, particularly manganese, from water. However, in chemical treatment, water containing manganese ions is made highly alkaline at pH 10 or more to remove manganese dioxide. The water is neutralized and then discharged after forming a precipitate and separating and removing it from the water system.The method of removing microorganisms requires not only the addition of a large amount of organic matter as a nutrient source, but also manganese. In many cases, only microorganisms exhibiting removal ability are used after being separated and purified, and these microorganisms may lose their ability to remove manganese during subculture and storage. There is no satisfactory one, and there is a demand for a method for treating manganese-containing water that removes manganese efficiently at low cost.

【0003】[0003]

【本発明が解決しようとする課題】本発明は、効率良く
重金属とくにマンガンを除去する能力を有する新規な微
生物とその微生物共生体が存在することを発見し、新規
な微生物、微生物共生体、微生物共生体の培養方法、マ
ンガン含有水からマンガンを除去する方法および回収し
たマンガンを再利用する方法を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention has been made to discover that a novel microorganism having an ability to efficiently remove heavy metals, particularly manganese, and a symbiotic microorganism therefor exist. It is an object to provide a method for culturing a symbiotic organism, a method for removing manganese from manganese-containing water, and a method for recycling collected manganese.

【0004】[0004]

【課題を解決するための手段】本発明者らは、特殊な微
生物共生体が水中において、重金属とくにマンガンを、
固体状のものではそれを捕獲し、溶解しているものでは
それを酸化して沈殿させる作用を有していることを見出
し、本発明を完成した。
Means for Solving the Problems The present inventors have found that a special microbial symbiosis is capable of producing heavy metals, particularly manganese, in water.
The present inventors have found that a solid substance has an action of capturing it, and a dissolved substance has an action of oxidizing and precipitating the same, thereby completing the present invention.

【0005】即ち、本発明は、マンガン酸化能を有する
セデセア属(Cedecea)GSJ/MITA24A
/ASHO−RO/1またはマンガン酸化能を有するシ
ュワネラ属(Shewanella)GSJ/MITA
24C/ASHO−RO/3である。本発明には、次の
発明も記載している。 (1) マンガン酸化細菌と藻類とが共生した微生物共
生体。 (2) 藻類がオシラトリア(Ocillatoria)などの藍藻
(シアノバクテリア)、ナビキュラ(Navicula) などの
珪藻、ウロトリックス(Ulothrix)などの緑藻のいずれか
の1種もしくは2種以上である上記(1)の微生物共生
体。 (3) マンガン酸化細菌がセデセア属(Cedece
a)GSJ/MITA24A/ASHO−RO/1、ア
エロモナス属(Aeromonas)GSJ/MITA
24B/ASHO−RO/2、シュワネラ属(Shew
anella)GSJ/MITA24C/ASHO−R
O/3のいずれかの1種若しくは2種以上である微生物
もしくは上記(1)又は(2)記載の微生物共生体。
That is, the present invention relates to a genus Cedesea GSJ / MITA24A having manganese oxidizing ability.
/ ASHO-RO / 1 or Shewanella GSJ / MITA having manganese oxidizing ability
24C / ASHO-RO / 3. The present invention also describes the following invention. (1) A microorganism symbiosis in which manganese oxidizing bacteria and algae coexist. (2) The method according to the above (1), wherein the algae is any one or more of cyanobacteria such as Ocillatoria, diatoms such as Navicula, and green algae such as Ulothrix. Microbial symbiosis. (3) Manganese oxidizing bacteria are of the genus Cedesea
a) GSJ / MITA24A / ASHO-RO / 1, Aeromonas GSJ / MITA
24B / ASHO-RO / 2, genus Shewanella (Shew
anella) GSJ / MITA24C / ASHO-R
A microorganism which is any one or more of O / 3 or a microorganism symbiotic according to the above (1) or (2).

【0006】(4) 人工海水(Kester)の希釈
水溶液に有機栄養源を加えて培養するマンガン酸化細菌
の培養方法。 (5) マンガン鉱床汚泥を人工海水(Kester)
の希釈水溶液を用いて、有機物を含有させることなく、
培養する上記(1)又は(2)記載の微生物共生体の培
養方法。
(4) A method for culturing manganese-oxidizing bacteria, wherein an organic nutrient is added to a diluted aqueous solution of artificial seawater (Kester) and cultured. (5) Manganese ore sludge is converted into artificial seawater (Kester)
Using a diluted aqueous solution of
The method for culturing a microorganism symbiotic according to the above (1) or (2), wherein the culturing is performed.

【0007】(6) 人工海水(Kester)の希釈
水溶液の倍率が0.5〜20である上記(4)又は
(5)記載の培養方法。 (7) pH5〜8の条件で、太陽光のみで育成する上
記(6)記載の微生物の培養方法。 (8) マンガン酸化細菌を、マンガンを含有する水と
接触させることにより、マンガンを酸化沈殿させ、水中
のマンガンを除去することを特徴とする水処理方法。
(6) The culture method according to the above (4) or (5), wherein the magnification of the diluted aqueous solution of artificial seawater (Kester) is 0.5 to 20. (7) The method for culturing a microorganism according to the above (6), wherein the microorganism is grown only under sunlight at pH 5 to 8. (8) A water treatment method characterized by contacting a manganese-oxidizing bacterium with water containing manganese to oxidize and precipitate manganese and remove manganese in the water.

【0008】(9) マンガン酸化細菌と藻類とが共生
した微生物共生体を、マンガンを含有する水と接触させ
ることにより、マンガンを酸化沈殿させ、水中のマンガ
ンを除去することを特徴とする水処理方法。 (10) マンガン酸化細菌がセデセア属(Cedec
ea)GSJ/MITA24A/ASHO−RO/1、
アエロモナス属(Aeromonas)GSJ/MIT
A24B/ASHO−RO/2、シュワネラ属(She
wanella)GSJ/MITA24C/ASHO−
RO/3のいずれかの1種若しくは2種以上である上記
(8)又は(9)の水処理方法。 (11) 上記(9)又は(10)で回収されたマンガ
ンを乾電池、釉薬等の製造原料として利用することを特
徴とする回収マンガンの利用法。
(9) Water treatment characterized by oxidizing and precipitating manganese and removing manganese in water by bringing a microbial symbiotic symbiosis of manganese-oxidizing bacteria and algae into contact with water containing manganese. Method. (10) The manganese oxidizing bacterium is of the genus Sedea
ea) GSJ / MITA24A / ASHO-RO / 1,
Aeromonas GSJ / MIT
A24B / ASHO-RO / 2, Shewanella (She
Wanella) GSJ / MITA24C / ASHO-
The water treatment method of the above (8) or (9), which is one or more of RO / 3. (11) A method of using recovered manganese, wherein the manganese recovered in (9) or (10) is used as a raw material for producing batteries, glazes, and the like.

【0009】[0009]

【発明の実施の形態】本発明の微生物共生体の入手源
は、自然界においてマンガンイオンが溶解している水中
とその周辺のマンガン沈澱物からであり、好ましくは有
機物が少なく適度な光照射のある場所である。マンガン
酸化能力を有する新規微生物、セデセア属(Cedec
ea)GSJ/MITA24A/ASHO−RO/1、
アエロモナス属(Aeromonas)GSJ/MIT
A24B/ASHO−RO/2又はシュワネラ属(Sh
ewanella)GSJ/MITA24C/ASHO
−RO/3の1種若しくは2種以上を含む微生物と藻類
とからなる微生物共生体は、大量培養することができ
る。上記藻類としては、オシアトリア(Ocillatoria)な
どの藍藻(シアノバクテリア)、ナビキュラ(Navicul
a) などの珪藻、ウルトリックス(Ulothrix)などの緑藻
が挙げられる。そして、上記培養条件は、酸性から弱ア
ルカリ性、好ましくはpH5〜8で、かつ、有機物を含有し
ない水を用いて、太陽光のみで培養を行うことが望まし
い。したがって、有機物を栄養源として特に人工的に添
加する必要もないので、非常に簡単な方法でかつ安価に
培養物を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The source of the microbial symbiotic organism of the present invention is from water in which manganese ions are dissolved in the natural world and manganese precipitates around the same. Location. A new microorganism having the ability to oxidize manganese, the genus Cedesea (Cedec)
ea) GSJ / MITA24A / ASHO-RO / 1,
Aeromonas GSJ / MIT
A24B / ASHO-RO / 2 or Shewanella (Sh
ewanella) GSJ / MITA24C / ASHO
Microbial symbiotic organisms consisting of microorganisms containing one or more of RO / 3 and algae can be cultured in large quantities. Examples of the algae include cyanobacteria such as Ocillatoria, and Navicul.
diatoms such as a) and green algae such as Ulothrix. It is desirable that the culture conditions are acidic to weakly alkaline, preferably pH 5 to 8, and that the culture is carried out only with sunlight using water containing no organic substances. Therefore, it is not necessary to artificially add an organic substance as a nutrient source, so that a culture can be obtained by a very simple method at low cost.

【0010】[0010]

〔実施例1〕[Example 1]

(1)微生物の入手場所 自然界から微生物を入手した。 (1) Location of obtaining microorganisms Microorganisms were obtained from nature.

【0011】(2)微生物の採取方法 オシラトリア(Ocillatoria)などの藍藻(シアノバクテ
リア)、ナビキュラ(Navicula) などの珪藻、ウロトリ
ックス(Ulothrix)などの緑藻をはじめとする微細な藻類
などの微生物から構成される繁茂体,二酸化マンガンな
どの沈澱物、あるいはその両者より構成される集合体、
などの試料から菌を入手するが、標準的には藻類の表面
から3mmまでのものを1ml採取し9mlの水に加えて全体
を10mlとして用いた。なお、この微生物は、以下に示
す実験より3種類の微生物からなることが判明したが、
この混合微生物をGSJ−MITA−ASHORO−M
N−MAT−1と名付けて、工業技術院生命工学工業研
究所技術研究所への寄託を試みたが凍結処理による保存
ができないため、受託を拒否された。
(2) Method of collecting microorganisms Microorganisms such as cyanobacteria such as Ocillatoria, diatoms such as Navicula, and microalgae such as green algae such as Ulothrix. Flocculants, sediments such as manganese dioxide, or aggregates composed of both,
Bacteria are obtained from samples such as the above, but as a standard, 1 ml of algae up to 3 mm from the surface of the algae was collected and added to 9 ml of water to use the whole as 10 ml. In addition, this microorganism was found to consist of three types of microorganisms from the experiments described below.
This mixed microorganism was used as GSJ-MITA-ASHORO-M
An attempt was made to deposit N-MAT-1 at the National Institute of Bioscience and Human-Technology, National Institute of Advanced Industrial Science and Technology.

【0012】(3)マンガン酸化細菌の育成、選別、単
離 温泉組成に近い塩類濃度の人工無機塩類水溶液として、
Kester人工海水(KSW:Kester et. al., 1967)の20%水
溶液を調製した。前述の入手試料を人工無機塩類水溶液
によって段階希釈した懸濁水を、1/2 TZ-Mn 培地(Maru
yama et al., 1993)中のKSW濃度を20%に改良したYF1-M
n培地(Mita et al., 1994)で調製した寒天平板培地に
塗布し、20℃あるいは37℃で培養して育成した。出現し
たコロニーの中からTMBZ・HCl水溶液を青色に呈色させ
る能力を有するコロニーだけを選別し、これらの中から
形状の異なるコロニーをそれぞれ分離し、菌株を単離し
た。ここでは,菌の名称を便宜上、Mn-24(A)をGSJ/
MITA24A/ASHO−RO/1菌株,Mn-24(B)を
GSJ/MITA24B/ASHO−RO/2菌株、Mn
-24(C)をGSJ/MITA24C/ASHO−RO/3
菌株と称する。
(3) Growth, selection and isolation of manganese-oxidizing bacteria As an artificial inorganic salt aqueous solution having a salt concentration close to that of a hot spring,
A 20% aqueous solution of Kester artificial seawater (KSW: Kester et. Al., 1967) was prepared. Suspension water obtained by serially diluting the above obtained sample with an aqueous solution of artificial inorganic salts was added to a 1/2 TZ-Mn medium (Maru
YF1-M with 20% KSW concentration in Yama et al., 1993)
It was spread on an agar plate medium prepared in n medium (Mita et al., 1994) and cultured at 20 ° C. or 37 ° C. for growth. From the emerged colonies, only those colonies having the ability to color the aqueous solution of TMBZ · HCl blue were selected, and colonies having different shapes were separated from these, and strains were isolated. Here, Mn-24 (A) is referred to as GSJ /
The MITA24A / ASHO-RO / 1 strain, Mn-24 (B) was replaced with the GSJ / MITA24B / ASHO-RO / 2 strain, Mn.
-24 (C) is GSJ / MITA24C / ASHO-RO / 3
It is called a strain.

【0013】(4)マンガン酸化細菌の菌株の同定方法 菌株の同定は、(財)日本食品分析センターに委託し
た。菌株について形態観察、生理的性状試験、キノン系
および菌体内DNAのGC含量の測定を行ない、Kriegand Ho
lt (1984), Holt et al. (1994), MacDonell and Colwe
ll (1985), Lee et al. (1977), Nozue et al. (1992)
を参考にして同定した。 (5)GSJ/MITA24A/ASHO−RO/1菌
株の菌学的性質と同定 菌株の菌学的性質は以下に示すとおりである。この菌株
は腸内細菌科の Cedecea davisae に近い性状を示した
が、Cedecea 属の特徴であるリパーゼを有さないが、オ
キシダーゼ陰性の通性嫌気性グラム陰性桿菌であること
から、Cedecea属 に最も近似していた。そこで、この新
規な微生物をセデセア属(Cedecea)GSJ/MITA
24A/ASHO−RO/1と命名して、平成10年1
1月25日に通商産業省工業技術院生命工学工業技術研
究所に GSJ/MITA24A/ASHO−RO/1
として寄託した。寄託番号は FERM P−1706
4である。
(4) Method for identifying strain of manganese oxidizing bacteria The strain was identified by the Japan Food Research Laboratories. The strain was subjected to morphological observation, physiological property tests, and quinone-based and intracellular DNA GC content measurements.
lt (1984), Holt et al. (1994), MacDonell and Colwe
ll (1985), Lee et al. (1977), Nozue et al. (1992)
And identified. (5) Bacteriological properties and identification of GSJ / MITA24A / ASHO-RO / 1 strain The bacteriological properties of the strain are as follows. Although this strain showed properties similar to those of the Enterobacteriaceae family, Cedecea davisae, it did not have the lipase characteristic of the genus Cedecea, but it is the facultative anaerobic gram-negative bacterium that is oxidase-negative. It was similar. Therefore, this novel microorganism is referred to as Cedesea GSJ / MITA.
24A / ASHO-RO / 1
On January 25, GSJ / MITA24A / ASHO-RO / 1
Deposited as The deposit number is FERM P-1706
4.

【0014】 GSJ/MITA24A/ASHO−RO/1 菌株の菌学的性質 (試験項目) (試験結果) 形 態 桿 菌 グラム染色性 − 胞 子 − 運 動 性 + 鞭 毛 周 毛 酸素に対する態度 通性嫌気性 オキシダーゼ − カタラーゼ + OF F 集落の色調 NP(注1) 乳糖からのガスの生成 +(slow) インドールの生成 − メチルレッド試験 + V P 反応 + クエン酸塩の利用(シモンズ) + 硫化水素の生成 − 尿素の分解 − フェニルアラニンデアミナーゼ − リジンデカルボキシダーゼ +(slow) アルギニンジヒドロラーゼ − オルニチンデカルボキシラーゼ + ゼラチンの液化 − マロン酸塩の利用 + グルコースからの酸の生成 + グルコースからのガスの生成 − 酸の生成 セロビオース + グリセリン + マルトース + D−マンノース + L−ラムノース − サリシン + トレハロース + D−キシロース + エスクリンの加水分解 + 硝酸塩の還元 + DNAの分解 − リパーゼ − ONPG + 菌体内 DNAのGC含量(モル%) 54 キノン系 Q-8 (注1)特徴的集落色素を生成せずBacteriological properties of GSJ / MITA24A / ASHO-RO / 1 strain (Test items) (Test results) Morphology Bacillus Gram stainability-Spores-Mobility + Flagellar hair Anaerobic oxidase-catalase + OFF colony color NP (Note 1) Generation of gas from lactose + (slow) Generation of indole-Methyl red test + VP reaction + Utilization of citrate (simmons) + hydrogen sulfide Generation-Decomposition of urea-Phenylalanine deaminase-Lysine decarboxidase + (slow) Arginine dihydrolase-Ornithine decarboxylase + Liquefaction of gelatin-Utilization of malonate + Generation of acid from glucose + Generation of gas from glucose-Acid Of cellobiose + glycerin + maltose + D-mannose + -Rhamnose-salicin + trehalose + D-xylose + hydrolysis of esculin + reduction of nitrate + degradation of DNA-lipase-ONPG + GC content of intracellular DNA (mol%) 54 Quinone Q-8 (Note 1) Characteristic Does not produce colony pigment

【0015】(6)GSJ/MITA24B/ASHO
−RO/2菌株の菌学的性質と同定 菌株の菌学的性質は以下に示すとおりである。この菌株
は、オキシダーゼが陰性で鞭毛が極単毛であったが、運
動性を有する通性嫌気性グラム陰性桿菌であることや、
菌体内 DNA の CG 含量やキノン系からみると Aeromona
s 属に最も近似していた。そこで、この新規微生物をア
エロモナス属(Aeromonas)GSJ/MITA
24B/ASHO−RO/2と命名したが、この菌は、
活力が弱いので通商産業省工業技術院生命工学工業技術
研究所に寄託できなかった。
(6) GSJ / MITA24B / ASHO
-Mycological properties and identification of the RO / 2 strain The mycological properties of the strain are as follows. Although this strain was negative for oxidase and flagella was extremely monocotyledonous, it was a facultative anaerobic gram-negative bacillus with motility,
Aeromona from the viewpoint of the CG content of the intracellular DNA and the quinone system
It was closest to the s genus. Therefore, this novel microorganism is referred to as Aeromonas GSJ / MITA.
Although named 24B / ASHO-RO / 2, this bacterium
Due to its weak energy, it could not be deposited at the Institute of Biotechnology and Industrial Technology of the Ministry of International Trade and Industry.

【0016】 GSJ/MITA24B/ASHO−RO/2 菌株の菌学的性質 (試験項目) (試験結果) 形 態 桿 菌 グラム染色性 − 胞 子 − 運 動 性 + 鞭 毛 極単毛 酸素に対する態度 通性嫌気性 オキシダーゼ − カタラーゼ − OF F 集落の色調 NP(注1) 菌体内 DNAのGC含量(モル%) 56 キノン系 Q-8, MK-8, DMK-8 (注1)特徴的集落色素を生成せずBacteriological properties of GSJ / MITA24B / ASHO-RO / 2 strain (Test items) (Test results) Morphology Bacillus Gram stainability-Spore-Mobility + Flagella poleus Anaerobic oxidase-catalase-OFF colony color tone NP (Note 1) GC content of intracellular DNA (mol%) 56 Quinone Q-8, MK-8, DMK-8 (Note 1) Not generated

【0017】GSJ/MITA24C/ASHO−RO
/3菌株の菌学的性質と同定 菌株の菌学的性質は以下に示すとおりである。菌株は S
hewanella putrefaciens である。 Shewanella は極鞭
毛で、キノン系にメチルメナキノン(MMK)を有するグ
ラム陰性桿菌であり、主に水生生物や海洋生物から分離
されている。なお、 Shewanella putrefaciens は MacD
onell and Colwell (1985)によってAlteromonas 属から
移行された菌である。
GSJ / MITA24C / ASHO-RO
/ 3 Mycological properties and identification of strains Mycological properties of the strains are as follows. The strain is S
Hewanella putrefaciens. Shewanella is a polar flagellum, a gram-negative bacterium with methylmenaquinone (MMK) in its quinone system, which is mainly isolated from aquatic and marine organisms. Shewanella putrefaciens is MacD
A bacterium transferred from the genus Alteromonas by onell and Colwell (1985).

【0018】この新規微生物をシュワネラ・プトレファ
シエンス(Shewanellaputrefacie
ns)GSJ/MITA24C/ASHO−RO/3と
命名し、平成11年2月17日に通商産業省工業技術院
生命工学工業技術研究所にGSJ/MITA24C/A
SHO−RO/3として寄託した。寄託番号は、FER
M P−17220である。
[0018] This new microorganism is used as a product of Shewanella putrefaciens.
ns) Named GSJ / MITA24C / ASHO-RO / 3 and sent to GSJ / MITA24C / A on February 17, 1999 by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology.
Deposited as SHO-RO / 3. Deposit number is FER
MP-17220.

【0019】 GSJ/MITA24C/ASHO−RO/3菌株の菌学的性質 (試験項目) (試験結果) 形 態 桿 菌 グラム染色性 − 胞 子 − 運 動 性 + 鞭 毛 極単毛 酸素に対する態度 好気性 オキシダーゼ + カタラーゼ + OF O 集落の色調 茶色系 Na+要求性 + 塩類要求性 0%NaCl培地での生育 + 1%NaCl培地での生育 + 海水培地での生育 + DNAの分解 + アルギニンジヒドロラーゼ − オルニチンデカルボキシラーゼ + リジンデカルボキシラーゼ − 硫化水素の生成 + 溶血性(羊血液) + 6%NaCl存在下での生育 + 4℃での生育 + 37℃での生育 + 42℃での生育 − SA寒天培地での生育 − 酸の生成 D−リボース − マルトース + L−アラビノース + 資化性 イソロイシン − コハク酸塩 + グリセリン − グルコース + グルコサミン − 菌体内のDNAのGC含量(モル%) 48 キノン系 Q-8,Q-7,MMK-7, MK-7Bacteriological properties of GSJ / MITA24C / ASHO-RO / 3 strains (Test items) (Test results) Morphology Bacillus Gram stainability-Spores-Mobility + Flagella polar pilus Attitude toward oxygen Temperary oxidase + catalase + OFO Color of colony Brown Na + requirement + salt requirement 0% growth in NaCl medium + growth in 1% NaCl medium + growth in seawater medium + DNA degradation + arginine dihydrolase-ornithine Decarboxylase + lysine decarboxylase-production of hydrogen sulfide + hemolytic (sheep blood) + growth in the presence of 6% NaCl + growth at 4 ° C + growth at 37 ° C + growth at 42 ° C-on SA agar medium Growth-acid production D-ribose-maltose + L-arabinose + assimilating isoleucine-succinate + gly Serine-glucose + glucosamine-GC content (mol%) of DNA in bacterial cells 48 Quinone Q-8, Q-7, MMK-7, MK-7

【0020】〔実施例2〕 イ.微生物共生体の採取とスクリーニング (1)Kester人工海水を5倍希釈した溶液に硫酸マンガ
ンを添加して、マンガン(II)濃度を2〜3ppm程
度にした溶液を孔径0. 2μmの滅菌済みフィルターで
無菌濾過した濾液(А液)を調製する。
Embodiment 2 a. Collection and screening of microbial symbiotic organisms (1) Manganese sulfate was added to a solution obtained by diluting Kester artificial seawater 5 times, and the manganese (II) concentration was adjusted to about 2 to 3 ppm with a sterilized filter having a pore size of 0.2 μm. Prepare a sterile filtered filtrate (А solution).

【0021】(2)緑色ないし深緑色、または褐色ない
し黒色の微生物マットを滅菌済みの袋や瓶などに採取
し、А液が入っている滅菌済み試験管(キャップ付)に
全液量の約10%となる微生物マットを入れ、試験管ミ
キサーなどで良く混合する。すばやくこの液を2分し、
滅菌済み試験管(キャップ付10ml)に分液する。こ
の微生物マットに蛍光試薬のDAPIを添加して蛍光顕
微鏡で観察し、シアノバクテリヤと細菌の存在を確認す
る。
(2) A microbial mat of green to dark green, or brown to black is collected in a sterilized bag or bottle, and is placed in a sterilized test tube (with a cap) containing the liquid, and the total amount of the liquid is measured. Add a 10% microbial mat and mix well with a test tube mixer. Quickly split this solution for 2 minutes,
Separate into sterile test tubes (10 ml with cap). A fluorescent reagent, DAPI, is added to the microorganism mat and observed with a fluorescence microscope to confirm the presence of cyanobacteria and bacteria.

【0022】(3)2分した試験管の一方はオートクレ
ーブにより、121℃、2気圧で15分間の滅菌処理を
行い、それを滅菌済み試料懸濁液と称する。他方のなに
も処理しない試験管を、未処理(生)の試料懸濁液と称
する。 (4)それぞれ25mlのА液を入れた3本の滅菌済み
試験管(キャップ付、50ml)を用意し、なにも加え
ていない試験管1、滅菌済みの試料懸濁液2mlを添加
した試験管2、未処理(生)の試料懸濁液2mlを添加
した試験管3を作成する。
(3) One of the two-minute test tubes is sterilized by an autoclave at 121 ° C. and 2 atm for 15 minutes, which is referred to as a sterilized sample suspension. The other untreated tube is referred to as the untreated (raw) sample suspension. (4) Three sterilized test tubes (with cap, 50 ml) each containing 25 ml of the А solution were prepared, and a test tube 1 containing nothing and 2 ml of a sterilized sample suspension were added. Tube 2, a test tube 3 to which 2 ml of untreated (raw) sample suspension is added.

【0023】(5)これら3本の試験管は、それぞれ良
く攪拌した後、自然光照射下、37℃で4日間、静置培
養する。 (6)各液を孔径0. 2μmのフィルター(滅菌の必要
はない)で濾過して、試験管に約0. 5mlを分取す
る。 (7)これらにそれぞれ、フォルムアルドキシム溶液
0. 5ml、pH10緩衝液0. 5mlを加え、混合し
た後に約10分間放置する。 (8)試験管1からの反応液は暗赤色に呈色する。試験
管2からの反応液の呈色より試験管3からの反応液の呈
色の方が顕著に弱ければ、目的の活性を有する(陽性)
と判断されるので採用する。しかし、前記2と3の呈色
にほとんど差がなければ活性がほとんどない(陰性)と
判断して採用しない。 (9)この選別で採用された培養物は、マンガン除去に
有効である。
(5) These three test tubes are each stirred well, and then incubated at 37 ° C. for 4 days under natural light irradiation. (6) Each liquid is filtered through a filter having a pore size of 0.2 μm (sterilization is not necessary), and about 0.5 ml is dispensed into a test tube. (7) To each of these, 0.5 ml of a formaldoxime solution and 0.5 ml of a pH10 buffer solution are added, and after mixing, the mixture is allowed to stand for about 10 minutes. (8) The reaction solution from the test tube 1 turns dark red. If the color of the reaction solution from the test tube 3 is significantly weaker than the color of the reaction solution from the test tube 2, it has the desired activity (positive).
Adopted because it is determined. However, if there is little difference between the coloration of the above 2 and 3, it is judged that there is almost no activity (negative) and it is not adopted. (9) The culture adopted in this selection is effective for removing manganese.

【0024】ロ.微生物共生体の培養 本発明の微生物共生体の培養では、特に人工的に有機物
の添加をしなくてもよく、Kester人工海水の20%水溶液
にマンガン60ppmを含んだ溶液100mlに、あるいは採
取地で共生体と接している試料水を滅菌した液100ml
に、上記の選別方法で選別したものを1ml採取し9mlの
水に加えて全体を10mlとした微生物共生体サンプルか
ら0.2mlを加えて、自然光下あるいは人工照明下に
て、37℃で静置して培養した。
B. Culture of microorganism symbiosis In the culture of the microorganism symbiosis of the present invention, it is not particularly necessary to artificially add an organic substance, and to a 100% solution containing 60 ppm of manganese in a 20% aqueous solution of Kester artificial seawater, or at a collection site. 100 ml of sterilized sample water in contact with the symbiotic organism
Then, 1 ml of the sample selected by the above-mentioned sorting method was collected, 0.2 ml of a microorganism symbiotic sample having a total of 10 ml was added to 9 ml of water, and the mixture was allowed to stand at 37 ° C. under natural light or artificial lighting. And cultured.

【0025】ハ.微生物共生体によるマンガンを含む水
の処理 2. 4ppmの濃度でマンガンを含んでいる温泉水を滅
菌フィルターで濾過して、滅菌処理した。滅菌処理した
水を以下のように調整して、A、B、Cの3つに分けて
それぞれ37℃の温度に保ち、自然光のなかで3日間放
置した。
C. Treatment of Water Containing Manganese by Symbiotic Microorganisms Hot spring water containing manganese at a concentration of 2.4 ppm was filtered through a sterilizing filter and sterilized. The sterilized water was adjusted as follows, divided into three of A, B, and C, each kept at a temperature of 37 ° C., and left for 3 days in natural light.

【0026】Aは、滅菌処理した水になにも添加しなか
ったものである。Bは、(1)で育成した微生物共生
体:温泉水を容積比で1:9にし、これをオートクレー
ブ中で121℃、2気圧で滅菌処理したものを、滅菌処
理した水に対して0. 2%(容量比)添加したものであ
る。Cは、1)で育成した微生物共生体:温泉水を容積
比で1:9にしたものをそのまま生で、滅菌処理した水
に対して0. 2%(容量比)添加したものである。な
お、各A、B、Cの資料は均一に攪拌されたのち、静止
放置された。
A is one in which nothing was added to the sterilized water. B: The microbial symbiotic organism: hot spring water grown in (1) at a volume ratio of 1: 9, which was sterilized in an autoclave at 121 ° C. and 2 atm, was added to the sterilized water at 0.2%. 2% (by volume) was added. C is a mixture obtained by raising the microorganism symbiotic organism: hot spring water at a volume ratio of 1: 9 grown in 1) as it is, and adding 0.2% (by volume) to sterilized water. The materials A, B, and C were uniformly stirred and then allowed to stand still.

【0027】放置した結果を図2に示す。Aは、3日の
間、全く変化しなかった。Bは、2日の間に変化し、マ
ンガンイオンは、1.8ppmにまで低下した。Cは、
2日の間に大きく変化し、3日目には、 ほぼゼロにち
かいところまでマンガンイオンが低下していた。
The result of the standing is shown in FIG. A did not change at all during the three days. B changed during the two days, and manganese ions dropped to 1.8 ppm. C is
There was a large change between the two days, and on the third day the manganese ions had dropped to near zero.

【0028】〔実施例3〕 微細藻類の分類観察 生成中の二酸化マンガンの沈殿物を伴う未染色の微生物
繁茂体をスライドガラスにとり、位相差顕微鏡或いは明
視野顕微鏡で内部構造を観察し、細胞内に核を有しない
原核生物である細菌及び藍藻と、核を有する真核生物で
ある他の生物を区別する。また、同じ未染色の試料に紫
外線照射してオレンジ色の蛍光を発する葉緑素の自家蛍
光を落射蛍光顕微鏡下で観察することにより、藍藻、緑
藻、珪藻等の藻類と別の微生物を区別する。さらに、蛍
光試薬DAPIを添加した細胞に紫外線照射して、オレ
ンジ色の蛍光を発する藍藻の核酸の分布形と、青から白
の蛍光を発する細菌の核酸の分布形とを合わせて観察す
る。これらの結果を組み合わせて一般の微生物図鑑から
藍藻、緑藻、珪藻等の藻類の分類を観察する。本発明に
おける微生物共生体中の藻類には、顕微鏡下での観察に
よってオシラトリア(Ocillatoria) などの藍藻、ナビキ
ュラ(Navicula) などの珪藻、ウロトリックス(Ulothri
x)などの緑藻などの生存が認められている。
Example 3 Classification and Observation of Microalgae Unstained microbial growth with manganese dioxide precipitate being formed was placed on a slide glass, and the internal structure was observed with a phase-contrast microscope or bright-field microscope. Bacteria and cyanobacteria, which are prokaryotes without nuclei, are distinguished from other organisms, which are eukaryotes with nuclei. In addition, the same unstained sample is irradiated with ultraviolet light to observe the autofluorescence of chlorophyll that emits orange fluorescence under an epifluorescence microscope, thereby distinguishing algae such as cyanobacteria, green algae and diatoms from other microorganisms. Furthermore, the cells to which the fluorescent reagent DAPI has been added are irradiated with ultraviolet rays, and the distribution of cyanobacterial nucleic acids emitting orange fluorescence and the distribution of bacteria nucleic acids emitting blue to white fluorescence are observed together. By combining these results, the classification of algae such as cyanobacteria, green algae, and diatoms is observed from a general microbial picture book. Algae in the microbial symbiosis of the present invention include cyanobacteria such as Ocillatoria, diatoms such as Navicula, and urotrix, which are observed under a microscope.
Survival of green algae such as x) has been observed.

【0029】〔実施例4〕 マンガン酸化細菌の菌株に
よるマンガンを含む水の処理 ペプトンや酵母エキスなどの有機栄養を添加した人工海
水溶液、あるいはその人工海水濃度を5倍程度まで希釈
した溶液に、マンガン酸化細菌の菌株の1種または2種
以上を接種した系を調整し、無接種の系とともに37℃
或いは20℃において振とう培養する。この液の一部を
分取して、660nm における吸光度( 光学密度、OD 660)
微生物量及び溶存マンガン濃度(Mn2+) を測定する。
Example 4 Treatment of Manganese-Containing Water by Strain of Manganese-Oxidizing Bacteria An artificial seawater solution containing organic nutrients such as peptone or yeast extract, or a solution obtained by diluting the artificial seawater concentration to about 5 times was prepared. A system inoculated with one or two or more strains of manganese oxidizing bacteria was prepared, and together with a non-inoculated system, at 37 ° C.
Alternatively, the cells are cultured with shaking at 20 ° C. An aliquot of this solution is taken and the absorbance at 660 nm (optical density, OD 660)
The microbial load and dissolved manganese concentration (Mn 2+ ) are measured.

【0030】マンガンの初期濃度を60ppm として有
機栄養を添加した20mlの100%人工海水溶液のpHを7.5
とし、マンガン酸化細菌の1白金耳を接種した系と、
未接種(無菌)系の液を20℃で培養した結果を図1に
示す。この図から、高塩濃度の液体中でも二酸化マンガ
ンの沈殿が生じ、化学的には沈殿しない水溶液から高濃
度のマンガンイオンを除去することができることが判
る。そして、この回収されたマンガンは、乾電池、釉薬
等の製造原料として利用することができる。
The initial concentration of manganese was set to 60 ppm, and the pH of 20 ml of 100% artificial seawater to which organic nutrients were added was adjusted to 7.5.
And a system inoculated with one platinum loop of manganese oxidizing bacteria,
FIG. 1 shows the result of culturing the uninoculated (sterile) system liquid at 20 ° C. From this figure, it can be seen that manganese dioxide precipitates even in a liquid with a high salt concentration, and high-concentration manganese ions can be removed from an aqueous solution that does not chemically precipitate. The recovered manganese can be used as a raw material for producing batteries, glazes and the like.

【0031】[0031]

【発明の効果】本発明の微生物、微生物共生体は、これ
までに人工的に単離されたり、培養されたことはないも
のであり、そして、この微生物共生体を用いた重金属と
くにマンガンの除去法は、マンガンを含む種々の水をpH
10以上の強アルカリ性にする必要がないことから、廃水
処理に適用してマンガンの除去を低コストで行うことが
できる。
The microorganisms and symbiotic microorganisms of the present invention have never been artificially isolated or cultured so far, and the removal of heavy metals, especially manganese, using the symbiotic microorganisms. The method involves the pH adjustment of various waters containing manganese.
Since it is not necessary to make the alkalinity 10 or more, manganese can be removed at low cost by applying to wastewater treatment.

【0032】また、この処理法によりマンガンを含む廃
棄物、例えば使用済み乾電池、古鉄材などから、元の資
源である二酸化マンガンを再生することができる。更
に、この処理法で得られる沈着した二酸化マンガンは、
高品位であるため、乾電池、鉄、釉薬、ガラスなどの製
造原料として有効に利用することができる。
Further, by this treatment method, manganese dioxide, which is the original resource, can be regenerated from waste containing manganese, for example, used dry batteries, old iron materials and the like. Furthermore, the deposited manganese dioxide obtained by this treatment method is:
Because of its high quality, it can be effectively used as a raw material for manufacturing dry batteries, iron, glaze, glass, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微生物の生育状態及びマンガンイオンの除去効
果を示す図である。
FIG. 1 is a diagram showing the growth state of microorganisms and the effect of removing manganese ions.

【図2】本発明による水中のマンガンの除去効果を示す
図である。
FIG. 2 is a diagram showing the effect of removing manganese in water according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI (C12N 1/20 C12R 1:01) (72)発明者 加藤 義重 茨城県つくば市小野川16番3 工業技術 院 資源環境技術総合研究所内 (72)発明者 丸山 明彦 茨城県つくば市東1丁目1番3 工業技 術院 生命工学工業技術研究所内 (72)発明者 東原 孝規 茨城県つくば市東1丁目1番3 工業技 術院 生命工学工業技術研究所内 (72)発明者 金井 豊 茨城県つくば市東1丁目1番3 工業技 術院 地質調査所内 (72)発明者 臼井 朗 茨城県つくば市東1丁目1番3 工業技 術院 地質調査所内 (72)発明者 三浦 裕行 北海道札幌市北区あいの里3条7丁目5 −32 (72)発明者 伊藤 孝 茨城県水戸市文京1−1 愛宕住宅1− 303 (72)発明者 田代 英俊 東京都武蔵野市境南町1−22−2 シェ ロビスタ203号 審査官 内田 俊生 (58)調査した分野(Int.Cl.7,DB名) C12N 1/12 C12N 1/20 C12P 3/00 C02F 3/00 C02F 3/34 C22B 47/00 CA(STN) WPIDS(STN) BIOSIS(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI (C12N 1/20 C12R 1:01) (72) Inventor Yoshishige Kato 16-3 Onogawa Tsukuba, Ibaraki Pref. Inside the research institute (72) Inventor Akihiko Maruyama 1-1-3 Higashi, Tsukuba-shi, Ibaraki Pref.Institute of Biotechnology Industrial Technology Research Institute (72) Inventor Takanori Higashihara 1-3-1 Higashi, Tsukuba-shi, Ibaraki Pref. Within the Institute of Industrial Technology (72) Inventor: Yutaka Kanai 1-3-1 Higashi, Tsukuba City, Ibaraki Pref.In the Geological Survey of the Institute of Industrial Technology (72) Inventor Akira Usui 1-3-1 Higashi 1st Tsukuba City, Ibaraki Pref. (72) Inventor Hiroyuki Miura 3-7-3-32 Ainosato, Kita-ku, Sapporo, Hokkaido (72) Inventor Takashi 1-1 Bunkyo, Mito-shi, Mito, Ibaraki Pref. T. 1-33 (72) Inventor Hidetoshi Tashiro 1-2-2, Sakaiminami-cho, Musashino-shi, Tokyo No. 203, Sherovista 203 Examiner Toshio Uchida (58) Field surveyed (Int. Cl. 7 , DB name) C12N 1/12 C12N 1/20 C12P 3/00 C02F 3/00 C02F 3/34 C22B 47/00 CA (STN) WPIDS (STN) BIOSIS (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マンガン酸化能を有するセデセア属(C
edecea)GSJ/MITA24A/ASHO−R
O/1。
1. A genus Sedsea (C) having manganese oxidizing ability
edcea) GSJ / MITA24A / ASHO-R
O / 1.
JP2000008255A 1998-12-28 2000-01-17 New microorganism Expired - Lifetime JP3188924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008255A JP3188924B2 (en) 1998-12-28 2000-01-17 New microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37719098 1998-12-28
JP10-377190 1998-12-28
JP2000008255A JP3188924B2 (en) 1998-12-28 2000-01-17 New microorganism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11273599A Division JP3321591B2 (en) 1989-12-28 1999-04-20 Novel microorganism, symbiotic microorganism, culture method and water treatment method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001006517A Division JP3455749B2 (en) 1998-12-28 2001-01-15 New microorganism

Publications (2)

Publication Number Publication Date
JP2000245441A JP2000245441A (en) 2000-09-12
JP3188924B2 true JP3188924B2 (en) 2001-07-16

Family

ID=26582821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008255A Expired - Lifetime JP3188924B2 (en) 1998-12-28 2000-01-17 New microorganism

Country Status (1)

Country Link
JP (1) JP3188924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248818A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology New method for producing iodine
KR101574963B1 (en) * 2014-03-27 2015-12-08 주식회사 한국 오.지.케이 Dust goggles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755376B (en) * 2021-06-04 2023-08-15 中国科学院生态环境研究中心 Method for improving manganese oxidation function of bacteria by algae

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248818A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology New method for producing iodine
JP4590535B2 (en) * 2005-03-09 2010-12-01 独立行政法人産業技術総合研究所 New iodine production method
KR101574963B1 (en) * 2014-03-27 2015-12-08 주식회사 한국 오.지.케이 Dust goggles

Also Published As

Publication number Publication date
JP2000245441A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
Dias et al. Microbial ecology of activated sludge: I. Dominant bacteria
Zhilina et al. Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales
JP3321591B2 (en) Novel microorganism, symbiotic microorganism, culture method and water treatment method using the same
Birbir et al. Extremely halophilic bacterial communities in Şereflikoçhisar Salt Lake in Turkey
Munro et al. Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures
Kölbel-Boelke et al. Microbial communities in the saturated groundwater environment I: Methods of isolation and characterization of heterotrophic bacteria
CN112551692B (en) Halomonas with aerobic denitrification and heterotrophic sulfur oxidation functions and application thereof
Santavy et al. Comparison of bacterial communities associated with the Caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater.
CN113773982B (en) Stenotrophomonas strain KT48, algicidal bacteria liquid, preparation method and application thereof
CN111334454B (en) Microbacterium PT3 with protein degradation function and application thereof
JP3188924B2 (en) New microorganism
RU2272793C2 (en) Waste water treatment process, means and mixed bacterial population (options) for implementation of the process
JP3321592B2 (en) New microorganism culture method and water treatment method using the same
JP3455749B2 (en) New microorganism
JP2003326296A (en) Porous composite material and production method therefor
CN111378592B (en) Bacillus licheniformis and method for treating malodorous organic wastewater by using same to purify water
Fitriani et al. Isolation and characterization of schmutzdecke in slow sand filter for treating domestic wastewater
Lesser et al. Description of a novel symbiotic bacterium from the brittle star, Amphipholis squamata
CN108410781B (en) Proteobacteria resistant to heavy metals and application thereof
Amin et al. Identification of indigene bacteria from waste water of Regional Public Hospitals in Pacitan
CN110791449B (en) Microcystin degrading bacteria and application thereof
Baharuddin et al. Potential of a combination of Heliconia psittacorum and its associated bacteria for phytoremediation
JP2002281960A (en) Method for reducing hexavalent chromium using microorganism
JP2002125660A (en) New microorganism belonging to bacillus thuringiensis
JPH1084948A (en) Reducing bacteria for selenium oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term