JP3188138B2 - Recovery method of vanadium from petroleum combustion ash - Google Patents

Recovery method of vanadium from petroleum combustion ash

Info

Publication number
JP3188138B2
JP3188138B2 JP13510095A JP13510095A JP3188138B2 JP 3188138 B2 JP3188138 B2 JP 3188138B2 JP 13510095 A JP13510095 A JP 13510095A JP 13510095 A JP13510095 A JP 13510095A JP 3188138 B2 JP3188138 B2 JP 3188138B2
Authority
JP
Japan
Prior art keywords
vanadium
ash
combustion ash
solution
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13510095A
Other languages
Japanese (ja)
Other versions
JPH08325651A (en
Inventor
正明 根来
吉博 北
節男 徳永
徹 栄藤
巖 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15143846&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3188138(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP13510095A priority Critical patent/JP3188138B2/en
Publication of JPH08325651A publication Critical patent/JPH08325651A/en
Application granted granted Critical
Publication of JP3188138B2 publication Critical patent/JP3188138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石油系燃焼灰から湿式法
によってバナジウムを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering vanadium from petroleum-based combustion ash by a wet method.

【0002】[0002]

【従来の技術】従来石油系燃焼灰から湿式法でバナジウ
ムを回収する方法としては、燃焼灰を水と混合し適当量
の硫酸を添加して灰中のバナジウムを溶出させた処理液
あるいはバナジウム化合物を含むスラリ液を対象にして
いる。たとえば、溶液のpHを7〜9に調整しバナジウ
ムを水酸化物VO(OH)2 の形態で沈殿を生成させこ
れを分離回収する方法(特開昭60−19086号公報
及び特開昭60−46930号公報)、アンモニア添
加、空気酸化によりメタバナジン酸アンモニウムNH4
VO3 を生成させこの沈殿物を分離回収する方法(特開
昭61−171582号公報及び特開昭62−2984
89号公報)、及び硫酸第一鉄添加、pH調整(8〜
9)により水酸化物VO(OH)2 を生成させ、これを
Feと共沈させて回収する方法(特開昭59−1038
9号公報)が提案されている。さらに、上記の方法ほか
イオン交換樹脂(キレート樹脂)による吸着法(特開昭
50−66494号公報)、含バナジウム溶液の電解処
理による方法(特開昭53−56116号公報)などが
提案されているが、現在実プラントで稼動中のものは鹿
島北共同火力のプロセスだけである。
2. Description of the Related Art Conventionally, as a method for recovering vanadium from petroleum-based combustion ash by a wet method, a treatment solution obtained by mixing combustion ash with water, adding an appropriate amount of sulfuric acid to elute vanadium in the ash, or a vanadium compound is used. It is intended for slurry liquid containing. For example, a method in which the pH of a solution is adjusted to 7 to 9, vanadium is precipitated in the form of hydroxide VO (OH) 2 , and the precipitate is separated and recovered (JP-A-60-19086 and JP-A-60-19086). No. 46930), ammonium metavanadate NH 4 by addition of ammonia and air oxidation.
A method for producing VO 3 and separating and recovering this precipitate (JP-A-61-171582 and JP-A-62-2984)
No. 89), and addition of ferrous sulfate and pH adjustment (8 to
9) A method of producing hydroxide VO (OH) 2 and coprecipitating it with Fe to recover it (JP-A-59-1038)
No. 9) has been proposed. Further, in addition to the above methods, an adsorption method using an ion exchange resin (chelate resin) (Japanese Patent Application Laid-Open No. Sho 50-66494), a method by electrolytic treatment of a vanadium-containing solution (Japanese Patent Application Laid-Open No. 53-56116), and the like have been proposed. At present, however, the only plant operating at the actual plant is the Kashima Kita Joint Thermal Power Plant process.

【0003】[0003]

【発明が解決しようとする課題】従来の方法は溶液中の
バナジウムイオンをVO(OH)2 またはNH4 VO3
の化合物で回収する方法であるが、次の問題点がある。
すなわち、VO(OH) 2 としての回収はpH調整(7
〜9)により行われるが、水酸化物フロックを形成さ
せ、これを沈殿分離するのでバナジウムの高濃度溶液に
は不適であり、またFe,MgなどがこのpH範囲で共
沈するので回収するバナジウムの純度が低いという問題
がある。また、NH4 VO3 としての回収は原液中のV
2 + をVO 3 - にアルカリ酸化し、これとNH4 を反
応させて生成させるが、高温加熱(70℃以上)による
長時間反応(1時間以上)を要し、また冷却操作によっ
て分離回収を行うためエネルギ消費が極めて大であると
いう問題がある。
The conventional method is to solve the problem in solution.
Vanadium ion is converted to VO (OH)TwoOr NHFourVOThree
This method has the following problems.
That is, VO (OH) TwoRecovery as pH adjustment (7
~ 9), but form hydroxide flocs
To separate it into a high-concentration solution of vanadium.
Is unsuitable, and Fe, Mg, etc.
The problem that the purity of vanadium to be recovered is low because it sinks
There is. Also, NHFourVOThreeAs V in the undiluted solution
OTwo +VO Three -Alkali oxidation to NH and NHFourAnti
Generated by high-temperature heating (70 ° C or higher)
A long reaction time (1 hour or more) is required, and cooling
Energy consumption is extremely large due to separation and recovery
There is a problem.

【0004】本発明は上記従来法におけるような問題点
を解消した石油系燃焼灰よりバナジウムを回収しうる方
法を提供しようとするものである。すなわち、常温の反
応で純度の高いバナジウムが回収でき、また高濃度のバ
ナジウム溶液に対しても効果的にバナジウムを分離で
き、したがって燃料灰の溶解混合に要する水量は極めて
少なくてすむ同方法を提供しようとするものである。
An object of the present invention is to provide a method capable of recovering vanadium from petroleum-based combustion ash which has solved the above-mentioned problems in the conventional method. That is, vanadium of high purity can be recovered by a reaction at room temperature, and vanadium can be effectively separated even from a high-concentration vanadium solution. Therefore, the same method that requires extremely little water for dissolving and mixing fuel ash is provided. What you want to do.

【0005】[0005]

【課題を解決するための手段】本発明は石油系燃焼灰と
水とを混合した混合液に、硫酸及びヒドラジンを添加し
て該混合液のpHを2〜3に、またORPを200〜4
00mVに制御して該燃焼灰よりバナジウムの溶出率を
高めて該混合液より固形物を分離除去した後、該固形物
分離溶液にアンモニア水及びヒドラジンを添加して該溶
液のpHを5〜7に、またORPを−100〜100m
Vに制御してバナジウムイオンをV2 4 またはV2
4 ・2H2 Oとして沈澱させて採取することを特徴とす
る石油系燃焼灰からバナジウムを回収する方法である。
SUMMARY OF THE INVENTION The present invention relates to a petroleum-based combustion ash.
Sulfuric acid and hydrazine are added to the mixture of water and water.
The pH of the mixture to 2-3 and the ORP to 200-4.
00mV to control the dissolution rate of vanadium from the combustion ash.
After solids are separated and removed from the mixture, the solids
Add ammonia water and hydrazine to the separated solution to
PH of the solution is 5-7, ORP is -100-100m
V to control vanadium ions to VTwoO FourOr VTwoO
Four・ 2HTwoIt is characterized by being precipitated as O and collected.
This method recovers vanadium from petroleum-based combustion ash.

【0006】すなわち、本発明は石油系燃焼灰中に含ま
れるバナジウムの溶出率を高めるために、硫酸を添加し
て溶液のpH値を2〜3に下げるとともに還元剤として
ヒドラジンを添加し、溶液の酸化還元電位(ORP)を
200〜400mVに低下させる。原料灰と混合する水
はできるだけ少なくして(例えば灰1に対して水量2の
割合)バナジウムの溶出率を高める方法をとることとし
多量の水と混合させてバナジウムを溶出させる手段は採
らない。
That is, in the present invention, in order to increase the elution rate of vanadium contained in petroleum-based combustion ash, sulfuric acid is added to lower the pH value of the solution to 2-3, and hydrazine is added as a reducing agent to the solution. Is reduced to 200 to 400 mV. A method of increasing the vanadium elution rate by minimizing the amount of water mixed with the raw material ash (for example, the ratio of the amount of water 2 to the amount of ash 1) is adopted. There is no means for eluting vanadium by mixing with a large amount of water.

【0007】次に、バナジウムを溶出させた混合液の固
形分(未燃カーボン及び不溶物)を遠心分離などで取り
除いた後、アンモニア水を添加し溶液のpHを5〜7に
上昇させると同時に還元剤としてヒドラジンを添加して
さらに溶液のORPを−100〜100mVに低下さ
せ、バナジウムイオンをV2 4 またはV2 4 ・2H
2 Oの形態に酸化させ、生成したこのV2 4 またはV
2 4 ・2H2 Oの沈殿を分離回収するものである。
Next, the solid solution of the mixture from which vanadium has been eluted is solidified.
Remove the form (unburned carbon and insolubles) by centrifugation, etc.
After removal, add ammonia water to adjust the pH of the solution to 5-7.
Hydrazine as a reducing agent
Further, the ORP of the solution was reduced to -100 to 100 mV.
Vanadium ionTwoOFourOr VTwoOFour・ 2H
TwoOxidized to the form of OTwoOFourOr V
TwoOFour・ 2HTwoThis is to separate and recover the O precipitate.

【0008】[0008]

【作用】図3にバナジウムの水中での状態図を示す(Po
urbaix:pH−ORP線図)。これは横軸はpH値、縦
軸はORP(酸化還元電位)を表わすものである。状態
Aは原料灰を水に溶解させた時の位置であるが、本発明
では状態Aから状態Bを経て状態Cに移行させ状態Cに
おいてバナジウムを回収する。
FIG. 3 shows a phase diagram of vanadium in water (Po
urbaix: pH-ORP diagram). The horizontal axis represents the pH value, and the vertical axis represents the ORP (oxidation-reduction potential). State A is a position when the raw ash is dissolved in water. In the present invention, the state A is transferred to state C via state B, and vanadium is recovered in state C.

【0009】この線図の中でV2 4 (四酸化バナジウ
ム)は斜線部で示す範囲(pH=4.6〜5.8、OR
P=0〜180mV)で溶解度が最も低くなり沈殿物が
多く生成する。この範囲から遠ざかるほどV2 4 の溶
解度は大きくなり図中に示すV(−4)、V(−2)、
V(0)の外周線はその順列を表わしている。なお、V
(−4)は4価のバナジウムイオン、V(−2)は2価
のバナジウムイオン、V(0)は0価のバナジウムイオ
ン、すなわちバナジウム金属を示す。
In this diagram, V 2 O 4 (vanadium tetroxide) is represented by a hatched area (pH = 4.6-5.8, OR).
(P = 0 to 180 mV), the solubility becomes the lowest and a large amount of precipitate is formed. The further away from this range, the greater the solubility of V 2 O 4 and V (-4), V (-2),
The outer line of V (0) represents the permutation. Note that V
(-4) is a tetravalent vanadium ion, V (-2) is a divalent vanadium ion, and V (0) is a zero-valent vanadium ion, that is, a vanadium metal.

【0010】状態Aから状態Bへの移行操作を行うとV
2 4 が析出する範囲を回避することになり、したがっ
てバナジウムはバナジウムイオンとしての液中存在量が
多くなる。状態Bから状態Cへの移行操作は上記に説明
のとおり、V2 4 が固形物(沈殿物)として最も安定
に存在し、この溶解度が低いことを利用して高効率にバ
ナジウムが分離回収することができると考えられる。な
お、上記熱力学データに対し、V2 4 (またはV2
4 ・2H2 O)の析出条件は後述のとおり若干ずれてい
る。
When a transition operation from state A to state B is performed, V
The range in which 2 O 4 is deposited is avoided, and therefore, the amount of vanadium in the liquid as vanadium ions increases. As described above, in the operation for shifting from state B to state C, V 2 O 4 is most stably present as a solid (precipitate) and vanadium is efficiently separated and recovered by utilizing its low solubility. It is thought that it can be done. In addition, V 2 O 4 (or V 2 O
4 · 2H 2 O) deposition conditions are slightly shifted as described below.

【0011】図1によって、本発明の基本システム構成
と処理プロセスを説明する。燃焼灰(原料灰)は工水
(または市水)とともに溶解槽1に投入し攪拌機2で灰
と水を混合攪拌する。溶解槽1には硫酸タンク10から
ポンプ9によって電磁調整弁8を介して硫酸を注入する
が、その注入量は溶解槽1内またはその後方ラインに設
置したpH計4とコントローラ6によって調整する。電
磁調整弁8はコントローラ6と連動して開度を調節す
る。また溶解槽1には還元剤タンク12からポンプ11
によって電磁調整弁7を介して還元剤を注入するが、そ
の注入量は溶解槽1内またはその後方ラインに設置した
ORP計3とコントローラ4によって調整する。電磁調
整弁7はコントローラ5と連動して開度を調節する。溶
解した液はスラリ輸送ポンプ13で遠心分離機14に送
り、ここで不溶固形物(未燃カーボン及び不溶分)を分
離し、不溶固形物を除去したろ液は反応槽15に送られ
る。
Referring to FIG. 1, the basic system configuration and processing of the present invention will be described. The combustion ash (raw material ash) is put into the dissolution tank 1 together with the working water (or city water), and the ash and water are mixed and stirred by the stirrer 2. Sulfuric acid is injected into the dissolving tank 1 from the sulfuric acid tank 10 by the pump 9 via the electromagnetic adjustment valve 8, and the injection amount is adjusted by the pH meter 4 and the controller 6 installed in the dissolving tank 1 or a line behind the same. The electromagnetic adjustment valve 8 adjusts the opening in conjunction with the controller 6. The dissolution tank 1 has a pump 11 from a reducing agent tank 12.
Is injected through the electromagnetic adjustment valve 7, and the amount of the injection is adjusted by the ORP meter 3 and the controller 4 installed in the dissolution tank 1 or a line behind the dissolution tank 1. The electromagnetic adjustment valve 7 adjusts the opening in conjunction with the controller 5. The dissolved liquid is sent to the centrifugal separator 14 by the slurry transport pump 13 where the insoluble solids (unburned carbon and insolubles) are separated, and the filtrate from which the insoluble solids are removed is sent to the reaction tank 15.

【0012】反応槽15にはアルカリタンク24からポ
ンプ23によって電磁調整弁22を介してアンモニア
を、また同時にヒドラジンタンク26からポンプ25に
よって電磁調整弁21を介して還元剤であるヒドラジン
を注入し、攪拌機16で攪拌しながら反応を進行させ
る。アンモニア及びヒドラジンの注入量は反応槽15内
またはその後方ラインに設置したpH計17、コントロ
ーラ19及びORP計18、コントローラ20によって
それぞれ注入量の情報を制御しコントローラ19、20
と連結する電磁調整弁21、22に信号を移送して開度
調節を行わせる。反応生成したV2 4 を含む反応液は
スラリ輸送ポンプ27で遠心分離機28に送り、ここで
固形分(V2 4 ケーキ)を回収する。
Ammonia is injected into the reaction tank 15 from the alkaline tank 24 by the pump 23 through the electromagnetic control valve 22, and hydrazine as a reducing agent is simultaneously injected from the hydrazine tank 26 by the pump 25 through the electromagnetic control valve 21. The reaction proceeds with stirring by the stirrer 16. The injection amounts of ammonia and hydrazine are controlled by a pH meter 17, a controller 19, an ORP meter 18, and a controller 20 installed in the reaction tank 15 or in a line behind the controller, respectively.
The signal is transferred to the electromagnetic adjustment valves 21 and 22 connected to the controller to adjust the opening degree. The reaction solution containing V 2 O 4 generated by the reaction is sent to a centrifugal separator 28 by a slurry transport pump 27, and a solid content (V 2 O 4 cake) is collected there.

【0013】[0013]

【実施例】本発明の化学的裏づけのため、原理確認を行
ったビーカ規模の基礎試験装置を図2に示し、さらにこ
の試験結果を後記表1、表2に示す。図2(a)は灰溶
解試験及び酸化反応試験装置であり、ビーカ(200〜
500cc)31と回転機33、回転子32で構成され
ている。灰溶解時には灰と水を混合投入し、これに硫酸
及びヒドラジンを注入して試験を行い、また酸化反応時
には溶液にアンモニア及びヒドラジンを注入して試験を
行った。
FIG. 2 shows a basic tester on a beaker scale, for which the principle was confirmed, for the chemical support of the present invention. Further, the test results are shown in Tables 1 and 2 below. FIG. 2A shows an ash dissolution test and an oxidation reaction test device.
(500 cc) 31, a rotating machine 33, and a rotor 32. At the time of dissolving the ash, ash and water were mixed and charged, and sulfuric acid and hydrazine were injected into the ash, and the test was performed. At the time of the oxidation reaction, ammonia and hydrazine were injected into the solution, and the test was performed.

【0014】試験後の溶液は図2(b)に示すろ過試験
装置で固形分をろ過分離する。ミリポアフィルタ(0.
45μ)35を組込んだろ斗34にビーカ31の液を投
入し真空容器36内に設置したビーカ37内にろ液41
を回収する。またミリポアフィルタ35上に捕かくされ
た固形物40は回収固形分として性状を調査した。
After the test, the solid content is separated by filtration using a filtration test apparatus shown in FIG. 2 (b). Millipore filter (0.
45 μ) 35 was incorporated, and the liquid of the beaker 31 was poured into the funnel 34, and the filtrate 41 was placed in the beaker 37 installed in the vacuum vessel 36.
Collect. The properties of the solids 40 trapped on the Millipore filter 35 were investigated as recovered solids.

【0015】表1は灰の溶解試験結果を示すが、溶解条
件は常温、1時間の攪拌下で灰と水の混合比を、またp
HとORPを変化させてV溶出率を試験した。この結
果、硫酸添加による低pH(pH=2〜3)、ヒドラジ
ン添加によるORP低減(ORP=200〜400m
V)の条件(試験番号5〜8)ではバナジウムの溶出率
が86%以上となった。
Table 1 shows the results of the ash dissolution test. The dissolution conditions were as follows: the mixing ratio of ash to water at room temperature under stirring for 1 hour;
The V elution rate was tested with varying H and ORP. As a result, low pH (pH = 2 to 3) by adding sulfuric acid, and reduction of ORP by adding hydrazine (ORP = 200 to 400 m)
Under the condition V) (test numbers 5 to 8), the dissolution rate of vanadium was 86% or more.

【0016】[0016]

【表1】 [Table 1]

【0017】表2はバナジウム溶出液を常温、1時間で
酸化反応を行わせた結果であるが、アンモニア注入、ヒ
ドラジン注入によりpH=5〜7、ORP=−100〜
100mVの条件でV2 4 析出率は90%以上となっ
た。
Table 2 shows the results of the oxidation reaction of the vanadium eluate at room temperature for 1 hour. The pH was 5 to 7 and the ORP was -100 to 100 by ammonia injection and hydrazine injection.
Under the condition of 100 mV, the V 2 O 4 deposition rate was 90% or more.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明によれば下記に示す効果を奏する
ことができる。 (1)原料灰の含有バナジウム溶出に際して、pH調整
剤としての硫酸、還元剤としてのヒドラジンを添加し、
pH=2〜3、ORP=200〜400mVの範囲に制
御することによりバナジウムを高い率で液中に溶かすこ
とができる。 (2)この溶出液からバナジウムを回収するに際し、ア
ンモニア及びヒドラジンを添加し、pH=5〜7、OR
P=−100〜100mVの範囲に制御することにより
バナジウムイオンをV2 4 あるいはV2 4 ・2H2
Oの固形物として高い率で回収できる。 (3)本発明の方法は原料灰を高濃度で処理することが
可能であり、機器、タンク類がコンパクトになる。また
常温での操作であるため熱エネルギなどが不要であり、
極めて経済的なシステムである。
According to the present invention, the following effects can be obtained. (1) During the elution of vanadium containing ash, sulfuric acid as a pH adjuster and hydrazine as a reducing agent are added.
By controlling the pH to be in the range of 2-3 and the ORP in the range of 200-400 mV, vanadium can be dissolved in the liquid at a high rate. (2) When recovering vanadium from this eluate, ammonia and hydrazine were added, and the pH was 5 to 7,
V 2 vanadium ions by controlling the range of P = -100~100mV O 4 or V 2 O 4 · 2H 2
It can be recovered at a high rate as O solids. (3) The method of the present invention can treat raw ash at a high concentration, and equipment and tanks can be compact. Also, since the operation is performed at room temperature, no heat energy is required,
It is a very economical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的フローの説明図。FIG. 1 is an explanatory diagram of a basic flow of the present invention.

【図2】本発明の具体的実施例のバナジウム溶解、V2
4 生成、分離の基礎試験装置の説明図。
FIG. 2 shows vanadium dissolution, V 2 according to a specific embodiment of the present invention.
FIG. 4 is an explanatory diagram of a basic test device for O 4 generation and separation.

【図3】水溶液中のバナジウムの状態原理図。FIG. 3 is a state principle diagram of vanadium in an aqueous solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 節男 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (72)発明者 栄藤 徹 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社 神戸造船所 内 (72)発明者 中安 巖 兵庫県高砂市荒井町新浜2丁目8番19号 高菱エンジニアリング株式会社内 (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Setsuo Tokunaga 2-1-1 Shinhama, Arai-machi, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Inside the Takasago Research Laboratory (72) Inventor Toru Eito Toichi Wadazaki, Hyogo-ku, Kobe-shi, Hyogo 1-1 1-1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Iwao Nakayasu 2-9-19 Aramachi, Aramachi, Takasago City, Hyogo Prefecture Takaishi Engineering Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石油系燃焼灰と水とを混合した混合液
に、硫酸及びヒドラジンを添加して該混合液のpHを2
〜3に、またORPを200〜400mVに制御して該
燃焼灰よりバナジウムの溶出率を高めて該混合液より固
形物を分離除去した後、該固形物分離溶液にアンモニア
水及びヒドラジンを添加して該溶液のpHを5〜7に、
またORPを−100〜100mVに制御してバナジウ
ムイオンをV2 4 またはV2 4 ・2H2 Oとして沈
澱させて採取することを特徴とする石油系燃焼灰からバ
ナジウムを回収する方法。
1. A mixture of petroleum-based combustion ash and water is added with sulfuric acid and hydrazine to adjust the pH of the mixture to 2
To 3, and the ORP was controlled to 200 to 400 mV to increase the elution rate of vanadium from the combustion ash to separate and remove solids from the mixed solution. Then, ammonia water and hydrazine were added to the solid separated solution. To bring the pH of the solution to 5-7,
The method for recovering vanadium from petroleum-based combustion ash and recovering by controlling the -100~100mV vanadium ions the ORP precipitated as V 2 O 4, or V 2 O 4 · 2H 2 O .
JP13510095A 1995-06-01 1995-06-01 Recovery method of vanadium from petroleum combustion ash Expired - Fee Related JP3188138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13510095A JP3188138B2 (en) 1995-06-01 1995-06-01 Recovery method of vanadium from petroleum combustion ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13510095A JP3188138B2 (en) 1995-06-01 1995-06-01 Recovery method of vanadium from petroleum combustion ash

Publications (2)

Publication Number Publication Date
JPH08325651A JPH08325651A (en) 1996-12-10
JP3188138B2 true JP3188138B2 (en) 2001-07-16

Family

ID=15143846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13510095A Expired - Fee Related JP3188138B2 (en) 1995-06-01 1995-06-01 Recovery method of vanadium from petroleum combustion ash

Country Status (1)

Country Link
JP (1) JP3188138B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768116B2 (en) 2000-12-15 2011-09-07 千代田化工建設株式会社 Method for producing high purity vanadium compound from carbonaceous residue containing vanadium
JP5810897B2 (en) * 2011-12-26 2015-11-11 住友金属鉱山株式会社 Process of leachate
JP6348235B2 (en) * 2015-12-18 2018-06-27 株式会社ギャラキシー Vanadium recovery processing method and use of vanadium
CN110257647A (en) * 2019-07-16 2019-09-20 昆明理工大学 The method of vanadium is recycled from ferric vandate

Also Published As

Publication number Publication date
JPH08325651A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US3966569A (en) Method of recovering metal from metalliferous waste
CN108940183B (en) Method for preparing magnetic adsorbent by using waterworks ferro-manganese sludge as raw material
JP5261950B2 (en) Method and apparatus for treating selenium-containing wastewater
CN113684368A (en) Method for co-processing arsenic sulfide slag and arsenic-containing smoke dust in copper smelting
AU2019310942B2 (en) Method for homogeneous precipitation separation of iron and aluminum from laterite nickel ore acid leaching solution
CN105664872A (en) Modified sodium lignin sulfonate heavy metal capture agent and preparation method thereof
CN110451573B (en) Method for treating arsenic in nonferrous smelting waste acid by taking limonite as solid iron source
CN114314661B (en) Method for producing high-purity ammonium metavanadate by deep cobalt removal of vanadium raw material
CN101921001A (en) Technology for preparing cobalt hydroxide from cobaltous sulfate solution
CN110775998A (en) System and method for producing nano zinc oxide by industrially recycling zinc
JP3188138B2 (en) Recovery method of vanadium from petroleum combustion ash
CN101723439B (en) Method for recovering lead chloride from sintered ashes and preparing lead monoxide
CN213559080U (en) Acid leaching oxidation harmless treatment equipment for waste incineration fly ash water washing slag
JP2009011914A (en) Selenium-containing wastewater treatment method and apparatus
JP5109505B2 (en) Method and apparatus for treating selenium-containing wastewater
JP3831805B2 (en) Treatment method for petroleum combustion ash
CN110453096A (en) A kind of method that the Whote-wet method smelting molybdenum concentrate of environment-friendly type prepares high-purity ammonium heptamolybdate
JP2006263703A (en) Treatment method and treatment apparatus of selenium-containing water
JP4119670B2 (en) Recovery method of high purity vanadium
JP3780359B2 (en) Treatment method for petroleum combustion ash
JP3684477B2 (en) Treatment method for petroleum combustion ash
CN112176346A (en) Regenerant of phosphorus/sulfur mixed acid for chemical polishing, online regeneration method and system adopted by same
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP4013172B2 (en) Processing method for heavy oil combustion ash
JP4013171B2 (en) Processing method for heavy oil combustion ash

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

LAPS Cancellation because of no payment of annual fees